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• General Scientific and Mathematical/Computational Motivation

• Comments on Multiple-time-scale Plasma Systems

• Magnetic Confinement Fusion: Tokamak Device

• Magnetic Inertial Fusion: Z-pinch (not discussed but a strong motivation)

• Brief Description on Continuum PDE Models (Kinetic, Navier-Stokes (NS), MHD, multifluid plasma)

• Discussion on Newton-Krylov Methods and Time Integration

• Illustrations of Operator-split vs. Implicit Methods

• Scalable Solution of

• Stabilized FE Resistive MHD (Fully-coupled system AMG)

• Structure Preserving MHD (Approximate Block Factorization & AMG sub-block solvers)

• Multifluid EM Plasmas (ion/electron)

• Preliminary Results for Tokamak Related Simulations (if time permits)

• Concluding Remarks



Motivation: Science/Technology
Resistive and extended MHD models
are used to study important multiple-
time/ length-scale multiphysics plasma
physics systems

• Astrophysics:
• Magnetic reconnection, instabilities,
• Solar flares, Coronal Mass Ejections.

• Planetary-physics:
• Earth's magnetospheric sub-storms,
• Aurora, Planetary-dynamos.

• Fusion & High Energy Density Physics:
• Magnetic Confinement [MCF] (e.g. ITER),
• Inertial Confinement [ICF] (e.g. Z-pinch, NIF).., ,o ,
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General Mathematical / Computational Science Motivation: 

Achieving Roust Scalable Simulations of Strongly Coupled Nonlinear Multiple-

time-scale Multiphysics Systems to Enable

■ Predictive, Accurate, and Efficient Longer Time-scale Computational Simulations

•  

■ Beyond Forward Simulation: Design/Optimization/UQ

■ Physics / Mathematical Model Validation, Experimental Data Interpretation & Inference



What are multi-physics  systems? (A multiple-time-snnlim Rerspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple time-
and length-scale physical mechanisms.

These mechanisms:

• can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

• consist of a set of widely separated time-scales that produce a stiff system response,

• nearly balance to evolve system on dynamical time-scales that are long relative to component time scales,

• or balance to produce steady-state behavior.

E.g. Fusion Reactors (Tokamak -ITER; Pulsed - NIF & Z-pinch); Fission Reactors

(GNEP); Astrophysics; Combustion; Chemical Processing; Fuel Cells; etc.



E.g. Multiple-time-scale Multiphysics System: Magnetic Confinement Fusion

Goal for Fusion Device: 
• Magnetics ....
• Attempt is to achieve temperature of -100M deg K (6x Sun temp.) ,
• Understanding and controlling instabilities/disruptions in plasma confinement is critical
• Energy confinement times 0(1) min. is desired.

• Plasma disruptions can cause break of confinement, huge thermal energy loss, and
discharge very large electrical currents (-20MA) to surface and damage the device.

• ITER can sustain only a limited number of significant disruptions, 0(1 - 5).



E.g. Multiple-time-scale Multiphysics System: Magnetic Confinement Fusion ITER

MCF Devices are characterized by large-range of time and length-scales
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Our Mathematical Approach - develop:
Stable, higher-order accurate implicit/IMEX formulations for multiple-time-scale systems

Stable and accurate unstructured FE spatial discretizations. Options enforcing key
mathematical properties (e.g. structure preserving forms: div B = 0; positivity p , P; DMP)

Robust, efficient fully-coupled nonlinear/linear iterative solution based on Newton-Krylov
methods
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Stabilized (VMS) FE

Ipu0
Structure Preserving FE

Scalable and efficient multiphysics preconditioners utilizing physics-based and approximate
block factorization/Schur complement preconditioners with multi-level (AMG) sub-block solvers

=> Also enables beyond forward simulation: Design/Optimization/UQ ( e.g. Adjoints - error

estimates, sensitivities; surrogate modeling (E.g. GP), ...)
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Notional Outline of Plasma Modelling Hierarchy
Equation of Motion for charged
particle in EM field (neglects
relativistic effects)

Discrete particle total density view:
Defining total particle density sum Ns(x,v,t),
with Lagrangian coordinates ( Xp(t), Vp(t))

Phase space distribution function:
Statistical model - distribution function
describes probability that a number of particl
occupy a differential volume in phase space x,v).

PIC - Method of Characteristics:
Lagrangian particle view +
MCC/DSMC collisions
3D space + many particles

(w/ S. Bond)

z

dv
= qs(E x B) / rn,

dt
Maxwell Eq. (E,B): Lorentz force

Ns(x, v, t) = E 6.(x — Xi(t))6(v — Vi(t)) Klimontovich Eq.
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Discretization of Boltzmann Eq.:
FE, FV, Spectral, + collision
operator approximations
6D space (x,v)

Boltzmann,
Valasov/Maxwell Eq.

p=mf f (v)dv, ,

pui = m f vif (v)dv,

Pii = m f viuif (v)dv,

Moment Approx. of Boltzmann:
Assumed distribution function and
closure approx.
3D space

Reductions to continuum fluid systems:

• E.g. Maxwellian dist. and 5 moment multifluid
EM plasma model (electrons, ions, neutrals)

• Extended MHD (retaining aspects of electron
dynamics)

• Resistive MHD approx. (long length scales,  )
Reduced unknowns, and time- / length-scales



