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Figure: Materials informatics as the fourth paradigm, adopted from Agrawal

and Choudhary [1].
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Physics-informed variational auto-encoder for
microstructure

» capture the low-dimensional manifold of microstructure
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microstructure calibration framework as a multi-objective
optimization problem.

Uncertainty quantification of dendritic
morphology using stochastic collation method [4]
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» Clenshaw-Curtis points, d = 5, ¢ = 6 sparse grid is used,

» 19,313 simulations are performed, Figure: Orig. #1656.

Figure: Microstructure outpainting: Original and reconstructed
microstructure on experimental micrographs from UltraHigh
Carbon Steel micrograph DataBase.

Figure: Recon. #1656.

» 4 quantities of interests (Qols) are post-processed using
image-processing techniques.
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Figure: Optimal ms. Figure: Target ms.

> create synthetic high-fidelity microstructures, Figure: Comparison between optimal and target microstructures.

» mitigate the data-hungry effect for deep learning
applications with microstructures.
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