This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
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» Takeaway #1: Taller and narrower erosional niches promote smaller failure masses * Takeaway #2: Even relatively shallow vertical cracks can con-
compared to those with shorter and deeper niches, suggesting that block failure charac- centrate displacement within ice-bonded permafrost coastal blufts
teristics could be tied to variations in the wave climate that interacts with the coastline. and may play a role in localizing bluft failure.
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