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Abstract

Precision measurement and inertial sensing applications have relied on neutral atoms for decades. Recent advancements in utilizing Rydberg dressing to mediate strong,
tunable, interactions between neutral alkali atoms suggest they now also provide a promising platform for quantum sensing. VVe report on development of an
entanglement-enhanced atom interferometer, whereby the measurement precision follows Heisenberg scaling rather than the standard quantum limit. Our apparatus can
scale to many entangled atoms. We discuss the effects of various error sources on the fidelity and progress on overcoming critical experimental challenges, as we work
towards making advanced quantum sensing with neutral atoms a reality.
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