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Uncertainty is present in all wind energy problems of interest, but quantifying its impact
for wind energy research, design, and analysis applications often requires the collection of
large ensembles of numerical simulations. For practical use these predictions require a range
of model fidelity, as predictive models that include the interaction of atmospheric and wind
turbine wake physics can require weeks or months to solve on institutional high-performance
computing systems. The need for these extremely expensive numerical simulations exacerbate
the computational resource requirements usually associated with uncertainty quantification
analysis. To alleviate the computational burden, we propose here to adopt several multilevel-
multifidelity strategies that we compare for a realistic test case. A demonstration study was
completed using simulations of a V27 turbine at Sandia National Laboratories' SWiFT facility
in a neutral atmospheric boundary layer. The flow was simulated with three models of
disparate fidelity. OpenFAST with TurbSim was used stand-alone as the most
computationally-efficient, lower-fidelity model. The computational fluid dynamics code Nalu-
Wind was used for large-eddy simulations with both medium-fidelity actuator disk and high-
fidelity actuator line models, with various mesh resolutions. In a pilot uncertainty
quantification study, we considered five different turbine properties as random parameters:
yaw offset, generator torque constant, collective blade pitch, gearbox efficiency and blade
mass. The standard deviation of the estimated value for these properties decreases with the
use of multilevel-multifidelity techniques compared to using a standard Monte Carlo method,
and the amount of the improvement changes with the parameter being investigated.

I. Nomenclature

ABL atmospheric boundary layer
AD actuator disk
AL actuator line
CV control variate
CFD computational fluid dynamics
fi body force
LES large eddy sirnulation
MC Monte Carlo
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MLMC =
MLMF =
QoI =
SWiFT =
UQ =

Multilevel Monte Carlo
multilevel multifidelity
quantity of interest
Scaled Wind Farm Technology
uncertainty quantification

II. Introduction

In a typical wind farm, wind turbines may be placed in multiple rows in order to maintain a compact arrangement.
The result of this arrangement is that the front rows of turbines will create a wake from the oncoming wind that will
propagate to the wind turbines in back rows. The velocity deficit in these wakes tends to reduce the output power from
those turbines, and hence the net wind farm efficiency may be lower than predicted from the nominal efficiency of a
single turbine. The Scaled Wind Farm Technology (SWiFT) facility was designed and built to study these wake
interactions, so it is an excellent resource for testing and validating methods to characterize wake effects [I].

A. Motivation
The wind industry engineering research and design practices are starting to use the tool of uncertainty

quantification coupled with complex high-fidelity simulations. However, with the large number of uncertainty
parameters, the computational cost becomes prohibitive for conventional UQ methods.

It is possible to use computational models to optimize the arrangement of wind turbines to minimize the loss of
efficiency from the wake effects. However, models that do not consider variability in the operating conditions of the
wind farm may lead to poor wind farm configurations; an optimally designed wind farm under a single nominal set of
operating conditions offers no performance guarantees if the conditions deviate on any given day. Even when the
turbine is operating within ideal conditions, the generated power is affected by turbulent fluctuations in the wind,
changes in the wind shear and veer, atmospheric conditions such as density and stability, and the wakes from other
turbines. Within the turbine itself, there may be misalignment with the primary wind direction, suboptimal blade pitch
angles, and mis-tuned tolerances for the rotor and blade controllers. Finally, computational models for wind farms
often rely on low order models that cannot capture all of the physics present in the system, and thus add model form
uncertainty to the design of such systems.

Uncertainty quantification (UQ) is necessary for treating variability in applications whenever significant
randomness in the system is present. In wind energy applications, UQ provides the ability to quantify the expected
power output and associated variance from wind farms in the face of the aforementioned uncertainties in operating
conditions. UQ may also be used to inform and optimize wind farm configurations that are robust to these variations
and may yield superior performance to configurations designed without taking variability into account. Combining
UQ methods with the extensive data taken at the SWiFT facility gives us the opportunity to test these methods against
real research scale turbine measurements.

