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Motivation: Science/Technoloqgy

Resistive and extended MHD models 156 MO
are used to study important multiple-
time/ length-scale multiphysics plasma

" Fluid stream
physics systems (U
= Astrophysics:
» Magnetic reconnection, instabilities,
» Solar flares, Coronal Mass Ejections. Magnetic field
= Planetary-physics: flgitubes

= Earth’s magnetospheric sub-storms,
= Aurora, Planetary-dynamos.

» Fusion & High Energy Density Physics:
= Magnetic Confinement [MCF] (e.g. ITER),
» Inertial Confinement [ICF] (e.g. Z-pinch, NIF).

(E" (k)

MHD VMS-LES MHD Turbulence Modeling Taylor-Green Vortex Decay.
Non-universality of total energy turbulent decay spectrum
[with D. Sondak (Harvard), A. Oberai (USC)]



General Mathematical / Computational Science Motivation:

Achieving Roust Scalable Simulations of Strongly Coupled Nonlinear Multiple-
time-scale Multiphysics Systems to Enable

= Predictive, Accurate, and Efficient Longer Time-scale Computational Simulations

» Beyond Forward Simulation: Design/Optimization/UQ

» Physics / Mathematical Model Validation, Experimental Data Interpretation & Inference



These systems are characterized by a myriad of complex, interacting, nonlinear multiple time-
and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

- consist of a set of widely separated time-scales that produce a stiff system response,
* nearly balance to evolve system on dynamical time-scales that are long relative to component time scales,

- or balance to produce steady-state behavior.

E.g. Fusion Reactors (Tokamak -ITER; Pulsed - NIF & Z-pinch); Fission Reactors
(GNEP); Astrophysics; Combustion; Chemical Processing; Fuel Cells; etc.



E.g. Multiple-time-scale Multiphysics System: Magnetic Confinement Fusion

Goal for Fusion Device:

* Magnetics ....

« Attempt is to achieve temperature of ~100M deg K (6x Sun temp.),

* Understanding and controlling instabilities/disruptions in plasma confinement is critical
* Energy confinement times O(1) min. is desired.

* Plasma disruptions can cause break of confinement, huge thermal energy loss, and
discharge very large electrical currents (~20MA) to surface and damage the device.

* ITER can sustain only a limited number of significant disruptions, O(1 - 5).



E.g. Multiple-time-scale Multiphysics System: Magnetic Confinement Fusion

MCF Devices are characterized by large-range of time and length-scales
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Our Mathematical Approach - develop:

Stable, higher-order accurate implicit/IMEX formulations for multiple-time-scale systems

Pl (paf [E[|E| | B
Stabilized (VMS) FE

Stable and accurate unstructured FE spatial discretizations. Options enforcing key
mathematical properties (e.g. structure preserving forms: div B = 0; positivity 0 , P; DMP)

Robust, efficient fully-coupled nonlinear/linear iterative solution based on Newton-Krylov . T
methods Structure Preserving FE

Scalable and efficient multiphysics preconditioners utilizing physics-based and approximate
block factorization/Schur complement preconditioners with multi-level (AMG) sub-block solvers

=> Also enables beyond forward simulation: Design/Optimization/UQ ( e.g. Adjoints - error
estimates, sensitivities; surrogate modeling (E.g. GP), ...)
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Notional Outline of Plasma Modelling Hierarchy

E::?:II: ri"noIfEI\I\I,ka)it:I)(;1 (f:;gcizz:g - d;ji = ¢.(E+V; x B)/m, Maxwell Eq. (E,B): Lorentz force

relativistic effects)

No(x.v.t) = d(x— X,(t))é(v — Vi(t))  Klimontovich Eq.
Discrete particle total density view: (e, wit) = 3 o N ()

ini i i N(x,v,t ON, ON, s ON, _ ON,
with Lagrangian coordinates. —— (X.00, V(1) R N
p=m [ Fwdv.
Phase space distribution function: of  of ¢ of oy| Boltzmann,
Statistical model - distribution function 8— T FeoEp —(E + VX B) .—==— Valasov/Maxwell Eq. pU; =m / v f(v)dv,
te,  Ox m ov Ot I

describes probability that a number of particl

Ve
occupy a differential volume in phase space (x,v). // \ Pos = / 2)~z)-f(v)(lv
4 gy Y] ’

PIC - Method of Characteristics: | | Discretization of Boltzmann Eq.: Moment Approx. of Boltzmann:
Lagrangian particle view + FE, FV, Spectral, .. + collision Assumed distribution function and
MCC/DSMC collisions operator approximations closure approx.

3D space + many particles 6D space (x,v) 3D space

Reductions to continuum fluid systems:

+ E.g. Maxwellian dist. and 5 moment multifluid
EM plasma model (electrons, ions, neutrals)

» Extended MHD (retaining aspects of electron
dynamics)

* Resistive MHD approx. (long length scales, .....)
Reduced unknowns, and time- / length-scales

(w/ S. Bond)



5 Moment Multifluid EM Plasma Model: Multiple Atomic Species,
Full Maxwell EM with Collisions/lonization/Recombination| c: efstic scattering

C°": ionization reactions

Conservation / Balance Eqgn. Ci¢: recombination reactions
Mass[0] 0 0 C$*: charge exchange
atp5+v' (psus) :C£ ] +S£ ] i radiative loss
Momentum([1]
0¢(psus) + V- (psus®us+ psI+IT ) = gsns (E+u; x B) +C£1] +S£l]
Total 2 o
E(:\teargv[Z] 0;Es+V-[(Es+ps)us+us-T +hg| = gsnsus-E+C¢ +87
Charge / _ _
Current 9= ; sts J= ; qsnsUs
Maxwell’s 1 q
Eqn. —26[E—VXB+M0]:0 V-E=—
i €0
0B+VxE=0 V-B=0