5 Moment Multifluid EM Plasma Model: Multiple Atomic Species,
Full Maxwell EM with Collisions/lonization/Recombination Cssc: elastic scattering

Ciml: ionization reactions

Conservation / Balance Eqn. crs": recombination reactio

Mass[0]
atps + v • (Psus)

[0] ‘—* 
[0]= Cs + c3S

C x: charge exchange

rad
Cs : radiative loss

Momentum[1] at(psus)+V •(p sus 0 us + p sl +1--i s)
[1] .-411

= qs ns (E +us x B) + Cs +os

Total

Energy[2]
ates+ V •[(Es + ps)us +us •rfs + hs] j_ (7 [21 j_ Q [21

— qsnsus • E -T- ,._.,s -,--,..,s

Charge /

Current
q = L qsns J = L qsnsus

s s

Maxwell's

Eqn.
1
drE V B 0 V E,, — x + /4J

(.'

ötB+VxE=0

= • = —
co

V • B = 0

Braginskii, Rev. Plasma Phys. 1965; E. T. Meier and U. Shumlak PoP, 2012;



Notional Discussion of Plasma Modelling Hierarchy (Contd.): Reduction to MHD

Assume Infinite speed of light (low frequency EM)

12r —Vx13-}-p,0J=0 V•E=
c t

aB
€

V•Et=0

Center of mass description for Equation of Motion (essentially ions), neglect electron
momentum inertia ( me/mi = 0 ) and develop a generalized Ohm's law description for E

E = —u x B+ 71J +—
di
(J B—VP,)

Ideal Resistive
Hall

Further neglecting Hall physics terms, produces a resistive MHD a
resistive MHD model (written in magnetic induction equation form):

E= —uxB+

Ideal Resistive

11110., OB 
Vx(vxB)+Vx (1 VxB) 0

Ot itto



3D H(grad) Variational Multiscale (VMS) / AFC formulation
u
•

P T B

Resistive MHD Model in Conservative Form 
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• Divergence free involution enforced as constraint with a Lagrange multiplier
(Elliptic, parabolic, hyperbolic) [GLM: Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]

• Only weakly divergence free in FE implementation (stabilization of B - coupling )



3D H(grad) Variational Multiscale (VMS) / AFC formulation
u

 •

P
•

T
•

B
•

'0

Navier-Stokes Compressible Flow Model (Conservative Form) 

Opv
 + V • [pv v — (T + )] + 2pS2 x v — pg = 0
at
p

at+ V (pv) = 0

T = — [P — 
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3
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Additional terms

from EM:

Magnetic

Stress

Poynting Flux

and Magnetic

Energy

Magnetic

Induction II

Evolution Eq.

and GLM

Solenoidal

Constraint

3D H(grad) Variational Multiscale (VMS) / AFC formulation
u
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Resistive MHD Model in Conservative Form
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• Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]

• Only weakly divergence free in FE implementation (stabilization of B -V) coupling )

• Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning
(Dedner et. al, 2002) [JS et. al. 2016].

• Issue for using C° FE for domains with re-entrant corners / soln singularities
[Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]



Why Newton-Krylov Methods?

Newton-Krylov

Di rect-to-steady-state

Convergence properties 

• Strongly coupled multi-physics often

requires a strongly coupled nonlinear

solver

• Quadratic convergence near

solutions (backtracking, adaptive

convergence criteria)

• Often only require a few iterations to

converge, if close to solution,

independent of problem size

F(x,A.1, A2 , ..) =

Inexact Newton-Krylov 

Sdve Jpk =-F(xk); until
Jpk + F(xk)

F(xd1

xk+1 = xk + Opk

Jacobian Free N-K Variant 

Mpk =

F(x + åpk) F(x) 
JI)k = ; or by AD

6

See e.g. Knoll & Keyes, JCP 2004

nk



Why Newton-Krylov Methods? 

D i rect-to-steady-state
Globalized Newton w/AD

/ 
Convergence
Properties

Characterization
Complex Soln. Spaces

Optimization

Newton-Krylov

ols

Fully-implicit / IMEX transient

Bifurcation/ Stability
Analysis



Multiple-time-scale systems: E.g. Adjoint Error-estimation and Sensitivity

Study for 3D Steady State MHD Generator (Re N 2500, Rem 10, Ha = 5)

Qol (1): Induced Magnetic Energy (M.E.)

j. 21 BDc/S2
M.E. =  

Vol(Q)

Forward

, Solution

Adjoint
Solution
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Why Implicit / IMEX Newton-Krylov Methods?
Newton-Krylov

D i rect-to-steady-state blly-implicit transient / IMEX

, A,3,..) =

e.g.

n+1
+V • ([pcuri) — V .[Drz+V S":+1 = 0at

Stability, Accuracy and Efficiency 

• Stable (stiff systems)

• High order methods (e.g. BDF, DIRK, IMEX, etc.)

• Variable order techniques

• Local and global error control possible

• Can be stable, accurate and efficient run at the dynamical

time-scale of interest in multiple-time-scale systems (See e.g.
Knoll et. al., Brown & Woodward., Chacon and Knoll, S. and Ober, S. and Ropp)



Why Newton-Krylov Methods? 

