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Atomic Precision Advanced Manufacturing (APAM) e

APAM is a process of area-selective dopant incorporation at the atomic scale

y STM = Scanning Silicon cap for dopant activation
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Microscope

Example of
APAM device

APAM key properties (vs. standard processing) _ APAM can unlock revolutionary
= Atomic precision opportunities in microelectronics
= Extremely high density of dopants from the atomic physical limit




Previous studies of the C.B. in Si:P 6-layered systems (&) &=,

Schrédinger

» Many computational groups attempted to study these (H+V)y = Ey Santsustive Fermi-Dirac
systems '

= There are many known unresolved contradictions
between the theory and experiment
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» Gerhard Klimeck's group, world-famous for their t o I
quantum transport simulations and tools, spent a @4‘5*°“*‘;3§'5‘,’,'5§'““°“
significant effort studying Si:P delta-layer systems
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= They use “atomistic” tight-binding approach that does *)_100\ C 0
take into account valence electrons. 2 \ / ! ~100
g A ~200
= However, for Si:P-delta systems they did NOT use the §_400 T \ / r 800 e
open-system treatment, and relied on the closed- || _a00. A0
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system eigenstates (they justified it by considering Monolayer Iki(2n/a)

“equilibrium properties”
9 Prop ) “Equilibrium Bandstructure of a Phosphorus 6-doped Layer in Silicon
using a Tight-binding Approach”, Sunhee Lee, Hoon Ryu, Gerhard

Klimeck et al. (2009)




A recent study revealed the existence of a shallow sub-band! @) 5.
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« ARPES (angle-resolved-photoemission-spectroscopy) reveals
the existence of a shallow sub-band (denoted with blue
curves) that exists only for relatively high delta-layer values.

The authors

_E;
« argue that the majority of current is likely being carried by this -
sub-band; —0.1 ]
- show why this sub-band cannot be explained by the traditional 02w
—0.3

theory (e.g. the spin-orbit coupling);
« propose an artificial “solution” by assuming €~38 for highly-
doped Si (T-B)




Quantum transport formalism: a brief reminder

Density of states: p(E) or DOS(E) describes an open quantum system.
Any system with a source-drain is a quantum wire!

The density of states has a functional dependence on energy.
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Fig. 12.7. Electronic density
of states of semiconductors
with 3, 2, 1, and 0 degrees
of freedom for electron
propagation. Systems with
2, 1, and 0 degrees of
freedom are referred to as
quantum wells, quantum
wires, and quantum boxes,
respectively.
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What makes our approach different? ool _

« Simulator to solve quantum transport in open systems. Device Setup

i - - G try, Leads, dopi
 Fully charge self-consistent solution of Poisson-open (Geometry, Leads, doping)
system Schrodinger equation.

+  Contact Block Reduction (CBR) method. Lood clgentates Crnodes)
“Efficient method for the calculation of ballistic quantum transport’, ) lution of closed sy.
D. Mamaluy, M. Sabathil, and P. Vogl, J. Appl. Phys. 93, 4628 (2003) N ”
5 LDOS and carrier density for
Lead1___ _lead 2 m
i Tt Predictor-Corrector
approach
ENLE] to update the Hartree
‘5 : potential and the exchange-
1 / S bl correlation potential
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Prediction of a shallow band with unusual DOS Ngtona

« Below the Fermi level the states are
“‘protected”- i.e. independent of wire
geometry.

« Waveguide modes come from
conventional confinement, depend on
wire geometry.
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Validation: R;; vs N, simulation vs measurement e

Sheet resistance R[] vs d-doping concentration N

* Accurate everyWhere’ except for low Ly —B— K.Goh, L. Oberbeck, M. Simmons et al. PRB (2006)
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LDOS in delta-layer systems: “Quantum Menorah” M

 Below the Fermi level the states are
“protected’- i.e. independent of wire
geometry.

« Waveguide modes come from
conventional confinement, depend on
wire geometry.
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Evolution of LDOS for different wire Width Nt
W =20 nm

LDOS(z,E), 6-layer is at z=0

 The protected states do not change b1

with the wire geometry ol P YVVYTIYVV VW VW

« Waveguide modes come from  0.08 el . S
conventional confinement, strongly %‘ 0.06 ) )
depend on wire geometry. 5 004
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NAP0%=N,“aP=1016 cm- Further analysis shows that by adjusting N, and N, one can

shift the menorah “up and down” vs the energy scale.
10




Protected modes due to the delta-layer confinement
. LDOS

* Analysis of LDOS(z,E) reveals the
protected modes have distinct
structure and energy.

« The two occupied energy levels (-
67/meV, -14meV) have distinct
locations along Z-axis
(0 and £1.7nm).
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Influence of the 6-doping level

A first shallow sub-band appears at a doping level around
2x10"%cm3. More sub-bands appear as the doping
increases. The separation in energy between sub-bands
increases with the doping.

The majority of the current is mainly carried by the electrons
with higher energy, corresponding to the sub-band(s) near to
the Fermi level, as described by Mazzola et al. (2019).
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We predict that the higher
energy electrons are
located ~2nm left and right
from the Ilower energy
electrons centered around
the delta-layer.
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Summary e

O We have conducted a fully open-system quantum-mechanical study of highly conductive Si:P o-
layered systems

O Unlike previous closed-system studies, our simulations explains the existence of a shallow band
observed by Mazzola et. al. (2019).

O We validated our formalism by reproducing Goh et al (2006) the dependence of sheet
resistance on the delta-layer doping concentration.

O We predict a special structure of the conduction band in real space, termed “quantum
menorah”. Adjusting Ny and N, doping levels allows one to transform the “menorah” to achieve
a desired level of electron confinement and hence — control the conductive properties of the wire.

Q If experimentally confirmed, the existence of a spatially separated (~2nm) free electrons with
distinctively different (~50meV) energies could lead to novel applications in energy-filtering,
thermo-electronics and digital nanoelectronics.