Braginskii, Rev. Plasma Phys. 1965; E. T. Meier and U. Shumlak PoP, 2012;



Notional Discussion of Plasma Modelling Hierarchy (Contd.): Reduction to MHD

Assume Infinite speed of light (low frequency EM)

iﬁ—VxBJﬂioJ:o v-E=1
c L €0
86—]?+V><E=0 V-B=0

Center of mass description for Equation of Motion (essentially ions), neglect electron
momentum inertia ( m./m; =0 ) and develop a generalized Ohm’s law description for E

E-—uxB+ 73 +%@xB-vPR)
S—— ~—~ n

Ideal isti - N~ J
Resistive Hall

Further neglecting Hall physics terms, produces a resistive MHD a
resistive MHD model (written in magnetic induction equation form):

e I, @—VX(VXB)JFVX (iVxB) -0
Ideal Resistive at ILLO



3D H(grad) Variational Multiscale (VMS) / AFC formulation I—I I:PI I?H_BI I?I

u

Resistive MHD Model in Conservative Form 9

. T = —[P = (V- v)[T+p[Vv + Vv']

pv _

ﬁJrV [pv@v — (T +Ta)] + 2022 X v—pg =0 Ty = iB®B—2LHB||21
ap Ho Ho

5 TV (v) =0
0ot L 2y L ExB - = L2 4

V- |(pe+ splu)u+ExB+ Toutq| =0 Ty =pe+ —plul® +|B]*/2u0

ot : Ho 2

0B T

4V |Bov-ve®B- - (VB-(VB)) +¢I| =

ot Mo

1 0

¢ + w +V-B=0
ch, ot

* Divergence free involution enforced as constraint with a Lagrange multiplier
(Elliptic, parabolic, hyperbolic) [GLM: Dedner et. al. 2002; Elliptic: Codina et. a{.bZOOG, 2011, JS et. al. 2010, 2016]

* Only weakly divergence free in FE implementation (stabilization of B - coupling )



3D H(grad) Variational Multiscale (VMS) / AFC formulation EI I:PI I;H:BI I%I
u

Navier-Stokes Compressible Flow Model (Conservative Form)

T=_[p- %u(v L+ Vv + VT

(%:’Jrv-[pv@v—(TJr ) +2p2 x v —pg =0

dp

a—i—v-(pv) =0

[3)) 1 1

6;‘” +V-|(oe+ §p||u||2)u + Tu+q|=0 Ytot =P€+§ﬁ”“H2




3D H(grad) Variational Multiscale (VMS) / AFC formulation - -P !.B
u

Resistive MHD Model in Conservative Form

T=—[P— 24V )T+ Vv + V7

0

g:+V [pv®v—(T—l--]+2pQ><v—pg 0
dp

8t+v (pv) =0

0ot

1
3 — [(p +- p\mlu\l\l 11+-+ utq| =0 Ly P€+20HUH

* Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016
* Only weakly divergence free in FE implementation (stabilization of B -% coupling )

 Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning
(Dedner et. al, 2002) [JS et. al. 2016].

* Issue for using C° FE for domains with re-entrant corners / soln singularities
[Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]




Why Newton-Krylov Methods?

Convergence properties

« Strongly coupled multi-physics often
requires a strongly coupled nonlinear
solver

* Quadratic convergence near
solutions (backtracking, adaptive
convergence criteria)

+ Often only require a few iterations to
converge, if close to solution,
independent of problem size

F(x,A,,A,,A;,.) =0

Inexact Newton-Krylov

Hka+ F(xk)H

Solve Jp, =-F(x,); il
ve Jp, =-F(x,); unt HF(Xk)H

X1 =X, +OP

Jacobian Free N-K Variant
Mp, =v
_F(x +0p,)-F(x)

Jp, = 5 ; or by AD

See e.g. Knoll & Keyes, JCP 2004

P




Why Newton-Krylov Methods?

Fully-implicit / IMEX transient

Convergence
Properties

—_




Multiple-time-scale systems: E.g. Adjoint Error-estimation and Sensitivity
Study for 3D Steady State MHD Generator (Re ~ 2500, Re,, ~ 10, Ha = 5)

= Qol (1): Induced Magnetic Energy (M.E.)
fﬂ L (B2 + B%)dQ

M.E. = 2220

Vol(€2)

Qol

Sensitivitiy

Qol: Induced Magnetic Energy

210 Sensitivity for 1 % Change in Parameter
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Why Implicit / IMEX Newton-Krylov Methods?

Direct-to-steady-state

FX A A A =0 Stability, Accuracy and Efficiency

- Stable (stiff systems)
;_f (e[ o o . High order methods (e.g. BDF, DIRK, IMEX, etc.)
ot ‘ - Variable order techniques

- Local and global error control possible

- Can be stable, accurate and efficient run at the dynamical

time-scale of interest in multiple-time-scale systems (See e.g.
Knoll et. al., Brown & Woodward., Chacon and Knoll, S. and Ober, S. and Ropp)




Why Newton-Krylov Methods?

Direct-to-steady-state




lllustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model

lonization/recombination

Density 0¢Ps +V'(psus) = —PsNe (Is!Rs) +mgne(ng. -1 -+mn R -1

= Cyclotron frequency
o (psus) +V- (Psus duU; + Psl'*‘ﬂs) =(qsns(E+us xB) + Z As;PsPr (Wy — W)

Momentum A : vi iZs
—psUshe (Is + Rg) +

Collisional

mg

”eps—lus—lls—f' (neps+1us+l + ’ls+lpeue) Rsi1

ms—y

Strong off diagonal

|

0,8+ V- [(Es+ ps)us+us-TT +hs:] = gsnsug-E T; — T,) + my (u; —us)z]

lf coupling for
Energy m plasma oscillation
—Esne (Is+ Ry) + : NeEsfiIs—1 + (Ne&si1 + Nsi1Ee) Roy1
s—1
Charge
and q= Z qsns J= Z qsnsUs
Current ’ )
1 q
Maxwell’s C—ZatE—Vx + 1) =0 V.E:e—
Equations Light wave off ¢
0:B+VxE=0 diagonal coupling V-B=0
[ ]
IMEX: Time MI] + K + G — 0
Integratlon Explicit Implicit EM, EM sources, sources for
Hydrodynamics species interactions

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. JCP, 2019

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.

