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Atomic Precision Advanced Manufacturing (APAM)
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APAM is a process of area-selective dopant incorporation at the atomic scale

STM = Scanning
Tunneling
Microscope

lom Example of
7-11P APAM device

APAM key properties (vs. standard processing)

• Atomic precision
• Extremely high density of dopants

source

Silicon cap for dopant activation

p-type cap

APAM n-wire
(monolayer thick)

p-type substrate

drain

APAM can unlock revolutionary
opportunities in microelectronics
from the atomic physical limit
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Previous studies of the C.B. in Si:P 6-layered systems

• Many computational groups attempted to study these
systems

• There are many known unresolved contradictions
between the theory and experiment

• Gerhard Klimeck's group, world-famous for their
quantum transport simulations and tools, spent a
significant effort studying Si:P delta-layer systems

• They use "atomistic" tight-binding approach that does
take into account valence electrons.

• However, for Si:P-delta systems they did NOT use the
open-system treatment, and relied on the closed-
system eigenstates (they justified it by considering
"equilibrium properties")
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"Equilibrium Bandstructure of a Phosphorus 15-doped Layer in Silicon
using a Tight-binding Approach", Sunhee Lee, Hoon Ryu, Gerhard

Klimeck et al. (2009)
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A recent study revealed the existence of a shallow sub-band!
The Sub-band Structure of Atomically Sharp Dopant Profiles in Silicon (a) < 1/4 ML

Federico Mazzola„1, 2 Chiti-Yi Rajib Rahman,3,4 Xie-Gang Zhii,5 Craig M. Polley,6 Thiagarajan
.0 1—

Balasubrainfiniam,6 Phil D. C. King,2 Philip Hoftrialiii,7 Jill A. Miwa,7 WellS1'
o•it

-0.1—

'Center for Quantum Spinlronics, Deparimmt of Physics;
_Norwegian University of Science and Technology, NO-7491 Rondheim, Norway

25'UPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY16 9SS,
De.partment of Electrical and Computer Engtheerin9,
PWTthle Univcr,5i0, West Lafaytite, IN 47907, USA

4 School of Physics, The University of New South Wales, Sydney, New South Av'ales 2052; Asstra/ia

• ARPES (angle-resolved-photoemission-spectroscopy) reveals
the existence of a shallow sub-band (denoted with blue
curves) that exists only for relatively high delta-layer values.

The authors
• argue that the majority of current is likely being carried by this

sub-band;
• show why this sub-band cannot be explained by the traditional

theory (e.g. the spin-orbit coupling);
• propose an artificial "solution" by assuming E-38 for highly-

doped Si (T-B)

oQ

-0.1

Si/P thick layer

-0.1 0 0.1
lc. (A-1)

Min Max

Sandia
National
Laboratories

I I I
-0.1 0 0.1

kxy (A-1)

EF

— 0.1 ',§;

—0.2 Lir

—0.3

EF

0.1 ',§;

0.2 Lir

0.3

EF

0.1 Ti.;

0.2 Lir

0.3

-0.1 0 0.1
ky (Å-l)



Quantum transport formalism: a brief reminder

Density of states: p(E) or DOS(E) describes an open quantum system.
Any system with a source-drain is a quantum wire!

The density of states has a functional dependence on energy.

Degrees of freedom Density of states
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What makes our approach different?

• Simulator to solve quantum transport in open systems.

• Fully charge self-consistent solution of Poisson-open
system Schrödinger equation.

• Contact Block Reduction (CBR) method.

"Efficient method for the calculation of ballistic quantum transporf",
D. Mamaluy, M. Sabathil, and P. Vogl, J. Appl. Phys. 93, 4628 (2003)
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Device Setup

(Geometry, Leads, doping)

CBR method[2]]

Calculation Functiona±1

Calculation of transverse

lead eigenstates (=modes)
 M 

Solution of closed system H°

Calculation of transmission,

tDOS and carrier density for

open system

Predictor-Corrector
approach

to update the Hartree
potential and the exchange-

correlation potential

HFH < error
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Prediction of a shallow band with unusual DOS

• Below the Fermi level the states are
"protected"- i.e. independent of wire
geometry.

• Waveguide modes come from
conventional confinement, depend on
wire geometry.
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Validation: 110 vs ND, simulation vs measurement

• Accurate everywhere, except for low
doping levels.

