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The Arctic Coastal Erosion Problem

Matthew A. Thomas', Alejandro Mota', Benjamin M. Jones3, R. Charles Choens2, Jennifer M. Frederick', & Diana L. Bull'

• Annual rates of erosion along ice-rich portions of the Arctic Alaskan coast have doubled
since the middle of the 20t" century and appear to be accelerating.

'U.S. Geological Survey, 'Sandia National Laboratories, 'University of Alaska, Fairbanks

• Much of Arctic Alaska is inaccessible by all-season roads; therefore, people (e.g., Native
villages) and infrastructure (e.g., strategic military assets, roads, and pipelines) are concen-
trated near the coast.

• The financial impact of enhanced coastal erosion will be further exacerbated by emerg-
ing geopolitical pressures, including the discovery of natural resources (e.g., hydrocarbons
and minerals) and the opening of new shipping routes in the Arctic.

• Current engineering tools to plan for coastal erosion, largely developed for use in tem-
perate climate zones that are dominated by non-cohesive sediments, are not applicable to
the ice-bonded permafrost bluffs that are typical of Arctic Alaska.
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24 JUL Storms raise nearshore water levels
and undercut the bluffs via ther-
mo-abrasion until a toppling mode
bluff failure occurs.
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We applied continuum mechanics
theory with simulations of elastic
finite deformation to assess the
impact of bluff geometry and mate-
rial variability on stress states lead-
ing up to bluff failure.

These simulations facilitated exam-
ination of stress patterns within the
bluff and identification of the loca-
tion and magnitude of the maximum
tensile stress (aTmax)•
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Conceptual & Numerical Models

Physics-based simulations of stress and displacement
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Identifying Potential Controls on Failure Characteristics

Impact of variability in niche geometry on stress field, cross sectional view
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• Our geometric and material property simulation ensembles indicate that niche charac-
teristics exert the largest impact on the location and magnitude of the aTmax.

• End-member niche advancement scenarios reveal systematic differences in the patterns
of stress, as well as the variability in the simulated a „ax.

• Takcaway #1: Taller and narrower erosional niches promote smaller failure masses
compared to those with shorter and deeper niches, suggesting that block failure charac-
teristics could be tied to variations in the wave climate that interacts with the coastline.
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Impact of vertical tension cracks on displacement, map view
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• As fracture depth (FD) increases, the displacement field transi-
tions from a relatively uniform (along-bluff) pattern to a more
concentrated pattern with the maximum displacement located in
the section of the bluff face that is seaward of the map-view frac-
ture midpoint.

• Takeaway #2: Even relatively shallow vertical cracks can con-
centrate displacement within ice-bonded permafrost coastal bluffs
and may play a role in localizing bluff failure.

• Conclusion: Developing a coupled thermo-mechanical model to solve heat transfer and stress for observed atmospheric/ocean-
ographic conditions is critical to (1) explore more complex geometric characteristics of the basal erosional niche and (2) track the
development of tension cracks for coastal permafrost bluffs that are prone to toppling mode failure.
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