Abgral et. al.;
Barth;

Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;




Multifluid Model: Implicitness and IMEX used to handle Multiple-time-scales

Eigen-values for 5M Euler N =
= (Uq, Uy £ T./m
Eqn. for each species & ( @y o v a/ a)
1 1
Time-scales from Maxwell TEM — A913/0; Todpe — v Twea = B
nan da
Eqgn. & EM source terms 607" M,

EM Wave Plasma Freq. Cyclotron Freq.



Demonstration / Verification of Implicit Solution for Longitudinal Electron
Plasma (LEP) Oscillation with Under-resolved TEM Waves

p|lpal | € E|l<«gBpPp

Nodal FE Hydro and Structure-preserving

Time = 0.0000e+00

LEP
RCP

LCP

Drekar LEP

e Drekar RCP-L
Drekar RCP-U
e Drekar LCP

Relative L2 error norm

105 i t
10?2 10 10° 10?

k [radian/m]

Elements per wavelength

LEP: Longitudinal Electron Plasma Wave

RCP: nght Hand Clrcularly Polarized Wave Verification effort with Niederhaus, Radtke,

LCP: Left Hand  Circularly Polarized Wave Bettencourt, Cartwright, Kramer, Robinson and
ATDM EMPIRE T

(Cold plasma) eam



Demonstration of Accuracy for Implicit Solution Methods for Langmuir wave (i.e. Longitudinal Electron
Plasma [LEP] Oscillation): Fast time-scale unresolved transverse EM (light) waves (Ne = 101°)

% Error in Electron Plasma Freq., Ne = 105

% Error in Electron Plasma Freq., Ne = 105
(over 15 periods, 250 elem. / wave length) (over 15 periods, 250 elem. / wave length)
1.0E+00 1.0E+00
*Drekar Implicit SDIRK22 -®Drekar Implicit SDIRK22
“®Drekar Explicit RK “#Drekar Explicit RK
375 time steps (25 per period)
375 time steps (25 per period)
1.0E-01 1.0E-01
: 5
= = o ;
% < Implicit in this case
~50x faster with same error
1.0E-02 1.0E-02
3 x 10° time steps (2 x 10° per period) SO 3000 time steps 3 x 106 time steps (2 x 10° per period)
W SN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EE N N NN NN NN NN NN NN NN NN NN NN NN NN NN NS NN NN NN NN NN NN NN NN NN NN NN RN N NN RN NI NN NN NN NN NN NN NN EENEEEEEEEEEEE peennnsnnnnnnn
9.6 x 10 time steps 9.6 x 10° time steps
1.0E-03 1.0E-03
1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+02 1.0E+03 1.0E+04 1.0E+05
Total Simulation Time.

CFLEM

Note: Explicit solver is not highly optimized. Explicit is 20x — 30x faster per time step.



Why Newton-Krylov Methods?

Direct-to-steady-state F

Stability

Accuracy

Efficiency

What | am not implying: Fully-implicit / IMEX is the only way to get these properties

* Well characterized operator splitting methods

in specific application areas (e.g. Combustion — P. Colella, J. Bell, ...)

* Spectral deferred correction (M. Minion et. al.)

* Etc

What | am implying: Fully-implicit / IMEX are excellent ways to get these properties along
with a number of other benefits when applied to multiple-time-scale multiphysics systems




Why Implicit Newton-Krylov Methods?

o]

Direct-to-steady-state Fully-implicit transient / IMEX
7 ~\ / \
Convergence / Optimization, ”
Properties uQ Stability || Accuracy || Efficiency
Characterization

Complex Soln. Spaces




Scalable Preconditioning for Systems

1. Multilevel Methods for Systems: (ML & Muelu; Tuminaro, Hu et. al.))

Fully-coupled Algebraic Multilevel methods
* Consistent set of DOF-ordered blocks at each node (e.g. VMS/Stabilized FE)

» Uses non-zero block graph structure of Jacobian
 Additive Schwarz DD ILU(k) as smoothers (Jacobi & GS possible for transients)
 Can provide optimal algorithmic scalability

h

2h
Q ® Smoothing

2. Approximate Block Factorization / Physics-based (Teko; Cyr, Shadid, Tuminaro) " /" Prokngation ()
o Restriction (R)
* Applies to mixed interpolation (FE), staggered (FV), physics compatible - \,' Direct Sl
discretization approaches using segregated unknown blocking -

* Applies to systems where coupled AMG is difficult or might fail (e.g coupled hyperbolic sys.)
* Enables specialized optimal AMG, e.g. H(grad), H(curl) for disparate discretizations.
* Can provide optimal algorithmic scalability for coupled systems

3. Monolithic Multigrid Enabled by Schur-complement Structure Aware Smoothers
(Vanka et. al, Farrell et. al, MacLachlan et. al., ....)



