

AR Training: Approaches and Considerations

Nadine E. Miner, PhD

XR Team Lead Software Simulation and Analysis
Sandia National Laboratories
neminer@sandia.gov

Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2019-xxxxx

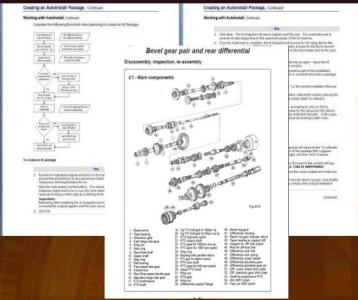

Overview

Background

Motivation

Method 1: Sequential Learning

Method 2: Real-world Facility Training



Method 3: Exploration-based Learning

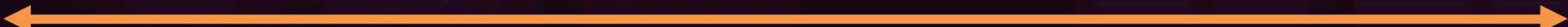
Future

Background: Traditional Training Methods

Training/Design Manuals

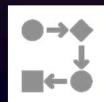
- + Relatively inexpensive to produce, update, distribute
- + Provides Parallel training
- + Captures Procedures
- Lacks visual elements, 2-D
- Not engaging
- Doesn't provide practice

Videos and Power Point Training


- + Adds critical visual element
- + Provides parallel training
- + Demonstrate complex processes
- Not experiential, no practice
- Costly to update

Training with Expert

- + Experiential with feedback
- + Strong visual element
- Doesn't capture knowledge or provide replay/practice
- Not highly parallel
- Expensive
- Time and resource constrained


Opportunity for AR Training

BACKGROUND

MOTIVATION

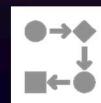
METHOD 1

METHOD 2

METHOD 3

FUTURE

Motivation

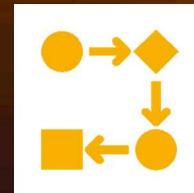

- The U.S. Workforce is aging
 - By 2024, 25% of the **US workforce** will be over the age of 55 (Bureau of Labor Statistics)
 - Not enough younger workers to make up for the labor and skill gap that the retired “baby boomers” will leave
- AR Training has potential to help fill this gap and overcome many negatives of traditional approaches
 - Captures knowledge in a more flexible, dynamic, visual way
 - Engages learners in interactive training scenarios
 - Allows parallel and offsite training
 - Engage Learners in Interactive Training Scenarios
 - Allow Practice of What-if and High Consequence Scenarios
 - Increase Retention Through Repetition and Knowledge-Testing

BACKGROUND

MOTIVATION

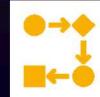
METHOD 1

METHOD 2



METHOD 3

FUTURE


METHOD 1: Sequential Learning

BACKGROUND

MOTIVATION

METHOD 1

METHOD 2

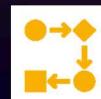
METHOD 3

FUTURE

Sequential Training Lends itself to Training Frameworks

- Sequential ordering of information is fundamental to human learning
- Widely needed for a variety of tasks: assembly, disassembly, maintenance
- Common functionality across domains
 - Demonstrate, Teach Sequences, Test knowledge for increased retention
- Make or Buy?
 - Develop Custom Training Framework
 - 6300 XR Team customizable training framework
 - Custom frameworks presented here today
 - Software Product Lines for Immersive Training
 - VEGA: An AR Work Instruction System
 - Commercial off the Shelf
 - Many choices
 - Microsoft Dynamics 365 Guides, Vuforia Studio, Adobe Captivate, ScopeAR, ...

Considerations for Training Frameworks

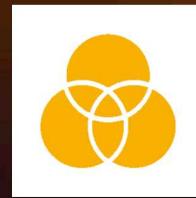

- Many solutions and more to come – Difficult to Choose!
- Considerations for “Make”
 - + Full control over interactivity, feedback, features
 - + Customize features according to your prioritizes
 - + Full control over sensitive information and security
 - Software system security challenging
 - Long development time unless large software teams employed
 - Duplicating feature development available in other tools
 - Expensive