D i rect-to-steady-state

Newton-Krylov

Fully-implicit transient / IMEX

/ I \
Stability Accuracy Efficiency



Illustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model
lonization/recombination

Density

Momentum

atPs+v. (psus)=-psne(Is+
V
Rs) + msne (ns_ - T " ' P

 * Cyclotron frequency  

) = tisns (E + us x B) + E as;tPsP t (ut — us)
14s A Collisional

at(psus)+
A

V • (psus us + psI + ns

ms
-19 sus ne (Is + Rs) + neP

ms-i
(nePs+ills+1+ ns+1P elle) Rs+1

ates+
Energy

V•REs+ps)us+us•lls+h

A M S

-es ne + Rs) + — nec,
ms-i

t

Strong off diagonal
(Tt - Ts) + mt (ut - us)21

coupling for 
plasma oscillation

+ (net;s+1 + ns+ite) Rs+1

Charge

and

Current

q = qsns = Eqsnsus

Maxwell's

Equations
2— 0 tE +  = 0
c2

IIGG Light wave off
3tB+VxE=0 diagonal coupling

V • E =
co

V • B = 0

IMEX: Time MU + +G 0
Integration

Explicit
Hydrodynamics

Implicit EM, EM sources, sources for
species interactions

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasrna model. JCP, 2019

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.
Abgral et. al.;
Barth;
Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;



Multifluid Model: Implicitness and IMEX used to handle Multiple-time-scales 

Eigen-values for 5M Euler

Eqn. for each species
Ac, = (u,, u, \/-yT,/rn,)

Time-scales from Maxwell TEm = Ax/c;

Eqn. & EM source terms

Tw
P C q,B

mc,

EM Wave Plasma Freq. Cyclotron Freq.



Demonstration / Verification of Implicit Solution for Longitudinal Electron

Plasma (LEP) Oscillation with Under-resolved TEM Waves 

Time = 0.0000e+00
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Demonstration of Accuracy for Implicit Solution Methods for Langmuir wave (i.e. Longitudinal Electron
Plasma [LEP] Oscillation): Fast time-scale unresolved transverse EM (light) waves (Ne = 1015)
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Why Newton-Krylov Methods?

D i rect-to-steady-state

Newton-Krylov

Fully-implicit transient / IMEX

Stability

1

Accuracy Efficiency

What I am not implying: Fully-implicit / IMEX is the only way to get these properties

• Well characterized operator splitting methods
in specific application areas (e.g. Combustion — P. Colella, J. Bell, ...)

• Spectral deferred correction (M. Minion et. al.)

• Etc

What I am implying: Fully-implicit / IMEX are excellent ways to get these properties along
with a number of other benefits when applied to multiple-time-scale multiphysics systems



Why Implicit Newton-Krylov Methods?
Newton-Krylov

Di rect-to-steady-state

z 
Convergence
Properties I

N
Optimization,
U Q

Characterization
Complex Soln. Spaces

Fully-implicit transient / IMEX

/
Stability

\
Accuracy Efficiency

Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners
• Approximate Block Factorizations
• Physics-based Preconditioners
• Multi-level solvers for systems and scalar equations



Scalable Preconditioning for Systems

1. Multilevel Methods for Systems: (ML & Muelu; Tuminaro, Hu et. al.))

Fully-coupled Algebraic Multilevel methods
• Consistent set of DOF-ordered blocks at each node (e.g. VMS/Stabilized FE)

• Uses non-zero block graph structure of Jacobian
• Additive Schwarz DD ILU(k) as smoothers (Jacobi & GS possible for transients)
• Can provide optimal algorithmic scalability

2. Approximate Block Factorization / Physics-based (Teko; Cyr, Shadid, Tuminaro)

• Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking
• Applies to systems where coupled AMG is difficult or might fail (e.g coupled hyperbolic sys.)
• Enables specialized optimal AMG, e.g. H(grad), H(curl) for disparate discretizations.
• Can provide optimal algorithmic scalability for coupled systems

3. Monolithic Multigrid Enabled by Schur-complement Structure Aware Smoothers
(Vanka et. al, Farrell et. al, MacLachlan et. al., ....)

Tokamak Parallel
/Partition (64 Procs.)

i2h

frh

ci4h

Q8/1

cil6h

032h

• Smoothing

/ Prolongation (P)

\ Restriction (R)

* Direct Solve



A Few Examples of Relevant Continuum / PDE-based Models for

• Resistive MHD,
• Multifluid Plasmas,

and Associated Solution Methods



3D H(grad) Variational Multiscale (VMS) / AFC formulation

Resistive MHD Model in Residual Notation

Ot

Etot
+ 

1
V • (Pe+ p u 2)u +ExB+Tat 2 Po

apv 
+V [pv v — (T + + 2pS2 x v — pg =at

Op
+ V • (pv) = 0

u-kcil =0

T = —[P-- 
3
[t(V • v)]I + ti[Vv + vvT]

TM
1 1

= B B  031121
/10 2/10

1
Etot = Pe + 2P

013
 +71•[BONT—v0B-- (vB (VB)T) + = 0
at tio

1 alp 1

ch Ot 
71P +V•B=0

u 2 B 2/21110

• Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]

• Only weakly divergence free in FE implementation (stabilization of B - coupling )

u  •

11)

All nodal H(grad)
elements using
stabilized weak from

• Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002) [JS et. al. 2016].