A Few Examples of Relevant Continuum / PDE-based Models for

* Resistive MHD,
 Multifluid Plasmas,

and Associated Solution Methods



3D H(grad) Variational Multiscale (VMS) / AFC formulation

Resistive MHD Model in Residual Notation 9
. T=-[P- gu(V'v)]I—l—u[Vv—l—VvT]
gt +V-[pvev—(T+Tuy)]+202xv—pg=0 Ty = ~BeB- - [B|’I
. Mo 210
op _
SV (pv) =0
[5)) 1 1
L4V | (et spluu+EXBA T utq[=0 Sy = pe+ —plul> + |BJ2/2u
ot 2 " 2
0B T
4V [Beav-veB- - (VB-(VB))+¢I| =
ot Ho
1 0
o +- zp +V-B=0
Ch, 075

* Divergence free involution enforced as constraint with a Lagrange multiplier (Elliptic, parabolic, hyperbolic)
[Dedner et. al. 2002; Elliptic: Codina et. al. 2006, 2011, JS et. al. 2010, 2016]
* Only weakly divergence free in FE implementation (stabilization of B -¢coupling )

IO
u P T B %

All nodal H(grad)
elements using
stabilized weak from

 Can show relationship with projection (e.g. Brackbill and Barnes 1980), and elliptic divergence cleaning (Dedner et. al, 2002) [JS et. al. 2016].

* Issue for using C° FE for domains with re-entrant corners / soln singularities [Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2014]



Large-scale Scaling Studies for Cray XK7 AND BG/Q; VMS 3D FE MHD
EI EI EI (similar discretizations for all variables, fully-coupled H(grad) AMG)

Weak Scaling: Avg. Linear Iters. / Newton Step
3D MHD Generator. Re = 500, Re,, = 1, Ha = 2.5; (Steady State)

1000 :
“¥Titan DD ILU(1),0v=1 \ ;
900 | &Titan ML FC-AMG ILU(0), ov =1, v(3,3) o oW
’ 800 | =~BG/Q ML FC-AMG ILU(0),0v=1, V(3,3) =
E 700 | ==BG/Q Muelu FC-AMG ILU(0), ov=1, V(1,1) o
Q 4096x increase in prb. size
£ 600
—
W 500
=3
400
300
BG/Q: 1M
200 \é
100 / ,/VA‘.,»*“‘/‘)'
0 ') S —y "‘“’Ww"‘;};& 1 o
1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09
Unknowns

1.0E+10

Avg. Linear Solve Time (sec.)

Weak Scaling: Avg. Linear Solve Time / Newton Step
3D MHD Generator. Re = 500, Re, = 1, Ha = 2.5; (Steady State)

200
“*Titan DD ILU(1),0ov=1
175 | #Titan ML FC-AMG ILU(0), ov =1, V(3,3)
BG/Q ML FC-AMG ILU(0),0v=1, V(3,3) N
150 | —BG/Q Meulu FC-AMG ILU(0), ov=1, V(1,1) ~20%
125 4096x increase in prb. size
100
75
BG/Q: 1M
50 \é
g
25 =, _Titan: 128K
) 7 =" <" pg/q 256K
o BTy —— i L 1 M M 1 ]
1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+10
Unknowns

Largest fully-coupled NK-AMG unstructured FE MHD solves demonstrated to date:

MHD (steady) weak scaling studies to 256K Cray XK7, 1M BG/Q
Large demonstration computations

* MHD (steady):
* CFD (Transient):

13B DoF, 1.625B elem, on 128K cores
40B DoF, 10.0B elem, on 128K cores

Poisson sub-block solvers: 4.1B DoF, 4.1B elem, on 1.6M cores BG/Q



Weak Scaling for VMS 3D Island Coalescence
Problem: Driven Magnetic Reconnection
[S =103, dt = 0.1]

[u][PI[BIL[] (similar discretizations for all variables,
fully-coupled H(grad) AMG)

Weak Scaling Study: 3D Island Coalescence
Driven Magnetic Reconnection Problem

40
-<-Avg. Time (sec.) / Time Step
o <“-Avg. Gmres Steps / Time Step

30 32K unknowns per core /

" (Scaling of total time with /0 included)

25

. - i Scaling with Lundquist No. (Re as well).
g 20 = Lundquist No. S Newt. Steps / dt  Gmres Steps / dt
15 : 1.0E+03 1.36 5.2
256x256x256 5.0E+03 1.43 5.7
10 cdcores 512 cores 4096 cores 1.0E+04 1.51 6
1 core 8 cores - —_—
5 —_—— 5.0E+04 2 9.8
0 e 1.0E+05 2 12
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 5.0E+05 2 8.4
Number of Unknowns 1.0E+06 2 8.4
JS, Pawlowski, Cyr, Tuminaro, Chacon, Weber, Scalable Implicit Incompressible Resistive MHD with BDF2 NK FC-AMG ILU(fiII=0,ov=1 )! V(3,3)

Stabilized FE and Fully-coupled Newton-Krylov-AMG, CMAME 304, 1-25, 2016 Mesh: 128x128x1 28, dt = 0.0333.



lllustration of Time-scales and an IMEX Partition for Multi-fluid Plasma System Model

lonization/recombination [diagonal (s)/off diagonal (s,t)]

pu| | €| | E <

Density 0ipsHV- (psus) = —Psne (Is!Rs) +mshe(ng. -1 - +n -R -1
= Cyclotron frequency
0¢ (psus) +V- (Psus U + psl"'HJ =(qsns(E+us xB) + Z As;rPsPr (U —Uy)
Momentum A - ' 1 fs Collisional
—psusne (Is + Rg) + = - ”eps—lus—lls—f' (neps+1us+l + ’ls+lpeue) Rs+1
s—1
\ ' Strong off diagonal 2
6[55+V'[(55+p5)us+us'ﬂs+hsl qul’lslls‘E ; Coup|ingf0r Tt_TS)+mt(ut_uS) ]
Energy - plasma oscillation
—Esne (Is+ Rs) + - NeEshIs—1+ (NeEsi1 + Nsi1Ee) R
s—1
Charge
and q= Z qsns J= Z qsnsUs
S N

Current

1 q
Maxwell’s —ZatE—Vx + 1) =0 V-E= L
Equations ¢ Light wave off =D

0/B+VXxE=0 diagonal coupling V-B=0

[ ]
IMEX: Time MI] + K + G — 0
Integratlon Explicit Implicit EM, EM sources, sources for

Hydrodynamics

interactions

species

SEIE

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.