B. Multifidelity UQ
In recent years, multifidelity UQ has been introduced in order to alleviate the high computational cost of high-

fidelity simulations for accurate wind simulations and it is based on the aggregation of several lower accuracy models
with a handful of higher fidelity computations. This family of methods comprises both surrogate- and sampling-based
approaches [2]. In this work, we focus our attention to sampling-based approaches but we leave the extension of
surrogate-based multifidelity UQ strategies to a following paper. In the MLMC method the goal is to obtain a statistical
estimator based on the aggregation of evaluations of the quantity of interest (QoI) over several model fidelities (very
often spatial and temporal resolutions). MLMC takes advantage of the convergence of the deterministic scheme in
order to build estimators that target the coarsest resolution levels and all the subsequent discrepancies between adjacent
resolutions. The MLMC is based on the assumption that for a sequence of models, it is possible to build corrections
with respect to the coarsest model and that these corrections exhibit a decreasing variance for increasing
fidelity/resolution. In many practical circumstances, these assumptions are not always verified and it is necessary to
resort to the so-called multifidelity estimators which are derived from the control variate approach [3, 4, 5]. The
combination of control variate and MLMC lead to Multilevel-Multifidelity estimators (MLMF) [2]. As an extension
of previous work [6], we consider simulations of Sandia National Laboratories' Scaled Wind Farm Technology
(SWiFT) site in a neutral atmospheric boundary layer.

The turbulent wind is modeled with either Nalu-Wind [7] or TurbSim [8]. The latter is a large eddy simulation
computational fluid dynamics (CFD) code. Both are coupled to OpenFAST (TurbSim being a package thereof) [9]
which contains the turbine model.
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Nalu-Wind simulations of the SWiFT site are part of an ongoing full-system (atmosphere, turbine and wake)
validation effort of wind plant simulations named the SWiFT benchmarks [10, 11]. Within the study, numerous
computational models of varying fidelity levels are subjected to comparisons with experimental observations from the
SWiFT facility for three benchmarks of increasing levels of atmospheric stratification complexity: near neutral,
slightly unstable and very stable. These model-measurement comparisons aim to reduce wind plant model uncertainty
through assessment of model performance under different inflow conditions and model ability to reproduce mean and
dynamic wake characteristics. For neutral atmospheric boundary layer operating conditions, Nalu-Wind was also used
to simulate different yaw configurations for the upwind turbine, and the simulated inflow, loads and wake of the two
turbines were compared to experimental wake steering results from the SWiFT facility [12]. Reasonable agreement
was shown between the predicted inflow conditions, upwind turbine loads and the wake deficit with the measurement
data.

III. Problem Description

A. SWiFT Experimental Site
Sandia National Laboratories operates the SWiFT facility located in Lubbock, Texas. The baseline site

instrumentation includes three research wind turbines (WTG) and two meteorological towers (MET) as shown in
Figure 1(a). The layout of the SWiFT facility is seen from an overhead view in Figure 1(b). The SWiFT turbines are
highly-modified, variable speed collective pitch Vestas V27 machines with a hub height of 32.1 meters, a rotor
diameter of 27 m, and a maximum power output of 192 kW [1]. The wind turbine (WTGal) and meteorological tower
(METal) used to create these simulations are aligned with the predominant, southerly wind direction at the site. The
wind turbines are highly instrumented with measurements including yaw heading, blade pitch angle, rotor rpm and
azimuth angle in addition to generator power, torque, and rpm. The wind turbine yaw heading was calculated by
subtracting the 32 m sonic anemometer wind direction from the wind turbine yaw heading. During the experimental
campaign of focus in this paper, the Danish Technical University's (DTU) SpinnerLidar was deployed to measure the
wake behind the upstream wind turbine [13]. Additional details about the neutral atmospheric inflow are included in
Ref. [10] and details about the OpenFAST model calibration are provided in Ref [11].
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Figure 1. (a) SWiFT site layout and coordinate system with the DTU SpinnerLidar installed in WTGa 1 (b) including
a top view of the facility layout [1], where D = 27 m.

B. Multilevel Multifidelity Modeling Methodology
In this section we briefly describe the sampling approaches used for the UQ forward propagation in this paper,

namely multilevel Monte Carlo (MLMC), control variate, and the multilevel-multifidelity (MLMF) estimator which
combine the previous two approaches. All these estimators are derived from the Monte Carlo methods and therefore
they exhibit an intrinsic variance, i.e. if the estimator is repeated multiple times different results are obtained. All the
multilevel and/or multifidelity estimators aim at leveraging the computational efficiency of the less accurate models
in order to reduce the variance of the statistical estimator built upon the highest fidelity model. In this context we
consider the bias of the highest fidelity model, i.e. the LES Nalu-Wind code with actuator line for the fine mesh
resolution, as satisfactory and therefore we only focus on the variance reduction aspect.