• issue for using C° FE for domains with re-entrant corners / soln singularities [Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]
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Large-scale Scaling Studies for Cray XK7 AND BG/Q; VMS 3D FE MHD
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Largest fully-coupled NK-AMG unstructured FE MHD solves demonstrated to date: 

MHD (steady) weak scaling studies to 256K Cray XK7, 1M BG/Q
Large demonstration computations
• MHD (steady): 13B DoF, 1.625B elem, on 128K cores
• CFD (Transient): 40B DoF, 10.0B elem, on 128K cores
Poisson sub-block solvers: 4.1B DoF, 4.1B elem, on 1.6M cores BG/Q

Titan: 128K
BGIQ 256K

1.0E+10



Weak Scaling for VMS 3D island Coalescence
Problem: Driven Magnetic Reconnection
[S = 103, dt = 0.1]

E E (similar discretizations for all variables,
fully-coupled H(grad) AMG)

Weak Scaling Study: 3D Island Coalescence
Driven Magnetic Reconnection Problem

40

-i-Avg. Time (sec.) / Time Step
35 -m-Avg. Gmres Steps / Time Step

32K unknowns per core

with I/0 included)
30

(Scaling of total time
25

8 20

15
256x256x256

10
64 cores 512 cores 4096 cores

1 core 8 cores
5

0  

1.0E+04 1.0E+05 1.0E+06 1.0E+07

Number of Unknowns

1.0E+08 1.0E+09

JS, Pawlowski, Cyr, Turninaro, Chacon, Weber, Scalable Implicit Incompressible Resistive MHD with
Stabilized FE and Fully-coupled Newton-Krylov-AMG, CMAME 304, 1-25, 2016

Scaling with Lundquist No. (Re as well). J - 1 ll

Lundquist No. S Newt. Steps / dt Gmres Steps / dt

1.0E+03 1.36 5.2

5.0E+03 1.43 5.7

1.0E+04 1.51 6

5.0E+04 2 9.8

1.0E+05 2 12

5.0E+05 2 8.4

1.0E+06 2 8.4

BDF2 NK FC-AMG LU(fill=0,ov=1), V(3,3)

Mesh: 128x128x128, dt = 0.0333.

4



Illustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model
lonization/recombination [diagonal (s)/off diagonal (s,t)]

= —Psile(Is+
V
Rs) + msne(ns_ -T -L r, , R ,)

Cyclotron frequency
Density 1r  

atPs +V • (P sus)

Momentum

• (Psus Ous + Psi+ns
—"V

) qsns (E + x B) + E a s;t19 sPt (tit — Us)
t~s 

Collisional
Ms

—19 sus ne + Rs) + +(nePs+ius+i+ ns+iPeue)Rs+1
ms-1

atEs+

Energy

V. [(Es+ ps)us+us.11s+hs i

—Esne (Is + Rs) + 
ms
—nec-
ms-1

Strong off diagonal
(T t — Ts) + (tit — Us)2]

coupling for 
plasma oscillation

1.5-1 + (net: s+1 + ns+lt:e)Rs+1

t

Charge

and

Current

q = Eqsns J=Eqsnsus

Maxwell's

Equations

7atE-Vii + tioJ = 0
Light wave off

atB +V xE=C1 diagonal coupling

V • E =
co

V • B = 0

IMEX: Time ATO F
Integration

Explicit
Hydrodynamics

+G
Implicit EM, EM sources, sources for
species interactions

o

pu
o

E B

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.
Abgral et. al.;
Barth;
Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;



Physics-based and Approximate Block Factorizations: 
Strongly Coupled Off-diagonal Physics & Disparate Discretizations (e.g. structure-preserving) 

Ou Ov Ov Ou

Ot Ox ' Ot Ox

Fully-continuous Wave System Analysis: Fully-discrete:
Approximate Block Factorizations & Schur-complements:

Ou Ov Ov Ou
Ot Ox ' Ot Ox

02u 02v 02v 02u

Ot2 OtOx OxOt Ox2

Discrete Sys.: E.g. 2nd order FD (illustration)

(I — fiAt2.cxx)un+1 = yn

I
[-AtCx 

A It C x  Livnn++1 = [unn: tt CC xx lied

[ D1 U UBV D1-UWL 0
[ L D2

=[I
CI I 0 D2 [D:11,

The Schur complement is then

D1 - UIVL = (I - At2CxCx),,,, (I - At2Lxx)

1° 1

Recall: This is motivating how we develop preconditioners, not for developing solvers.
The NK method still seeks the solution to the original nonlinear/linear system!

[w/ L. Chacon (LANL) ]



Physics-based and Approximate Block Factorizations: 
Strongly Coupled Off- Diagonal Physics & Disparate Discretizations (e.g. structure-preserving) 

D1 U 1 [I UD21
L D2 0 I 1 D1 — UWL 0 I 0

0 
—1

D2 D2 L I

D1 — II_D I-L = (I — At2GG)---(I — At2L„)
Result:

1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are now combined onto
diagonal Schur-complement operator (block) of preconditioned system.

2) Partitioning of coupled physics into sub-systems enables exisiting SCALABLE AMG optimized for the
correct structure preserving spaces e.g. H(grad), H(curl) to be used.
(e.g. Teko block-preconditioning using Trilinos ML/Muelu; FieldSplit in PetSc with Hyper)

Still Requires:
3) Effective sparse Schur complement approximations to preserve strong cross-coupling of physics and
critical stiff unresolved time-scales, and be designed for efficient solution by iterative methods.