BACKGROUND

MOTIVATION

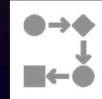
METHOD 1

METHOD 2



METHOD 3

FUTURE


METHOD 2: Real-World Facility Training with Target Recognition

BACKGROUND

MOTIVATION

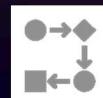
METHOD 1

METHOD 2

METHOD 3

FUTURE

Training in Real-World Facilities

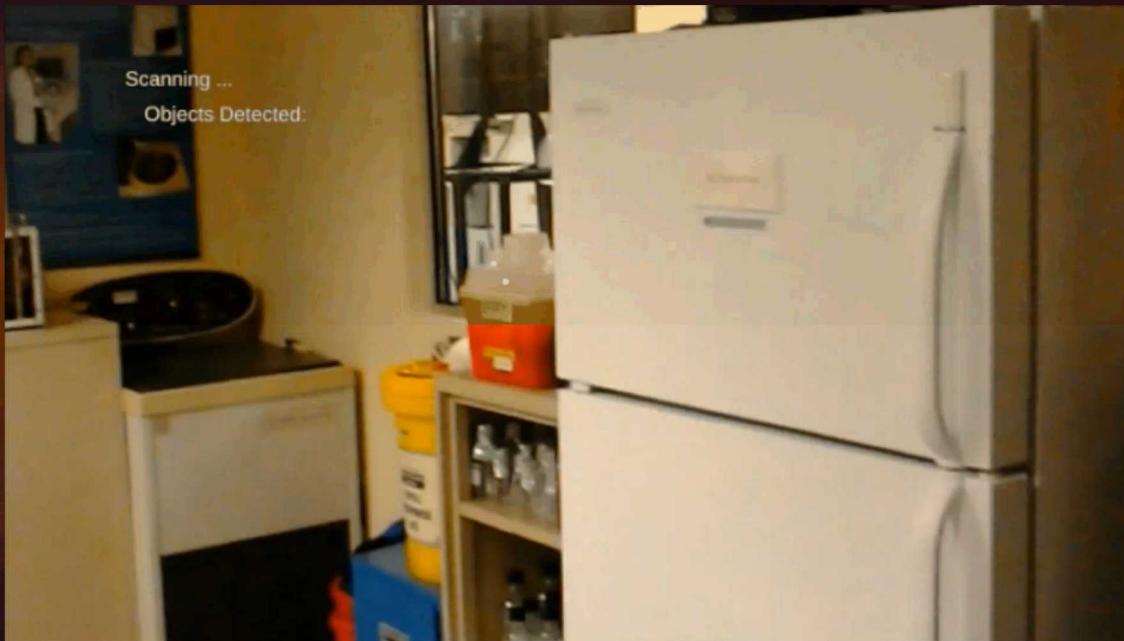

- Useful for facility training such as operations and inspections
- AR ideal because you can see real-world and overlaid information
- Augmentations can be: graphical, audio, video
- Target recognition is often useful for real-world training
 - Vuforia is a tool that allows creation of custom image target databases and is fully integrated with Unity
 - Vuforia supports HoloLens, Android and iOS

BACKGROUND

MOTIVATION

METHOD 1

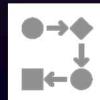
METHOD 2



METHOD 3

FUTURE

Chem/Bio Lab Facility Inspector Training with Target Recognition


Video SAND No.
SAND2019-14637 C

BACKGROUND

MOTIVATION

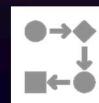
METHOD 1

METHOD 2

METHOD 3

FUTURE

Considerations for Target Recognition


- True object recognition is the “Holy Grail” of computer vision today
 - Can use machine learning to develop object recognizers, but vast amounts of data needed
 - Can develop application-specific object class recognizers requiring less data for well-defined object sets
- Hardware
 - Microsoft HoloLens® v1
 - Target recognition via Vuforia/Unity Good, but sensitive to head jitter, limited FOV and there is lag
 - Anticipating HoloLens® v2 will overcome many of these limitations
 - Tablets/Smart Devices
 - Have higher resolution cameras with larger FOV
 - Provide faster, more stable target recognition
 - Not hands-free

BACKGROUND

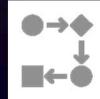
MOTIVATION

METHOD 1

METHOD 2

METHOD 3

FUTURE


METHOD 3: Exploration-based Learning

BACKGROUND

MOTIVATION

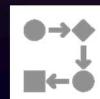
METHOD 1

METHOD 2

METHOD 3

FUTURE

Method 3: Exploration-based Learning


- Humans are born exploration-based learners
- By engaging the senses, humans engage their natural curiosity and form brain pathways based on their experiences
- XR Exploration-based training systems can create compelling, interactive, sensory-engaged learning experiences
- Increasing difficulty levels can provide exhilarating, fulfilling and more memorable learning experiences