Abgral et. al.;
Barth;

Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al.;

B. Srinivasan et. al.;




Physics-based and Approximate Block Factorizations:
Strongly Coupled Off-diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

wu_on o_o
o ox’ Ot Ox

Fully-continuous Wave System Analysis:

w_o o _on
o o0r ot Oz
’u  0%v 0?v  O%*u

92 0tdr  0zdt  0x2

Discrete Sys.: E.g. 2nd order FD (illustration)

(I — BA* Loy )u™ Tt = F"

Fully-discrete:
Approximate Block Factorizations & Schur-complements:

I —AtCy| [umt]  [u" — AtCyo™
—AtC; I o™ T o™ = AtCu"

(D U] _[1 UD' ][ Di-UD'L 0
L Dy [0 I 0 D,

The Schur complement is then

HD;IlL”

Dl — UD2_1L = (I — AtQCIC;[)% (I - At2£$$)

Recall: This is motivating how we develop preconditioners, not for developing solvers.
The NK method still seeks the solution to the original nonlinear/linear system!

[w/ L. Chacon (LANL) ]



Physics-based and Approximate Block Factorizations:
Strongly Coupled Off- Diagonal Physics & Disparate Discretizations (e.g. structure-preserving)

Dy U I UD;Y ][ Dy —-UD'L 0 I 0
L Dy 0 I 0 Dy || DL 1

Dy —UD;'L = (I - At*C,C,) =~(I — At*L,,)
Result:

1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are now combined onto
diagonal Schur-complement operator (block) of preconditioned system.

2) Partitioning of coupled physics into sub-systems enables exisiting SCALABLE AMG optimized for the
correct structure preserving spaces e.g. H(grad), H(curl) to be used.
(e.g. Teko block-preconditioning using Trilinos ML/Muelu; FieldSplit in PetSc with Hyper)

Still Requires:
3) Effective sparse Schur complement approximations to preserve strong cross-coupling of physics and
critical stiff unresolved time-scales, and be designed for efficient solution by iterative methods.

[w/ L. Chacon (LANL) ]



Incomplete References for Scalable Block Preconditioning of MHD / Maxwell Systems

Physics-Based MHD and XMHD

* Knoll and Chacon et. al. “JFNK methods for accurate time integration of stiff-wave systems”, SISC 2005

* Chacon “Scalable parallel implicit solvers for 3D MHD”, J. of Physics, Conf. Series, 2008

* Chacon “An optimal, parallel, fully implicit NK solver for three-dimensional visco-resistive MHD, PoP 2008

* L. Chacon and A. Stanier, “A scalable, fully implicit algorithm for the reduced two-field low-p extended MHD model,” J. Comput. Phys.,
vol. 326, pp. 763-772, 2016.

Approximate Block Factorization & Schur-complements MHD

* Cyr, JS, Tuminaro, Pawlowski, Chacon. “A new approx. block factorization precond. for 2D .. reduced resistive MHD”, SISC 2013
Phillips, EIman, Cyr, JS, Pawlowski “A block precond. for an exact penalty formulation for stationary MHD”, SISC 2014

Phillips, JS, Cyr, EIman, Pawlowski. "Block Prec. for Stable Mixed Nodal and Edge FE Incompressible Resistive MHD," SISC 2016.

* Cyr, JS, Tuminaro, “Teko an abstract block prec. capability with concrete example app. to Navier-Stokes and resistive MHD, SISC, 2016
* Wathen, Grief, Schotzau, Preconditioners for Mixed Finite Element Discretizations of Incompressible MHD Equations, SISC 2017

Block Preconditioners for Maxwell
* Greif and Schotzau. "Precond. for the discretized time-harmonic Maxwell equations in mixed form," Numer. Lin. Alg. Appl. 2007.
* Wu, Huang, and Li. "Block triangular preconditioner for static Maxwell equations," J. Comput. Appl. Math. 2011
*  Wu, Huang, Li. "Modified block precond. for discretized time- harmonic Maxwell .. in mixed form," J. Comp. Appl. Math. 2013.
* Adler, Petkov, and Zikatanov. "Numerical approximation of asymptotically disappearing solutions of Maxwell’s egns," SISC 2013.
* Phillips, JS, Cyr, “Scalable Precond. for Structure Preserving Discretizations of Maxwell Equations in First Order Form”, SISC 2018

Norm Equivalence Methods
* Mardal and Winther “Preconditioning discretizations of systems of partial differential equations”. NLAA, 2011
* Ma, Hu, Hu, Xu. "Robust preconditioners for incompressible MHD Models," JCP 2016.




Extending the Simple Example

A coupled convection diffusion problem with periodic BCs

and u=sin(2mnx), v=cos(2mx)

(o i o ) 1] =

Three time-scales of interest




Block Preconditioning and Time-Scales (e.g. FD discretization coupled
convection/diffusion/first-order wave coupled system)

ﬁI—I—dD—FaC’ cC u\ [ Ry
cC —Al—tl+dD+aC v )]\ R,

. ~I+dD+aC cC
Psc:( A0 S > §=£I+dD+aC - C(5;] 4D +aC)™'C

L]+dD+aC 0 A T+dD+aC cC
— At — At
P ( 0 31;1+dD+ac> PGS‘( 0 §1+d0+ac>

*Only the upper diagonal of the block LU factorization is used as in Murphy, Golub, Wathen SISC 2000.
Exact computation/inversion of operators will be used for illustrative purposes in example of outer iteraction convergence.



