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Abstract
Motivated by the gap between theoretical optimal approximation rates of deep neural networks

(DNNs) and the accuracy realized in practice, we seek to improve the training of DNNs. The
adoption of an adaptive basis viewpoint of DNNs leads to novel initializations and a hybrid least
squares/gradient descent optimizer. We provide analysis of these techniques and illustrate via nu-
merical examples dramatic increases in accuracy and convergence rate for benchmarks character-
izing scientific applications where DNNs are currently used, including regression problems and
physics-informed neural networks for the solution of partial differential equations.

1. Introduction

Universal approximation properties of neural networks are often touted as an explanation of the suc-
cess of deep neural networks (DNNS) in applications. Despite their importance, such theorems offer
no explanation for the advantages of neural networks, let alone deep neural networks, over classi-

cal approximation methods, since universal approximation properties are enjoyed by polynomials
(Cheney and Light, 2009) as well as single layer neural networks (Cybenko, 1989). To address this,

a recent thread has emerged in the literature concerning optimal approximation with deep ReLU

networks, where the error in an optimal choice of weights and biases is bounded from above using

the width and depth of the neural network.
For example, using the "sawtootlf ' function of Telgarsky (2015), Yarotsky (2017) constructed

an exponentially accurate (in the number of layers) ReLU network emulator for multiplication

(x, y) i— xy. This construction is used to obtain upper bounds on optimal approximation based
upon DNN emulation of polynomial approximation. Building on these ideas, Opschoor et al. (2019)
proved that optimal approximation with deep ReLU networks can emulate adaptive hp-finite ele-
ment approximation, with greater depth allowing p-refinement to obtain exponential convergence

rates. An additional contribution by He et al. (2018) reinterpreted single hidden layer ReLU net-
works as r-adaptive piecewise linear finite element spaces.
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Despite this, it remains a challenge to realize these theorized convergence rates for DNNs using
practical initialization and training methods. The need is particularly acute in scientific machine
learning (SciML) applications which demand greater accuracy and robustness from DNNs (Raissi
et al., 2019; Baker et al., 2019). In practice, optimization and initialization challenges preclude the

realization of theoretical convergence rates. Optimizers are susceptible to finding suboptimal local
minima of loss functionals, and as a result DNN regression typically stagnates after achieving only

a few digits of accuracy. For example, using the aforementioned architecture of Yarotsky (2017) for
the deep ReLU emulator of x x2, but with random initial weights, Fokina and Oseledets (2019)

showed that training with stochastic gradient descent to approximate x H x2 fails to demonstrate
a significant improvement in error with depth, let alone exponential convergence with the number

of layers. Lu et al. (2018, 2019) demonstrate consistent failure of deep ReLU networks to approx-
imate the function x I on [-1, 1] due to gradient death at initialization. These results illustrate the
need for robust training and initialization algorithms for regression and approximation in scientific

problems. We aim to bridge the gap between theoretical optimal error estimates and the error one
can consistently achieve with training.
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Figure 1: Adaptive basis view of a DNN with linear output layer, with notation used in this article.

In the current work we adapt the perspective that DNNs provide a meshfree technique to con-

struct an adaptive basis. This viewpoint suggests an optimizer that alternates between least squares
(LS) and gradient descent (GD) steps. This process amounts to adapting the basis functions with re-

spect to to the data using GD while ensuring with LS that basis functions optimally fit the data. This

training strategy is applicable to networks with arbitrary activation function in the hidden layers, a
final linear activation layer, and a mean-square loss functional.

From the adaptive basis viewpoint, we also propose a new initialization for deep ReLU networks
that we refer to as the "box initializatioe, designed to provide an expressive initial guess for the

basis. We show that this initialization outperforms the Glorot (Glorot and Bengio, 2010) and He
initializations (He et al., 2015) for one-dimensional approximation using plain networks for a mild
number of layers. Via a novel analysis of DNNs in terms of this adaptive basis perspective, we
extend the box initialization to residual ReLU networks and show improvements upon the He and
Glorot initializations through 256 layers.

Combining our initialization for residual neural networks (ResNets) with the hybrid LSGD

training algorithm, we demonstrate convergence of the approximation error for very deep ReLU
neural networks with increasing depth. While the variance in errors remains high and the "conver-

gence rates" are lower than suggested theoretically, the improvement in reliability across a range

of regression-like applications is substantial. Further, the architectures used are standard. In con-
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trast, previous works in the literature have focused on how to prevent collapse or else considered
specialized architectures.

2. Problem statement

We consider in this work the following class of £2 regression problems:

argmin k IlLk[u] — Lk [Ar dllE2(4)
k=1

(1)

where for each k = 1, 2, ..., K, Xk = {xi(k)}1i\r i denotes a finite collection of data points, N-Ar a
neural network with parameters and Lk a linear operator. In the case where k = 1 and L is the

identity, we obtain the standard regression problem

argmin Il u ArAr

In general (1) represents a broader class of multi-term loss functions, including those used in
physics-informed neural networks (Raissi et al. (2019)) for solving linear PDEs (see Section 5.3).