[w/ L. Chacon (LANL) ]



Incomplete References for Scalable Block Preconditioning of MHD / Maxwell Systems

Physics-Based MHD and XMHD 

• Knoll and Chacon et. al. "JFNK methods for accurate time integration of stiff-wave systems", SISC 2005

• Chacon "Scalable parallel implicit solvers for 3D MHD", J. of Physics, Conf. Series, 2008

• Chacon "An optimal, parallel, fully implicit NK solver for three-dimensional visco-resistive MHD, PoP 2008

• L. Chacon and A. Stanier, "A scalable, fully implicit algorithm for the reduced two-field low-P extended MHD model," J. Comput. Phys.,

vol. 326, pp. 763-772,2016.

Approximate Block Factorization & Schur-complements MHD 

• Cyr, JS, Tuminaro, Pawlowski, Chacon. "A new approx. block factorization precond. for 2D .. reduced resistive MHD", SISC 2013

• Phillips, Elman, Cyr, JS, Pawlowski "A block precond. for an exact penalty formulation for stationary MHD", SISC 2014

• Phillips, JS, Cyr, Elman, Pawlowski. "Block Prec. for Stable Mixed Nodal and Edge FE Incompressible Resistive MHD," SISC 2016.

• Cyr, JS, Tuminaro, "Teko an abstract block prec. capability with concrete example app. to Navier-Stokes and resistive MHD, SISC, 2016

• Wathen, Grief, Schotzau, Preconditioners for Mixed Finite Element Discretizations of Incompressible MHD Equations, SISC 2017

Block Preconditioners for Maxwell 

• Greif and Schotzau. "Precond. for the discretized time-harmonic Maxwell equations in mixed form," Numer. Lin. Alg. Appl. 2007.

• Wu, Huang, and Li. "Block triangular preconditioner for static Maxwell equations," J. Comput. Appl. Math. 2011

• Wu, Huang, Li. "Modified block precond. for discretized time- harmonic Maxwell .. in mixed form," J. Comp. Appl. Math. 2013.

• Adler, Petkov, and Zikatanov. "Numerical approximation of asymptotically disappearing solutions of Maxwell's eqns," SISC 2013.

• Phillips, JS, Cyr, "Scalable Precond. for Structure Preserving Discretizations of Maxwell Equations in First Order Form", SISC 2018

Norm Equivalence Methods 

• Mardal and Winther "Preconditioning discretizations of systems of partial differential equations". NLAA, 2011

• Ma, Hu, Hu, Xu. "Robust preconditioners for incompressible MHD Models," JCP 2016.



Extending the Simple Example 
A coupled convection diffusion problem with periodic BCs

and u=sin(2nx), v=cos(2nx)

0 a cl 0
„, +  
OT c al Ox

Three time-scales of interest
.

1

d
02 )[ul

Ox2 v

•

•

Id=h2/d — Diffusive time scale

Ta=h/a — Advection time scale (we assume a=1)

Tc=h/c — Coupled wave time scale

CFLd = dh2t,CFLa = aAt,CFLc = It

N



Block Preconditioning and Time-Scales (e.g. FD discretization coupled 

convection/diffusion/first-order wave coupled system) 

P

(
P*sc =

cC u

cC LI-FdDH-aC )v

(thI+d_D-FaC cC
0 S

LI-FdDd-aC 0

0 LI-FdDH-aC

)(Ru

Rv)
S = otI + dD aC — c2C(LI dD + aC)-1C

PGS =
LI-hd_DH-aC cC

0 II-FeLD-FaC)

*Only the upper diagonal of the block LU factorization is used as in Murphy, Golub, Wathen SISC 2000.

Exact computation/inversion of operators will be used for illustrative purposes in example of outer iteraction convergence.



Ps*c =

PGS =

Block Preconditioning and Time-Scales (e.g. FD discretization coupled 

convection/diffusion/first-order wave coupled system) 

( ,,-t I + d_D + aC cC u

cC t I + clD + aC ) ( v,,1 - 

( ,L. I d - dD + aC cC
0 S

aC cCdD
0 ,:tI-kdD-FaC)

-t I - F - F 

Outer iterations in the dof based block factorization linear solver

)(Ru
Rv)

S = otI + dD aC - c2C(k-tI (1,0 + an-1C

CFL 10-2 10-1 o 01 n2

GS
J
SC

2
3
2

V T n— I no 101 102

Sc ur comp ement importantir  when

unresolved coupling time-scale is fast
/

13 30
26 78
2 2

CFLa =1,CFLd =1 CFLa = 1, CFLd = 102
*Only the upper diagonal of the block LU factorization is used and exact computation/inversion of operators for illustrative purposes.

The result of 2 outer iterations follows from the result in Murphy, Golub, Wathen XXXX)
38



v.