Block Preconditioning and Time-Scales (e.g. FD discretization coupled

convection/diffusion/first-order wave coupled system)

LT1+dD+aC cC w\ [ Ru
cC A%I +dD + aC v |\ R,
1
Pic — ( arl + %D G CSC ) §=L1+dD+a0-EC(LI+dD+aC)'C
LT+dD+aC cC
PGS:<N 0 ALtI+dD+aC>
Outer iterations in the dof based block factorization linear solver
CFL. 101 102
GS [ T
J 26 78
SC 2 2

CFL, = 1,CFLy =1

*Only the upper diagonal of the block LU factorization is used and exact computation/inversion of operators for illustrative purposes.

CFL,=1,CFL; = 10°

The result of 2 outer iterations follows from the result in Murphy, Golub, Wathen XXXX)




Magnetic Vector-Potential MHD Formulation: structure-preserving( B=V x A ;V-B =0)

Mixed basis*:

opv
Rv:%%—v [pveav — (T + Ty +202xv—pg=0 T=—<P+§,u(Vou))I+,u[Vu+VuT]
op Ty = %B@B—iHBHQI
R V- =0 0 0
p=5 tV ()
0 1
Ry = (apte)—I—V-[pve—l—q]—T:VV—n||—V><BH2=O
0A
RAZJE+V><—VXA—UV><VXA+UV¢ 0; B=VxA
Ry=V-0Vp=0

—

v P

Nodal H(grad) and

Edge H(curl)
Elements
[Intrepid]

* Divergence free involution for B enforced to machine precision by structure-preserving edge-elements

G =Qz'c K =Qp'K b:Q;‘D

v s
7 QAN H(curl) AN H(div) SELARNY 3 nodes, —— > edges

N

H™' «—— H(curl)* «o— H(div)* «—— L?

faces

Jos

nodes} e—— edges*  P— faces* e nodes

v Gt =G'Qp" K'=K'Qg' Dt = DQ

« Mixed basis, Q1/Q1 VMS FE Navier-Stokes, A-edge, Q1 Lagrange Multiplier

Follows from F — _% —Vo; E=—uxB+ nlJ; JzﬂlonB;B:VxA

A

¢




Magnetic Vector-Potential Form.: Hydromagnetic Kelvin-Helmholtz Problem (fixed CFL)

Mixed basis*:

Structure of Block Preconditioner: Critical 3x3 Block Sys.
Operator-Split into 2 — 2x2 Sys. with Sparse Schur Complement Approximations
-1 00 F B* 0
_ I 0 B.C 0
Agsg = Pa=
os¢ * 0 I o\o 1

Segregation into
* H(grad) system AMG for velocity

S =G —YF-17 (SIMPLEC: see eg. Elman et al.)

5 —1 pt
* H(curl) AMG for magnetic vector potential (SIMPLEC M SP =C-BF 'B
* Scalar H(grad) AMG for pressure (PCD commutator) (PCDZ Kay, Loghin, Wathan)

Laplacian Gauge Laplacian Gauge

35[{ —P

=

L

30+

HMKH
Re = Re,, = 103

Linear Iterations per Newton Step
N w 8 (€] D

Computation Time (s) per Newton Step

Number of Unknowns Number of Unknowns

0r 25
0r 4k cores -
10 \¢ 20 \
O I I 1 L 1 1
10° 10° 10’ 10° 10° 10° 10° 107 10°

10



5 Moment Multi-fluid EM Plasma System Model

Density 0rps+ V- (psus) = —pshe(Is+ Rs) + Mshe (ng—_1Is_1 + ngp1 Rey1) p
0¢ (psus) + ¥ (psus U + Psl+_]__ls) =(gsns(E+usxB) + Z A5t PsPr (U —Us)
Momentum . b5
—psushe (Is + Rg) + - NePs—1Ws—115-1 + (neps+1us+l + ns+lpeue) Rs+1
§—1
As;tPsPt 2
a[gs + V' [(83 + ps)us +lls .HS +hs] = qsﬂsus 'E + Z m [As,th (Tt = Ts) + m[ (u[ —us) ]
Energy m g e
—Esne (Is+ Rs) + o . NeEs—115-1+ (NeEss1 + Ns41Ee) Rs11
s—1
Charge
and q= 245’15 J= Z (dsnsUg
s s
Current
1 q
Maxwell’s C—ZG,E—VxB+u01:O V-Eze—
. 0
E t
RSN 0;B+VxE=0 V-B=0

Other work on
multifluid plasma
formulations,
solution algorithms:

See e.g.

Abgral et. al.;
Barth;

Kumar et. al.;
Laguna et. al.;
Rossmanith et. al.;
Shumlak et. al,;

B. Srinivasan et. al.;




Scalable Physics-based Preconditioners for Physics-compatible Discretizations

D, Kziui 0 Qgi 0 0 0 0 Pi lon/electron plasma

Dﬁi“" Dy, 0 QZiui 521176 0 Q%Ui Q%iui pil; ~16 Coupled

Df D%, Dg QF Q. Qi Q% | 0 &; Nonlinear PDEs
s 0 0 D, ngue 0 0 0 Pe A
pete Qe 0 Dfe Dy, 0| QE™ | QE™ | |peu o pul [E]VEJB
Q% Q%, Qi Df D%, Dg| Qf | 0 ||& v
0 . 0 0 P. 0] Qg | Kj E

| 0 0 0 0 0 0 Kg Qs 11 B .

Group the hydrodynamic variables together (similar H(grad) discretization)

F = (pza Pil;, gia Pe; PelUe, ge)

Resulting 3x3 block system Reordered 3x3

Dy QL QL] [F Qs K& 0
Qf Qs KI| |E|mmmp |K; Qr QF
0 Kz Qg [B 5 Qp Dr

= ©




Physics-based/ABF Approach Enables Optimal AMG Sub-block Solvers

0

Qs KE 0
0 Dr Qf

0 Sr

E
F

Sr = Dp — KEDZIQE

A

_ En—1y-B
’E 1
Compare to: %tQ + OHOVXVXE:O
_ ~N— 11 B

.