In a plain MC method the expected value IE [Q] for a generic Quantity of Interest (QoI) Q : E —> IR is
approximated as
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ViN 1
E[Q] = f Q(013(04 •"•"' tgc = —NLQW1)) =

i =1 i =1

where N realizations of the vector of random input 4" E N a are drawn according to the joint probability distribution
p(f). For each realization of the vector of random input variable the value of the QoI Q(0 = Q(C) is computed
by solving the system of PDEs describing the problem of interest. The MC estimator is robust and reliable, being

unbiased and not affected by the dimensionality d, however its rate of convergence is only 0 (A,G).
The first approach we investigate to reduce MC variance while keeping its cost affordable is the so-called MLMC.

For a deep review of the method the interested reader can refer to [14]. The main idea of MLMC is to replace the QoI
Q with a sequence of corrections with respect to a lesser accurate model (for instance, coarser spatial mesh
resolutions). If we consider the highest resolution level QL we can write QL = Qo + (Q1 — Qo) + ••• +
(QL — QL-1) and if we define

= EQI — Q1_1 for 1 > 0
Q0 for l = 0

(2)

we can write more compactly QL = V_O 111 The MLMC estimator is formulated by obtaining the expected value
[QL] as the sum of independent MC estimators for each term IT/.

NI
AMLMC =11 

Iv/
(i) 

(3)•

/ =0 i =1

The variance of this estimator is known analytically once the terms Var(K) are estimated. Another notable
feature of this method is that the sample allocation, i.e. the number of evaluations for estimating each term K, can be
obtained by solving an optimization problem in which a target accuracy E2 is prescribed and the overall
computational cost, C = Ef'_o C1N1, is minimized If the cost of each realization of Y1 is noted as C1 the optimal
solution is given by

1  i 
N1 = 1-‘1Var(Yk)Ck 

Var(171)

k=0

As it can be seen from the previous equation the number of simulations for each level is proportional to

Therefore, for a sequence of levels for which Y1 —> 0 for 1 —> 00, N1 will decrease as well with 1, i.e. the
computational burden is redistributed toward the less expensive coarser levels.

If the maximum number of available simulations at the highest resolution is fixed, i.e. NL = Ntarget, the sample
profile can be obtained by building backward the sequence of samples per each level as

Var (Y1 ) C1_1
T1-1=

1'1-1

j

Var (Y1_1) 
for 1 = L, ...,1 (5)

from which it follows that N1_1 = N11-1_1
In this work we explore the possibility to fuse realizations from Nalu-Wind and from OpenFAST. In general,

whenever there is not a guarantee that 171 —> 0 for 1 —> 0 (in our case statistics from OpenFAST will not likely
converge to the statistics of Nalu-Wind), it is possible to rely on the so-called control variate (CV) estimator. The
idea is to rely on the correlation among models instead of the decaying of variance among discrepancy terms. We
briefly present a formulation in which the statistical properties of the high- and low-fidelity model (HF and LF
respectively) are estimated as introduced in [2, 15]. Also, for an extension to multiple low-fidelity models, the reader
can refer to [5, 16]. In the CV approach we can approximate the expected value of a QoI for the high-fidelity model
evaluated at the resolution level L(0F) by adding an unbiased term based on the low-fidelity model

CV,HF C,C,LF C,)
E[oF 

AM
,,„NHF — ,L,NHF

HF n,(11M AM
— ,L,NLF

LF 
p (6)

where NLF = NHF + ALF = NHF (1 + r) and the additional LF evaluation ALF = rNHF are drawn independently from
the first set NHF. The values for a and the additional parameter r > 0 are obtained by minimizing the overall

computational cost under the constraint of the variance of the estimator Var(OrNCH'IIFF) being equal to £2 . The final

result obtained through the optimization (see [2, 15] for further details)

(4)

Var (OF) ( CHF  P2 
NHF =

£2 r + 1
p2) and r = —1 +

2P 

\IVar (Y()C1 •

(7)

(1)

4



where p is the Pearson's correlation coefficient between HF and LF and CHF and Czy the computational cost of each
HF and LF, respectively.