Magnetic Vector-Potential MHD Formulation: structure-preserving (B=VxA;V•B=0) 
Mixed basis*:

pv
Etv = 

0
Ot 
+ V • [pv 0 v — (T + T Al)] + 2pQ x v — pg = 0

Op
Rp = 

t 
+ V • (pv) = 0

Re = 3(Pe) ± V • [pve ± ci] — T : Vv — 7/ 
1

11—V x B 2 — 0
Ot PO

RA = a 
O
a
A 
+ V x 

1 
TiVxA—o-vxVxA+o-V0=0; B=VxA

Ro = V • aVq5 = 0

T = — I P+ 
2
ii(V • 

2 

u)) I + it[Vu VuT]

TM B B  
 2

2/10 10311 I

. . .
v p A

Nodal H(grad) and
Edge H(curl)
Elements
[Intrepid]

• Divergence free involution for B enforced to machine precision by structure-preserving edge-elements

H1  V 
> H (curl) 

V X 

H(div)  > L2

I

H-1 H (curl)* H (div)* <  L2
- v x —v

6 = ciii6 k = Qi,1K b = /41D

  edges > f aces > nodes()

IQE QB 1Qo

nodes*  edges*  1 - - , 1 f aces* _ nodes;
Gt = GtQE

_1 
K- = KtQ; V = DtC41

nodes1

IQP
• Mixed basis, Q1/Q1 VMS FE Navier-Stokes, A-edge, Q1 Lagrange Multiplier

Follows from = — Vo ; E = —uxB+ nJ; = x B;B=Vx Aot Ito



Magnetic Vector-Potential Form.: Hydromagnetic Kelvin-Helmholtz Problem (fixed CFL)

Structure of Block Preconditioner: Critical 3x3 Block Sys.

Operator-Split into 2 — 2x2 Sys. with Sparse Schur Complement Approximations

AGSG = (17 G

F Bt Z
B C 0

0 0 0

0°
Dt —

L

(FOZ\ F-1 0 0 F Bt 0
0 I o o 1 0 BCO
'OG 0 01 0

Segregation into

• H(grad) system AMG for velocity

• H(curl) AMG for magnetic vector potential (SIMPLEC approx.)

• Scalar H(grad) AMG for pressure (PCD commutator)

80

$2 70
cn

° 60

,!)
z 50

a 40co

..-(75 30

a)
20

TI
c 1 0

Laplacian Gauge

P
A

P
u

HMKH
Re = Rem = 103

4k cores

0 5
10 106 107 10

8

Number of Unknowns

a)

,gc 35

z
015a_ 30

iz 25
c
o

20
O

109 106 106 107 10
8

Number of Unknowns

Mixed basis*:

= G YE-1 z (SIMPLEC: see eg. Elman et al.)

p = C BP-1 Bt

(PCD: Kay, Loghin, Wathan)

Laplacian Gauge

10
9



5 Moment Multi-fluid EM Plasma System Model

Density atps + V • (PsUs) = —Psne (Is + Rs) + msne (n5-1/5-1 + ns+iRs+i)
o -0

P

Momentum

at (psus) + v . (Nu., 0 us + psI + Hs) = qsns (E+ us x 13) + E asospt (ut — us)ts
, ms

—Pslisne(Is+ Rs) + —tlePs—ltis—lIs-1+(nep .9+114+1+ rls+lp elle)Rs+1
ills-1

Energy

,—, as;tPsP t 
ates + V • [(Es+ 19 s)115 + us • ils +lid = qsnsus •E + L [As;t1CB(Tt — Ts) + nit (Ut — Us)21

ts Ins + Mt

'11—Es ne (Is + Rs) + L neEs—i Is—i + (neEs+i + nsi-iEe) Rs+i
ms—i

Charge

and q = E qsns J = Eqsnsus
Current

s s

Maxwell's

Equations

1
7atE — v x B + [toJ = 0 V • E = 1
c co

ats+ v x E = 0 V • B = 0

o

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.

Abgral et. al.;
Ba rth;
Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;



Scalable Physics-based Preconditioners for Physics-compatible Discretizations

K

PZ
piui

EZ

Pe
Pelle

Ee 
E 
B

lon/electron plasma

—16 Coupled

Nonlinear PDEs

pu

Group the hydrodynamic variables together (similar H(grad) discretization)

F = (pi, piui, Ei, pe, Nue, Ee)

Resulting 3x3 block system

DF Qc QP-B [

QF QE Kf3
0 lq QB_

Reordered 3x3

F
gi_ > [1{f3 QE

QB KEE3 0
E 

 

B ceB' QE DF

 o o



Physics-based/ABF Approach Enables Optimal AMG Sub-block Solvers

Qn K  /I!)

1 1 QF
0 0 Sf-7_

SF DF

DL

B

E

F
_ti

IrFD-1 i--)E41̀ _F

QE Te-ira.4E n-1-re-B
-1-l-B E

Compare to:
20 E 1
  + V x V xE=0
0t2 o-p,0

B n ile-B
't13 -"LE

16 Coupled Nonlinear PDEs
/1`o o o 

o o
B

CFD type system

node-based coupled
ML: H(grad) AMG

(SIMPLEC: Schur-compl.)

Electric field system

Edge-based curl-curl type

ML: H(grad) AMG with grad-div stab.

or H(curl) AMG

Face-based simple

mass matrix Inversion.

V-cycle Gauss-Seidel



Augmentation of Schur Complement
:6, (N., c2At I + AtV x V x

• Null space of curl is all gradients of scalars.