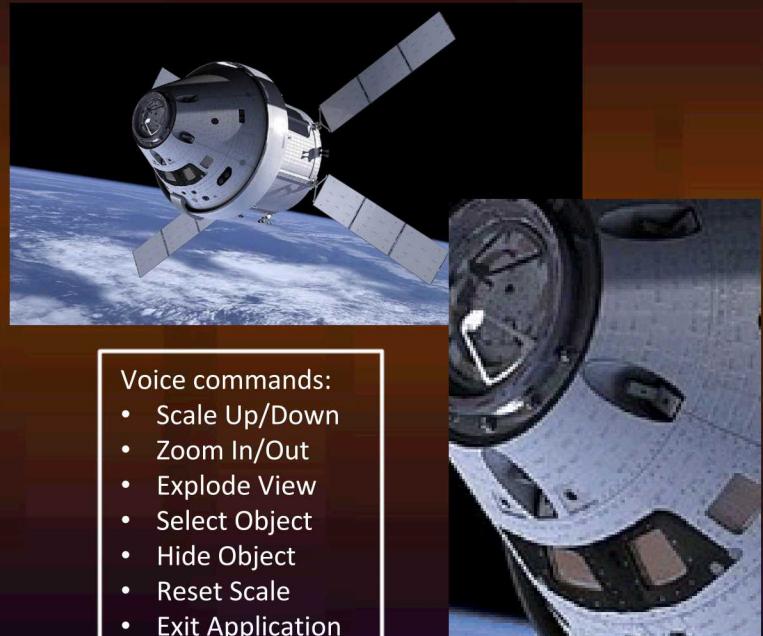
BACKGROUND

MOTIVATION

METHOD 1

METHOD 2

METHOD 3



FUTURE

Method 3: ARexplore

Framework for Model Exploration

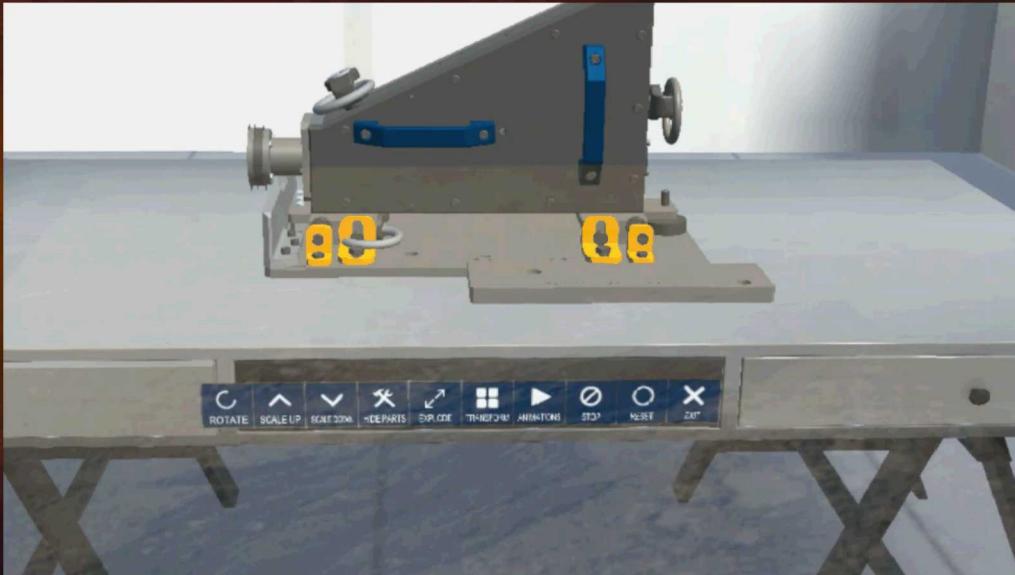
- Framework provides participants with design interaction mechanisms such as scale, explode, zoom, hide, and cutaway.
- Participants interact with models and designs via intuitive menus, gestures, voice commands, and receive audio and visual feedback

BACKGROUND

MOTIVATION

METHOD 1

METHOD 2



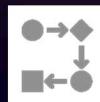
METHOD 3

FUTURE

CRITR Exploration AR Demonstration

Z-Team:
Brandon Klein,
Trent Yocom

AR Team:
Nadine Miner
Alexis Rubin


SAND No.
SAND2019-14385 O

BACKGROUND

MOTIVATION

METHOD 1

METHOD 2

METHOD 3

FUTURE

Future Work

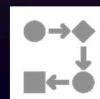
- **Sequential Training**

- Several teams are developing custom frameworks and/or evaluating COTS frameworks
- Collaboration is crucial to make efficient progress as a community, and to minimize repetition of effort

- **Real-World Facility Training**

- There is much untapped potential in this domain
- The Augmentations can include triggering sequential training and/or free form exploration, in addition to “standard” augmentations

- **ARexplore development is on-going and being expanded**


- Ideal for collaboration and inner-sourcing this framework ac

BACKGROUND

MOTIVATION

METHOD 1

METHOD 2

METHOD 3

FUTURE

Questions?

Nadine E. Miner, PhD

neminer@sandia.gov

Related Demonstrations

Training Type	Demo Area
Sequential Training w/target Recognition	XR@Z
Real-World Facility Training	Lab Inspector Walkthrough
Exploration-based Learning with ARexplore	XR@Z