16 Coupled Nonlinear PDEs

.- /T\
pl Py | € ||E|< B>
\2
CFD type system

node-based coupled
ML: H(grad) AMG
(SIMPLEC: Schur-compl.)

Electric field system

Edge-based curl-curl type

ML: H(grad) AMG with grad-div stab.
or H(curl) AMG

Face-based simple
mass matrix Inversion.
V-cycle Gauss-Seidel



Augmentation of Schur Complement
D~ 25T + AtV x Vx

Null space of curl is all gradients of scalars.
Augmenting with —AtVV. vyields a vector Laplacian. Then gradients are not annihilated

Similar strategy to augmented Lagrangian techniques (CFD: Benzi & Olshanskii; Maxwell:
Wu, Huang, & Li)

Can be regarded as adding a scaled gradient of Gauss’s law to Ampere’s law, i.e. adding
zero V- (€E)=p
In discrete setting, augmented operatoris Dp= =x;Qr + AtK'Qg' K + AtGQ, G

Removes gradients from null-space. Traditional H(grad) multigrid can be used on T, even
when C'FL, is large

Of course other optimal AMG routines for curl-curl systems in
e.g. ML/Muelu (Ref. Maxwell) and Hyper (AMS) can also be used.



Weak Scaling for 3D Electro Magnetic Pulse

with Block Maxwell Eq. Preconditioners on Trinity

Drekar Tpetra/Teko/MuelLu E-B Maxwell weak scaling
20.0
o
2 CPU Time / Solve (not including AMG setup)
e
] E EAn-1yB
ig —_— W\‘ D = QE_KBQB KE
_g o — Maxwell subsystem: electric
2 GMRES lterations field Edge-based curl-curl
w
.S 10.0 type system.
g 128K cores 8.4B row Good scaling on block solves (at
@0 matrices (edge E field) !east for solve; setup needs
oc improvement)
= 5.0
(G)
Demonstrated to CFL. > 10*
0.0 T T T )
32 256 2048 16384 131072
# MPI Processes
-®=GIM RES iterations/solve =#=Solve time/Newt
Drekar
GS smoother with H(grad) AMG Max CFL, ~ 200



Initial Weak Scaling for Longitudinal Electron / lon Plasma Oscillation and
Under-resolved TEM Wave Results (Full Maxwell — two-fluid)

At=11x10""=0.0237,, ~0.17, >3x10*7

. ik
lp pul | £ E|¢gBpP

Structure-preserving discretization

Linearits/ [Solve time / linear Atimp
N P Newton solve Ay -
100 1 4.18 0.2 300
200 2 4.21 0.22 600
400 4 4.27 0.23 1.2E+3
800 8 4.4 0.26 2.4E+3
1600 16 4.51 0.35 4.8E+3
3200 32 4.89 0.42 9.6E+3
6400 64  6.21 0.61 1.9e+4 Ax ~ 1um
p="" _1836.57
Mme
Initial weak scaling of ABF preconditioner Proof of Principle
*  Domain [0,0.01]x[0,0.0004]x[0,0.0004]; Periodic BCs in all directions
* N elements in x-direction; SimpleC on fluid Schur-complement
*  Fixed time step size for SDIRK (2,2): (not resolving TEM wave) DD-ILU for Euler Egns.

DD-LU curl-curl



Demonstration of scalable physics-based preconditioners
3D Gaussian high density/pressure
for isentropic ion-acoustic wave propagation

Scaling of ion/electron multiflud plasma block
preconditioner for 3D Soliton: lon-Acoustic wave

20 Avg. Iterations per time-step - ’ ¥ ;
3 : . o _E_‘edgeVEC
\P' / . o , : ! - /‘ . ' ‘ 3_4379;01 ‘
10 16K cores: Trinity : — > Yy f;ﬁ:glﬂ
Avg. CPU time per time-step e : -2 S e
_/ - . .
5 — \ Iso-surface of ion density colored
o A2 gares by electric field magnitude
. P p
1.06405  1.0E+06  1.0E+07  1.0E+08  1.0E+09 Isentropicflow g =i ="
. —_— » my;
1) SimpleC for E,B contribution to fluid Schur-complement u=—=25
Me

2) System H(grad) AMG 1 V-cycle DD-ILU smoother for Euler sub-system.
3) H(grad) AMG 1 V-cycle for Grad-div stabilized curl-curl system & DD-LU smoother
4) H(grad) AMG 1 V-cycle for B field mass matrix & Gauss-Seidel smoother




Resistive Alfven wave problem

=  Solution is derived from resistive/viscous y
MHD which ignores Hall effects:

g
I'q

» Hall parameter H = 2 =22 « 1

Vei Nee

YYYYYYYYYY

= Reducing Hall effects in magnetized >
multi-fluid model is tricky - requires
large collision frequency 8y

= Problem used for verifying resistive, Lorentz | - Rk R
force, and viscous operators: .
* Impulse shear due to a moving wall
drives a Hartmann layer U 5,57
= Hartmann layer shear excites Alfven Ux = Z(l 82D (T)) erfe(7,)
wave traveling along magnetic field U
8 g g + —(1 + exp (— ﬂ)) erfc(n_)
= Alfven wave front diffuses due to % A

YYY

T

R. Moreau, Magnetohydrodynamics, 1990

. . . . U v y
mon?entum and magnetic dlff'usmty B, = W;(l — exp ( % )) erfc(y,)
= Profile depends on the effective U -
Lundquist number S = "% _\/#opz(l — exp (— T)) erfc(n-)
y t st

W,



1073

10

Error pu,

:::l 1‘) LU

10°7

10-9

—

Robustness and Accuracy: Asymptotic IMEX Solution of Full Multifluid EM Plasma

Model in MHD Limit (Visco-Resistive Alfven Wave)

Implicit L-stable and IMEX SSP/L-stable time integration and block preconditioners enable solution
of multifluid EM plasma model in the asymptotic resistive MHD limit.

e S=2
e S=40

! e S=00

—— 2" Order Convergence

Plasma Scales for S = 60

Electrons

10! 102
N,

Accuracy in MHD limit (IMEX)

v IMEX terms: implicit/explicit

S AN

plpul | & E|<gBpP

Nodal FE Hydro and Structure-preserving
discretization for EM

N

Overstepping fast time scales is both stable and accurate.
The inclusion of a resistive operator adds dissipation to the
electron dynamics on top of the L-stable time integrator.