Instead of relying directly on the CV estimator, in this work we embed it within the MLMC estimator as done in
[2, 6, 15, 17]. The MLMC estimator is obtained as in Eq.(3) and afterward for its coarsest level the MC estimator is
replaced by a control, Eq.(6). The final result is similar to the MLMC allocation, with the sole difference that a

variance reduction term A/ is introduced for 1 = 0, ti. e. Ao = 1 — 191.4). If for all other levels A1 = 1 (which indicates1-Fro
that no variance reduction is achieved since there is not a CV at that level) the final sample allocation is

L  
1 Var(K)A1

Nl = frar (Yk)CkeqAk  
Ceq

k=0

where the equivalent cost per each level 1 also includes the additional number riNlIF of low-fidelity evaluations,
ciect = CHF 

+ (1 + r1)Cr.

For this estimator we can also compute the ratios r1 similarly to Eq. (5) in order to build the optimal allocation
constrained to the maximum number of realizations at the highest level of resolution of the HF model.

(8)

IV. Various Fidelity Computational Turbulence Sub-Models

Various approaches are employed here to simulate the single leading Vestas V27 wind turbine (WTGal) used at
SWiFT [13]. The various fidelity sub-models include two models for the inflow and multiple strategies to couple the
turbine to the flow field. The inflow wind for the aerodynamic analysis is simulated either using the highly efficient
TurbSim or the high-resolution Nalu-Wind LES code.

Independent of the turbulence model, the modeling of the wind turbine loads is through the OpenFAST software
suite developed at the National Renewable Energy Laboratory (NREL) [9]. OpenFAST enables the analysis of
complex physical and environment coupling, including turbine controllers, elastic dynamics, and flow-structure
interactions with actuator line and disk theory. The Vestas V27 [1] model in OpenFAST is used to match the rotors
used at SWiFT.
A summary of the four simulation model levels is shown in Table 1. The OpenFAST modular time step was kept

constant at 0.005 seconds for all models; Table 1 displays the time step of the atmospheric model (Nalu-Wind or
TurbSim). Mesh information is not included for TurbSim as the mesh does not have the same meaning as the Nalu-
Wind CFD mesh.

Table 1: Case Descriptions for Simulation Models

Case
Grid Number (#

elements)
Min. Grid

Spacing (m)
Domain (x,y,z)

(km)
Sim. Time Step

(s)
OpenFAST +
TurbSim

- - - 0.05

Nalu-Wind +
AD coarse

9.5e6 2.5 3 x3 x 1 0.2

Nalu-Wind +
AD fine

11.7e6 1.25 3 x 3 x 1 0.2

Nalu-Wind +
AL fine

11.7e6 1.25 3 x 3 x 1 0.02

A. OpenFAST and TurbSim Alone
The most computationally affordable modeling method is to use the OpenFAST module TurbSim to generate

statistical realizations of a turbulent inflow wind field combined with the AeroDyn module for solving the turbine
rotor aerodynamic loads. This method is the lower fidelity modeling approach and is termed OpenFAST in this paper,
despite the use of some OpenFAST modules in the Nalu-Wind code. TurbSim models the turbulent inflow based on
a statistical representation where the spatiotemporal turbulent velocity field relationships are enforced, in this case the
Kaimal spectra [8]. Many inflow parameters can be varied in TurbSim, such as shear, turbulence intensity, and mean
wind speed, but these parameters cannot all be enforced in the same way in Nalu-Wind LES. The present work only
focuses on varying turbine parameters, and future work will focus on inflow and atmospheric boundary layer
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parameters. AeroDyn uses the blade element momentum theory and general actuator disk methods to model the
aerodynamic loads on a wind turbine rotor, and a major limit of this method is that it does not capture wake interaction,
and so only applies to stand alone wind turbines.