• A more accurate measurement and a
discrete model for simulating
impurities are needed in the low
doping region.
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Sheet resistance Ro vs 6-doping concentration N D

-0- K.Goh, L. Oberbeck, M. Simmons et al. PRB (2006)

-N- CBR Simulation: single-valley

CBR Simulation: single-valley, 8=38 (const)

-N- Semiclassical at 300K

E OF DOPING DENSITY ON ELECTRONIC... PHYSICAL REVIEW B 73, 035401 (2006)

TABLE I. Characteristics of Si:P &doped samples at 4.2 K.

Sample NI N2 N3 N4 N5 N6 N7

Nr, (1om cm-2)a 0.12 0.27 0.48 0.91 1.9 2.1 5.2'

,I.ai (10 cm4) 0.23 0.41 0.85 1.9 2.0 1.2

p„ (kfl (1-1) -103 5.0 3.2 2.0 0.94 0.87 1.5

/.1. (cm2 v-' s-1) 56 48 37 35 36 34

/ (nm) 4.4 5.1 5.7 8.0 8.4 6.2

r (fs) 13 12 7.7 6.8 6.9 6.8

7, (ps) 0.56 0.72 0.99 1.2 1.2 0.98

/9 (nm) 26 36 52 80 82 59

"P coverage.
'From Ref. 14.

0.0 2.0x1 02° 4.0x1 02° 6.0x1 02° 8.0x1 02° 1 .0x1 021 1 .2x1021 1 .4x1021

ND [crn-3]
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LDOS in delta-layer systems: "Quantum Menorah"

• Below the Fermi level the states are
"protected"- i.e. independent of wire [eV]

geometry. 0.12

• Waveguide modes come from
conventional confinement, depend on
wire geometry.
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Evolution of LDOS for different wire Width
20 n m

• The protected states do not change
with the wire geometry

• Waveguide modes come from
conventional confinement, strongly
depend on wire geometry.

Lead i
z

X

APAM wire
Si can7 CN„^ aP

Si body: NAB°dY

w

Lead 2

NABody=NACap= 
1 016 CM-3

[eV]
0.12

0.10

0.08

0.06

a)
in" 

0.04

0.02
Fermi

level => e7ere

LDOS(z,E), 8—layer is at z=0
-dM.. II.. .4Mlb.. AM b._ .4=1.

0.12

0.10

0.08

0.06

sa.) 0.04

AM\ 0.02

......1611.1111111111Pwr.-- 

-0.02

-0.04 -0.04

-0.06 -0.06

G.00

-0.02

-da \ \ \- .11fib.-

-AL I I.- -.Mho.- l

-A -Arfts-

AIL

Sandia
National
Laboratories

W - 40 nm

-10 -8 -6 -4 -2 0 2 4 6 8 10 [nm] -20 -16 -12 -8 -4 0 4 8 12 16 20

Z (nm)

6-layer

Z (nm)

6-layer

Further analysis shows that by adjusting ND and NA one can
shift the menorah "up and down" vs the energy scale.
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Influence of the 6-doping level

• A first shallow sub-band appears at a doping level around
2x1019/cm3. More sub-bands appear as the doping
increases. The separation in energy between sub-bands
increases with the doping.

• The majority of the current is mainly carried by the electrons
with higher energy, corresponding to the sub-band(s) near to
the Fermi level, as described by Mazzola et al. (2019).

LDOS

We predict that the higher
energy electrons are
located -2nm left and right a)
from the lower energy in
electrons centered around
the delta-layer.
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Summary
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O We have conducted a fully open-system quantum-mechanical study of highly conductive Si:P051-
layered systems

O Unlike previous closed-system studies, our simulations explains the existence of a shallow band
observed by Mazzola et. al. (2019).

O We validated our formalism by reproducing Goh et al (2006) the dependence of sheet
resistance on the delta-layer doping concentration.

O We predict a special structure of the conduction band in real space, termed "quantum
menorah". Adjusting ND and NA doping levels allows one to transform the "menorah" to achieve
a desired level of electron confinement and hence — control the conductive properties of the wire.

O If experimentally confirmed, the existence of a spatially separated (-2nm) free electrons with
distinctively different (-50meV) energies could lead to novel applications in energy-filtering,
thermo-electronics and digital nanoelectronics.
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