• Augmenting with -AtVV• yields a vector Laplacian. Then gradients are not annihilated

• Similar strategy to augmented Lagrangian techniques (CFD: Benzi & Olshanskii; Maxwell:
Wu, Huang, & Li)

• Can be regarded as adding a scaled gradient of Gauss's law to Ampere's law, i.e. adding
zero v • (5E) = P

• In discrete setting, augmented operator is I)— E — c2lAtC2E + AtKtQB-1K + AtGW1Gt

• Removes gradients from null-space. Traditional H(grad) multigrid can be used on T, even
when CFLC is large

• Of course other optimal AMG routines for curl-curl systems in
e.g. ML/Muelu (Ref. Maxwell) and Hypel (AMS) can also be used.
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Weak Scaling for 3D Electro Magnetic Pulse
with Block Maxwell Eq. Preconditioners on Trinity

Drekar Tpetra/Teko/MueLu E-B Maxwell weak scaling

20.0

15.0

10.0

5.0

0.0

CPU Time / Solve (not including AMG setup)

GMRES Iterations

128K cores 8.4B row

matrices (edge E field)

32 256 2048 16384

# M PI Processes

me—GM RES iterations/solve —it—Solve time/Newt

Drekar

131072

DL Q1:

Maxwell subsystem: electric

field Edge-based curl-curl
type system.

Good scaling on block solves (at

least for solve; setup needs
improvement)

Demonstrated to CFLc > 104

GS smoother with H(grad) AMG Max CFLC — 200



Initial Weak Scaling for Longitudinal Electron / Ion Plasma Oscillation and
Under-resolved TEM Wave Results (Full Maxwell — two-fluid)

At = 1.1 x 10-11 0.023 Twp, 0.1 Tw > 3 x 102 're

p
o

pu
o o

Structure-preserving discretization

N P

Linear its /

Newton

Solve time / linear

solve

Atimp

Atexp

100 1 4.18 0.2 300

200 2 4.21 0.22 600

400 4 4.27 0.23 1.2E+3

800 8 4.4 0.26 2.4E+3

1600 16 4.51 0.35 4.8E+3

3200 32 4.89 0.42 9.6E+3

6400 64 6.21 0.61 1.9e+4

= = 1836.57

1,u,m

me

Initial weak scaling of ABF preconditioner Proof of Principle

• Domain [0,0.01]x[0,0.0004]x[0,0.0004]; Periodic BCs in all directions
• N elements in x-direction; SimpleC on fluid Schur-complement

• Fixed time step size for SDIRK (2,2): (not resolving TEM wave) DD-ILU for Euler Eqns.
DD-LU curl-curl



Demonstration of scalable physics-based preconditioners 
3D Gaussian high density/pressure 
for isentropic ion-acoustic wave propagation 

Scaling of ion/electron multiflud plasma block
preconditioner for 3D Soliton: lon-Acoustic wave

Avg. Iterations per time-step

16K cores: Trinity

Avg. CPU time per time-step

5

3 2 cores

0

1.0E+05 1.0E+08 1.0E+09

 o

puo B -›

Structure-preserving discretization

!so-surface of ion density colored

by electric field magnitude

P   plsentropic flow — ))/
Po Po

1) SimpleC for E,B contribution to fluid Schur-complement

2) System H(grad) AMG 1 V-cycle DD-ILU smoother for Euler sub-system.

3) H(grad) AMG 1 V-cycle for Grad-div stabilized curl-curl system & DD-LU smoother

4) H(grad) AMG 1 V-cycle for B field mass matrix & Gauss-Seidel smoother

rni
= — = 25
m,



Resistive Alfven wave problem
• Solution is derived from resistive/viscous

MHD which ignores Hall effects:

• Hall parameter H = (1.e = 1
vet nee

• Reducing Hall effects in magnetized
multi-fluid model is tricky - requires
large collision frequency

• Problem used for verifying resistive, Lorentz
force, and viscous operators:

• Impulse shear due to a moving wall
drives a Hartmann layer

• Hartmann layer shear excites Alfven
wave traveling along magnetic field

• Alfven wave front diffuses due to
momentum and magnetic diffusivity

• Profile depends on the effective

Lundquist number S = L VA
A

Ux =

R. Moreau, Magnetohydrodynamics, 1990

vAyT (1 + exp )) erfc(74)

+ 4 (1 + exp T)) erfc(r0

vAY
Bx = T (1 - exp )) erfc(n+)

vAy
--\//4)-

4 
(1 — exp (— H) erfc(70

A

y ± VAt
71 =
— 2 Virt



Robustness and Accuracy: Asymptotic IMEX Solution of Full Multifluid EM Plasma 
Model in MHD Limit (Visco-Resistive Alfven Wave) 

Implicit L-stable and IMEX SSP/L-stable time integration and block preconditioners enable solution
of multifluid EM plasma model in the asymptotic resistive MHD limit.

• S = 20
• s=4o

• S. 60

2" Order Convergence

101 1,1

Accuracy in MHD limit (IMEX)

103

Plasma Scales for S = 60
Electrons Ions

wP At 107-109 106- 10

weAt 1 06 - 1 07 1 03 - 1 04
vaoAt 010 _ 1 011 A f‘7

I  108U

vsAt/A9C
10-2 10-4

uAt/ Ax 10-4 10-4

PAt/PAx2 10-1 101 10-2- 10°
cAt I Ax 102

IMEX terms: implicit/explicit

Overstepping fast time scales is both stable and accurate.
The inclusion of a resistive operator adds dissipation to the
electron dynamics on top of the L-stable time integrator.