B. Nalu-Wind with OpenFAST Coupling
The second set of methods employ the Large Eddy Simulations (LES) capabilities of the massively parallel

simulation code Nalu-Wind [7] in conjunction with turbine forcing models from OpenFAST. Nalu-Wind solves the
integral forms of conservation of mass

.1
at dV 

+ f pitini dS = 0

and momentum

(9)

fapt
at 

dV + f piiiitinj dS = f "dun./ dS — f nidS + f (go — p.)gidV (10)

in the low-Mach number limit. The tilde represents Favre averaging (quantities weighted by instantaneous density
before averaging). A one-equation, constant coefficient, turbulent kinetic energy model is used for the subgrid scale
stresses [18].

There are two steps to modeling a wind turbine in a neutral atmospheric boundary layer (ABL) flow using Nalu-
Wind. First just the ABL is established, then either Actuator Disk (AD) or Actuator Line (AL) turbine models are
added. The AD and AL are implemented by coupling Nalu-Wind with OpenFAST, which uses the blade element
method to compute turbine loads as well as handling turbine dynamics and controls.

The ABL is setup by running on a 10 m resolution mesh for 20,000 seconds with the flow along the x-axis and the
z-axis pointing upwards. The inflow/outflow planes are periodic, and sides parallel to the wind flow are also periodic.
The upper boundary is represented by an inviscid wall with a specified temperature gradient that matches the gradient
above the capping inversion. The ground is represented by a wall boundary condition with a roughness factor of 0.01.
The velocity is set to 8.69 m/s at the hub height of 32.1m off the ground, and the velocity profile is allowed to develop
with that constraint. After the fully turbulent flow has been established in the first 20,000 s, the simulation is run for
an additional 630 s. (The first 30 s of this will be discarded so that the start-up effects of the turbine will not be used
in the statistics for the quantities of interest.) During this time the velocity data on the inflow/outflow plane is saved.

In the next step this velocity data is used as the inflow for 630 s of simulation with an AL or AD model running.
The initial condition is set to be the flow field in the entire domain at 20,000 s, so it is in sync with the initial inflow
velocity. For these runs the meshes have a refined area around the turbine. Two refinement levels are used in this
study. For the first (coarse, "C") mesh, there is a refinement region that halves the spacing from 10 m to 5 m in an
area 540 x 140 x 100 m, staring 190 m in front of the turbine and a region inside that where the spacing is reduce to
2.5 m which is 520 x 120 x 90 m, starting 180 m in front of the turbine. For the next mesh (designated as fine, or "F"
in the results section), another refinement region with a spacing of 1.25 is added inside the other two that is 500 x 100
x 80 m and 170m in front of the turbine. These refinement zones are shown in Fig 1.

In between each of the refinement zones, there is a thin (the width of the larger spacing of the two regions it is in
between) region of tetrahedron and hexahedron shaped elements to allow for the reduction in the spacing. The sizes
of these meshes are described in Table 1.
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Figure 2 Top left: Bottom view of the entire mesh. The area in red shows where the spacing is 10 m, and the
other colors show the refinement regions. Top right: Shows a closer look at the refinement regions. The yellow
region has a spacing of 5 m for all grids. For the coarsest grid, the green and blue regions all have a spacing of
2.5 m. For the fine grid, the blue region has a spacing of 1.25 m. Bottom: To give a perspective of the relative
heights of the refinement regions, the 5 m spacing region is shown in transparent yellow; the finest spacing of
1.25 m is shown in blue. The rest of the mesh (not shown) continues 910 m above the yellow region.

In Nalu-Wind, the wind turbine rotor and tower may be modeled using actuator source representations, such as
actuator lines and actuator disks. In contrast to blade-resolved simulations in which the blade surfaces are modeled
through complex fluid-structure interactions, actuator source representations do not resolve the blade boundary layer.
However, actuator source modeling has been shown in previous studies to be competitive in accuracy with blade-
resolved simulations and is far less computationally expensive [19].

C. Nalu-Wind with OpenFAST Actuator Disk Coupling
In the actuator disk model, the body-force is applied over the entire rotor disk at once, removing the blade-like

discrete forces in the actuator line model [19]. Although the actuator disk does not accurately model flow features
such as blade-local axial induction zones and root/tip vortices, the model has lower temporal and spatial resolution
constraints than actuator line. The total actuator force at each discrete radial location is first computed,

Ng

F (1)) =If (1), 60

where f ej) are the forces at each actuator line point. This total force is then spread evenly throughout the actuator

line points in addition to swept points that are evenly distributed azimuthally. The disk-applied force f (0,

f (ri) NBOI

( 

sj

i) 

1 
(12)

+ )

is then spread across all points at a given radius rj. NB and Ns j refer to the number of blades and the number of swept
points for a given radius.