S. T. Miller, E. C. Cyr, JS, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact sequence discretization of the multi-fluid plasma model. In press for JCP



Tokamak Disruption Simulation (TDS) Center SciDAC-4 Partnership (OFES/ASCR)

Computational Goal

Develop and evaluate advanced hierarchy of plasma physics models and solution methods to understand
disruption physics and explore mitigation strategies.

Attempt is to achieve temperature of ~100M deg K (6x Sun temp.),
Energy confinement times O(1 — 10) seconds is desired.

* Plasma instabilities can cause break of confinement, huge energy loss, and discharge very large
electrical currents (~20MA) into structure.

* ITER can sustain only a limited number of disruptions, O(1 — 5) significant instabilities.

t=1.2129 1.2135 1.2141 1.2147 1.2153 1.2159 1.2165

0.6
0.4 ITER Physics Expert Group
on Disruptions,
am Nucl. Fusion 39, 2251
E oo (1999).
N

0.2\

-0.4

-0.6

(Overall PI, OFES Pl and LANL-PI, X. Tang; 01.5 07 09 : |
J. Shadid ASCR-PI, SNL-PI): R (m)



||dml|| vs. Time

Time = 0.000 |

_RHO_UVEC

6.611e-01
4.958e-01
3.306e-01

1.653e-01
6.829e-04
0.000e+00 0.000e+00




Preliminary Soloveev Nonlinear Disturbance Saturation.

E 5.346e-01
0.000e+00

6.611e-01
4.958e-01
3.306e-01
1.653e-01
0.000e+00

RHO_UVEC

624

=4

Time

6.829-04
0.000e+00

I

6.611e-01
4.958e-01
3.306e-01
1.653e-01
0.000e+00

RHO_UVEC

.000

=0

Time



Neutral gas transport, ionization, and recombination with multifluid model

The plasma internal energy can fall from 10 keV -> ev in the thermal quench
in a few ms (plasma transport/radiation)

Plasma current takes energy from the poloidal magnetic field and
in 30 — 150 ms it can be channeled through runaway electrons.

For thermal quench mitigation one idea is to inject higher Z impurities to enhance
radiation loss.

To mitigate the current quench, an idea is to inject neutrals to enhance dissipation of
runaways.

Goal: Understand impurity penetration and assimilation into plasma.



Preliminary 1D Gas Injection Problems t=1.2129
0.6

T

1D Sim. of Higher Z Neutral Gas (He, Ne, Ar ) Cores Expanding into a 100ev Deuterium (D+,e-) Plasma

0.4

Solving Conservation of Mass, Momentum, Total Mech. Energy
(i.e. Euler sub-system with collisions / ionization / recombination and EM forces). E.g.

(D°, Dt e, Ar?, Artt Art2 Ar '3 ArTt ArTS ArTO) N oo

and electromagnetics for (E,B). 0.4

E.g. 5 moment plasma model x 10 species = 50 equations (solved in 3D but only a 1D solution) -0.6

Maxwell Equations E,B field = 6 equations  (solved in 3D but only a 1D solution) 0?5‘0.17 O.l!
56 PDEs R (m)

Problem outline: Representative of the core plasma
* Initial ~fully ionized Deuterium plasma at n = 10%°, T = 100ev (~1M degrees K)

* Neutral Argon (Ar%) core introduced atn=10%,T=10"ev (~1000 degrees K)
* Parallel B—field is ignorable (due to geometry in 1D so B does not modify transport)

* Domainin xis [0.3m,0.3m]; mesh is 4096 x 1 x 1 elements
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Comparison of multifluid
to an exact solution for an
electron / positron
multfluid collisionless
plasma for a quasi-neutral
expanding core*.

PIC solution is for highly-
collisional self
interactions and
collisionless between
species. l.e.

large Viiy Vee

Veij = Vey =0

*Allen C. Robinson (Sandia)
exact kinetic/fluid solution
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Conclusions

* Robustness, efficiency and scalability of fully-implicit /IMEX parallel NK - AMG solvers is very good.

* Physics-based block decomposition and approximate Schur complement preconditioners must have effective
approximation of dominant off-diagonal coupling and time-scales in MHD/multifluid plasmas represented. Can provide
scalable solution of complex multiphysics plasma models.

* General mathematical libraries and components (e.g. Trilinos — Tempus, NOX, Aztec, ML/Meulu,Teko, Panzer, Phalanx,
Intrepid, Kokkos) are very valuable for enabling:

Flexible development of implicit formulations of multiphysics systems (e.g. MHD, multifluid plasmas)
Exploration of advanced physics/mathematical models and PDE spatial discretizations
Development of complex physics-based / approximate Schur complement block preconditioners

Adoption of well defined, and functionally separated, solution method kernels to promote robustness and help in

assessment when time-step failure, convergence problems occur.
* IMEX time-integration, Nonlinear solvers, Linear solvers, Scalable block and AMG preconditioning

Software abstractions also allow portability on advanced architectures