 0 0 0 0 

P B

Nodal FE Hydro and Structure-preserving

discretization for EM

pu

Implicitly overstepping stiff modes, II
not controlling accuracy, can make
an intractable explicit computation —
tractable with IMEX methods.

S. T. Miller, E. C. Cyr, JS, R. M. J. Krarner, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. In press for JCP

1



Tokamak Disruption Simulation (TDS) Center SciDAC-4 Partnership (OFES/ASCR)

Computational Goal 

Develop and evaluate advanced hierarchy of plasma physics models and solution methods to understand

disruption physics and explore mitigation strategies.

Attempt is to achieve temperature of —100M deg K (6x Sun temp.),

Energy confinement times 0(1 — 10) seconds is desired.

• Plasma instabilities can cause break of confinement, huge energy loss, and discharge very large

electrical currents (-20MA) into structure.

• ITER can sustain only a limited number of disruptions, 0(1 — 5) significant instabilities.

t = 1.2129

0.6

0.4

0.2

0.0
N

-0.2

-0.4

-0.6

(Overall PI, OFES PI and LANL-PI, X. Tang;

J. Shadid ASCR-PI, SNL-PI):

1.2135 1.2141 1.2147 1.2153 1.2159 1.2165

ITER Physics Expert Group
on Disruptions,
Nucl. Fusion 39, 2251
(1999).
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Preliminary Soloveev Nonlinear Disturbance Saturation.

Time = 0.000 _RHO_UVEC

6.611e-01

4.958e-01

3.306e-01

1.653e-01

0.000e+00 
6.829e-04
0.000e+00

Time = 4.624 _RHO_UVEC

6.611e-01

4.958e-01

3.306e-01

1.653e-01

0.000e+00

5.346e-01

0.000e+00



Neutral gas transport, ionization, and recombination with multifluid model 

• The plasma internal energy can fall from 10 keV -> ev in the thermal quench
in a few ms (plasma transport/radiation)

• Plasma current takes energy from the poloidal magnetic field and
in 30 — 150 ms it can be channeled through runaway electrons.

• For thermal quench mitigation one idea is to inject higher Z impurities to enhance
radiation loss.

• To mitigate the current quench, an idea is to inject neutrals to enhance dissipation of
ru naways.

Goal: Understand impurity penetration and assimilation into plasma.



Preliminary 1D Gas Injection Problems

1D Sim. of Higher Z Neutral Gas (He, Ne, Ar ) Cores Expanding into a 100ev Deuterium D ,e- Plasma

Solving Conservation of Mass, Momentum, Total Mech. Energy

(i.e. Euler sub-system with collisions / ionization / recombination and EM forces). E.g.

(Do , D+ , e— , Ar°, A_-ht A _+2 A _+3 A _+4 A _+5 A _+6)

1. , 1-1-1- , ±1-1- , 1-ir , 11-1- , 11-1-

and electromagnetics for (E,B).

E.g. 5 moment plasma model x 10 species = 50 equations (solved in 3D but only a 1D solution)

Maxwell Equations E,B field = 6 equations

56 PDEs

(solved in 3D but only a 1D solution)

Problem outline: Representative of the core plasma 

• Initial —fully ionized Deuterium plasma at n = 1020, T = 100ev (-1M degrees K)

• Neutral Argon (Ar°) core introduced at n = 1024, T = 10-1ev (-1000 degrees K)

• Parallel B — field is ignorable (due to geometry in 1D so B does not modify transport)

• Domain in x is [0.3m,0.3m]; mesh is 4096 x 1 x 1 elements

t = 1.2129

0.5 0.7 O.
R (m)
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1.0e+0

1.0e+21

1.0e+20

1.0e+19

1.0e+18

1.0e+17

1.0e+16

Dk

2H

1.0e+24

1.Oe+23

1.0e+22

1.0e+21

1.0e+20

1.0e+19

1.0e+18

1.0e+17
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Comparison of multifluid
to an exact solution for an
electron / positron
multfluid collisionless
plasma for a quasi-neutral
expanding core*.

PIC solution is for highly-
collisional self
interactions and
collisionless between
species. I.e.

large vii, v„

Ve i = Ve i = 0

*Allen C. Robinson (Sandia)
exact kinetic/fluid solution
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Conclusions 

• Robustness, efficiency and scalability of fully-implicit /IMEX parallel NK - AMG solvers is very good.

• Physics-based block decomposition and approximate Schur complement preconditioners must have effective

approximation of dominant off-diagonal coupling and time-scales in MHD/multifluid plasmas represented. Can provide

scalable solution of complex multiphysics plasma models.

• General mathematical libraries and components (e.g. Trilinos — Tempus, NOX, Aztec, ML/Meulu,Teko, Panzer, Phalanx,

Intrepid, Kokkos) are very valuable for enabling:

• Flexible development of implicit formulations of multiphysics systems (e.g. MHD, multifluid plasmas)

• Exploration of advanced physics/mathematical models and PDE spatial discretizations

• Development of complex physics-based / approximate Schur complement block preconditioners

• Adoption of well defined, and functionally separated, solution method kernels to promote robustness and help in

assessment when time-step failure, convergence problems occur.
• IMEX time-integration, Nonlinear solvers, Linear solvers, Scalable block and AMG preconditioning

• Software abstractions also allow portability on advanced architectures