D. Nalu-Wind with OpenFAST Actuator Line Coupling
The actuator line model represents the turbine blades as a body-force source term, fi, computed from the forces

over the actuator line [19]. To calculate the volumetricf, which is a force per unit volume, the non-volumetric actuator
forces over the line F; requires projection into the fluid volume. Nalu-Wind uses the uniform Gaussian projection
function proposed by Sorenson and Shen [20],

=
40)2
e 63

fr2E3
(13)
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in which i-' is the position vector from the fluid location where the Gaussian is applied to an actuator line element
control point, and & is the spreading width of the Gaussian which determines the dilution of the body force. For an
actuator line extending from l= 0 to L, the body force at (x,y,z) is represented as

fi(x , y, z) = j" g(N))FI (0d1. (14)
o

This expression may be simplified when the actuator line is discretized into line elements,

fi(x,y,z) g (rIC)Fik

k=0

where FIc , being the force computed at each element center and k being the actuator line index.

V. Results

(15)

A. Computational Costs of Various Sub-Models
Although the LES-based actuator line approach of Nalu-Wind is expected to be more accurate than the OpenFAST

approach, the computational cost associated with solving the filtered Navier-Stokes equations on a large domain is
substantially higher. Thus we compare the costs of performing an LES on two separate meshes with the AL and AD
models versus the cost of using OpenFAST with TurbSim. All simulations were run for a total simulation time of 630
seconds.

Table 2 reports the relative simulation costs for running OpenFAST and for running Nalu-Wind on two meshes of
varying resolution, referred to here as AD coarse, AD fine and AL coarse. The OpenFAST cost includes the amount
of time required to generate the inflow turbulence realization using TurbSim, but even with this cost, it is orders of
magnitude cheaper to run OpenFAST than even the coarse grid LES in Nalu-Wind. The four QoIs were the ten-minute
means of generated power, total rotor thrust, flapwise blade-root bending moment and edgewise blade-root bending
moment.

Table 2: Cost Estimates for Nalu-Wind and OpenFAST Simulations

Case
Simulation
Time (hrs)

CPUs
Cost (CPU-

hours)
Cost (relative)

OpenFAST +
TurbSim

0.25 1 0.25 1

Nalu-Wind +
AD coarse

7 768 5,376 21,504

Nalu-Wind +
AD fine

16.5 768 12,672 50,688

Nalu-Wind +
AL fine

31.75 768 24,384 97,536

For the present study, the OpenFAST and Nalu-Wind simulations were scheduled and run using the Dakota [21]
uncertainty quantification toolkit developed by Sandia National Laboratories. Dakota provides a flexible, extensible
interface between simulation codes such as Nalu-Wind and iterative analysis methods including but not limited to
parameter estimation, sensitivity/variance analysis and uncertainty quantification with sampling, reliability and
stochastic expansion methods. Dakota also provides parallel computing capabilities, which allows the Nalu-Wind
simulations to be run on Sandia's high-performance capacity cluster systems using hundreds of processors.

B. Pilot Study
The following section describes the results of the sampling study for key quantities of interest from the turbine

operations. The five aleatoric uncertain turbine parameters of interest were the yaw offset, generator torque constant,
collective blade pitch, gear box efficiency and blade mass density scaling factor. These values were then mapped onto
the respective intervals shown in Table 2 for the five input turbine parameters. These bounds were determined from
observed V27 turbine operational data from the wake steering experiment at the SWiFT site.

Within the environment of OpenFAST, separate input files exist for each OpenFAST module. The yaw offset and
gear box efficiency were modified using the ̀ NacYaw' and ̀ GBoxEff variables in ElastoDyn, which models the
turbine structural dynamics. The generator torque constant was modified using the ̀ VS_Rgn2K' variable in ServoDyn,
which models the turbine control and electric drive dynamics. The collective blade pitch was modified using the
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`B1Pitch' and ̀ BlPitchP variables in ElastoDyn and ServoDyn respectively, representing the initial and final blade
pitches. The blade mass density scale factor was modified using the ̀ AdjBlMs' variable in the individual blade file
that is read into ElastoDyn.

