
Materials informatics: data-driven, materials design, and uncertainty quantification perspectives

Anh Tran 1 Tim Wildey 1

10.timization and Uncertainty Quantification Department, Sandia National Laboratories, Albuquerque, NM

Figure: Materials informatics as the fourth paradigm, adopted from Agrawal
and Choudhary [1].
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Uncertainty quantification of dendritic
morphology using stochastic collation method [4]
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Dendrite morphology on sparse grid
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Figure: Representative dendritic
morphology on SG as process
parameters vary, i.e. cooling rate and
initial temperature. The
thermodynamic parameters are fixed
at

0.35, o ()( = 0.24, /14 4 • NO,
respectively.
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Dendrite morphology on sparse grid
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High-fidelity data-driven
microstructure reconstruction [3]

Figure: Orig. #35. Figure: Recon. #35.

Figure: Orig. #1098. Figure: Recon. #1098.

Figure: Orig. #1672. Figure: Recon. #1672.

Figure: Microstructure inpainting: Original and reconstructed
microstructure on experimental micrographs from UltraHigh
Carbon Steel micrograph DataBase.

Figure: Orig. #1531. Figure: Recon. #1531.
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Figure: Dendritic morphology at
different thermodynamic parameters
on SG, where other parameters are

OT
fixed at  -15K/s, To = 917.5,

Ot
and a (* = 0.24.

Clenshaw-Curtis points, d 5, q 6 sparse grid is used,

19,313 simulations are performed,

4 quantities of interests (Qols) are post-processed using
image-processing techniques.
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Figure: Orig. #1583. Figure: Recon. #1583.

Figure: Orig. #1656. Figure: Recon. #1656.

Figure: Microstructure outpainting: Original and reconstructed
microstructure on experimental micrographs from UltraHigh
Carbon Steel micrograph DataBase.

create synthetic high-fidelity microstructures,

mitigate the data-hungry efFect for deep learning
applications with microstructures.

Bayesian optimization for learning
processing parameters in kinetic

Monte Carlo [2]
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Figure: An overview perspective of the high-throughput
microstructure calibration framework as a multi-objective
optimization problem.

Figure: A rasterized
ms. representation
with dimension.

Figure: Grain
16166 in the ms.

Figure: Best fit
ellipse (rotated 900
ccw).

Figure: Grain-based ms descriptors: Fitting ellipse process for a
single grain in a microstructure.
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microstructure calibration: convergence plot
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Figure: Convergence plot of the microstructure calibration
framework. The objective is minimized as the optimization
process advances.

Figure: Optimal ms. Figure: Target ms.

Figure: Comparison between optimal and target microstructures.

Physics-informed variational auto-encoder for
microstructure

capture the low-dimensional manifold of microstructure

microstructure reconstruction applications

data-driven process-microstructure-property linkage
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Figure: Epoch 1.

7''')

OP'

-14....

. "

.
.
• B ;

ski

M.. 76..
1.0 1 illinli

we
• Hop"MI6 ._

r me%

1

lib

•1116

A.

lip
I. Illi

ilik 4w.

Zal l

1

ikons lib.

ir
0

- 

. '6-

Ailitm .0._
To

wt. 101,11111%

Pomp -•"'

Ilk ' 41/16

._

iv . '

4 •

11111P

9.

•P

• mc' '

...

611
iP i

l h...

111P 40 lb.
1111P
Ow

...
all

7

4*
11

+M.-

01111.

.m.

W 

iiiv
a

0

or a
..dr-

tillia

.'"'S am.
W

otil*

Figure: Epoch 81.
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Figure: Epoch 6686.

Figure: Microstructure reconstruction with autoencoder for two-phase composite
materials.
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