Table 2: Bounds of Input Turbine Variables

Input Variable Units Lower Bound Upper Bound

Yaw Offset (deg) -25 25

Generator Torque Constant (N-m/rpm^2) 0.0003 0.0004

Collective Blade Pitch (deg) -1.5 0

Gear Box Efficiency (%) 90 100

Blade Mass Scale Factor (-) 0.9 1.1

In Figure 3, the computed values for the four QoIs are displayed from the different Nalu-Wind and OpenFAST
simulation levels. For all considered QoIs (power, thrust, loads), the Nalu simulations predict values ranging from ten
to fifty percent higher than the corresponding OpenFAST simulations.

For both bending moment QoIs, the Nalu-AD results for the coarse and fine meshes are very similar for all samples
but for generator power and thrust, discrepancies are observed between the two levels. Nalu-AL has a higher generated
power and the two bending moments compared to the Nalu-AD simulations.
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Figure 3. Computed values from the Nalu/OpenFAST simulations for a) generated power; b) rotor thrust; c)
flapwise blade-root bending moment; d) edgewise blade-root bending moment. AD are the actuator disk simulations;
AL are the actuator line; C designates the "coarse mesh where "F" is the "fine mesh.

In Figure 4, the multilevel corrections are shown between the different levels for the four considered QoIs. The
decreases are non-monotonic due to the similarities between the Nalu-Wind actuator disk and actuator line models.
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Figure 4. Multilevel corrections (Y1 = Q1 — Q1_1) for a) generated power; b) rotor thrust; c) flapwise blade-root
bending moment; d) edgewise blade-root bending moment.

Using the statistical properties derived from the results of the pilot study, we are able to extrapolate the behavior
of several estimators:

- MC: Standard Monte-Carlo estimator;
- MLMC-31: Multilevel Qo + (Qi - Qo) + (Q2 - Qi);
- MLMC-21: Multilevel Qi + (Q2 - Qi);
- MLMF-31: MLMF based on MLMC-31 with CV for Qo;
- MLMF-21: MLMF based on MLMC-21 with CV for Qi.
In Figure 5, the standard deviation for each estimator is shown as a function of the high-fidelity model simulations

required to obtain the same result for the four different QoIs. A lower estimator standard deviation indicates better
reliability for a particular sampling method. In Figure 5(b) for rotor thrust, the MC line overlaps with the MLMC-21
distribution.
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Figure 5. Extrapolated performance for the MC/MLMC/MLMF estimators for a) generated power; b) rotor thrust;
c) flapwise blade-root bending moment; d) edgewise blade-root bending moment.

For all considered QoIs, the two most efficient estimators were MLMF -31 and MLMF-21, with the former
consistently showing the best performance. The results illustrate that MLMF sampling methods consistently reduce
estimator variance regardless of QoI. The MLMC-31 and MLMC-21 performed similarly for all QoIs, however their
performance in relation to MC and MLMF varied depending on the QoI. For edgewise blade-root bending moment in
Figure 5(d), a significant improvement is observed for the MLMC methods over single-level Monte Carlo. For
generator power in Figure 5(a), the improvement from MC to MLMC is small. For rotor thrust in Figure 5(b), single -
level Monte Carlo shows equivalent efficiency to MLMC-31 and higher efficiency than MLMC-21, demonstrating that
MLMC does not necessarily have the consistent improvement over MC that MLMF methods possess.

VI. Conclusion

In this study, we compared several estimators: single-level Monte Carlo, multi-level Monte Carlo and multi-level
multifidelity methods, for a wind turbine application using the physics models of TurbSim+OpenFAST and Nalu-
Wind. The conducted Nalu-Wind simulations for the pilot study used a quasi-steady-state turbulent inflow of a neutral
atmospheric boundary layer, providing detail of atmospheric-turbine interactions similar to benchmark simulations.

The performance of the estimators varied between four tested QoIs, with the MLMF approaches consistently
requiring the fewest equivalent samples for a given level of accuracy. The MLMC methods performed similar to
MLMF methods for generator power, but showed a significance decrease in efficiency for rotor thrust and bending
moments. For rotor thrust, single-level MC showed equivalent efficiency to a third-level MC method, which can be
attributed to the non-monotonic behavior of the different simulation model levels.
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