Moreover, while we restrict our study to a single scalar ̀ larger function u in most of the paper, in
Section 5.2 we apply our framework to regress multiple functions simultaneously.

We consider the family of neural networks NNE : Rd R consisting of L hidden layers of

width w composed with a final linear layer (see Fig. 1), admitting the representation

w

NIAr (x) = d4)Jx,e)

(2)

(3)

where e- and el are the parameters corresponding to the final linear layer and the hidden layers
respectively, and we interpret as the concatenation of e and el. Working with this form allows
us to highlight the interpretation of neural networks as an adaptive basis.

A broad range of architectures admit this interpretation. In this work we consider both plain

neural networks (also referred to as multilayer perceptrons) and residual neural networks (ResNets).
Defining the affine transformation, T1(x, = • x + and given an activation function a-,
plain neural networks correspond to the choice

~plain(x

while residual networks (see He et al. (2016a,b)) correspond to

4,res (X, ) (I + a 0 TL) o • • • o (I + o T2) 0 (a 0 Tl),

(4)

(5)

where 43 is the vector of the w functions a the vector of the w activation functions a and I
denotes the identity. In both cases el corresponds to the weights and biases W and b.

In the case of a single hidden layer plain network with ReLU activation, one obtains a piecewise
linear C° finite element space. This case has been considered by He et al. (2018), who show that

training amounts to adapting a piecewise linear finite element space to data. In the broader context
considered here, an adaptive basis tailored to the choice of activation function is obtained. For
example, selecting a radial basis function (RBF) as activation for a single layer network corresponds

to a RBF space with centers and shape parameters adapted to data. Many other architectures admit
the proposed interpretation, such as e.g. convolutional networks.
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3. Hybrid least squares/GD training approach

Using the Neural Network representation in (3), equation (1) reads

argmin E fk
k=1

rk[U] E ark [4.,(x, e)]
2

,e2(Xk)

(6)

A typical approach to solving Equation 6 is to apply gradient descent with backpropagation jointly

in (e-, el). Given the adaptive basis viewpoint, an alternative is to hold the hidden weights el

constant and minimize w.r.t. to e, yielding the LS problem (for simplicity focusing on K = 1):

argmin I I``le - b I I .e2 (X) (7)

Here we have hi = f[u](x,) and Az3 = [.1.3(xi, el)] for oc, E X , i = 1, . . . ,N, j = 1, . . . ,w.
Problem 7 is well posed if N > w and A is a full-rank matrix; otherwise the problem is under-

determined and admits multiple solutions. This occurs if the basis functions '1'3 are linearly de-
pendent over £2(X), as can occur for many weights initializations (see Section 4). In that case, the

Moore-Penrose pseudo-inverse A+ can be used to compute the minimum-norm solution e = A+ b.

In this work, we use the TensorFlow (Abadi et al., 2015) implementation provided by the function
l s t s q to compute the minimun-norm solution e.

Exposing the LS problem in this way prompts a natural modification of gradient descent. The

optimization algorithm proceeds by alternating between: a LS solve to update e by a global mini-
mum for given e ; and a GD step to update el (Algorithm 1).

Algorithm 1 Hybrid least squares/gradient descent

1: function LS GD‹)
2: el =

3: e = L I)

4: for i = 1 . .. do

5: H= GDW
6: ~L= LSO)
7: end for

8: end function

> Input initialized hidden parameters

> Solve LS problem for e

> Solve GD problem

Problem 6 is referred to in the inverse-problems literature as a separable nonlinear least square

problem. It is often solved with the variable projection method (Golub and Pereyra, 1973, 2003)
in which e is computed by solving (7) as a function of el and is substituted into (6), leading to
a minimization problem over the the hidden parameters el only, which can then be solved with
a suitable optimization method. The variable projection method has been used for shallow (one
hidden layer) neural networks in Pereyra et al. (2006). A LS approach was also used in a greedy

algorithm to generate adaptive basis elements by Fokina and Oseledets (2019).
In the approach presented here, instead of eliminating e through a LS solve, we alternate

between the minimization of the two sets of parameters, e and el, which is simpler to implement.

In fact, with libraries such as Tensorflow (Abadi et al., 2015) and PyTorch (Paszke et al., 2017),

one may automate extraction of the least squares problem (Equation 7) directly from the graphical
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Figure 2: Mean of 1og10(Loss) over 16 training runs ± one standard deviation of the same quantity.

Training rate 0.0005 for GD and 0.005 for LSGD for plain network (left) and ResNet
(right).

representation of a neural network. Hence, algorithm 1 may be easily implemented as a "black-box"

layer on top of any architecture described by Equation 3.

We illustrate the advantages of LSGD training for approximating sin(27rx) on [0, 1] using DNNs

with ReLU and tanh activation in plain and ResNet architectures in Fig. 2. We use uniform He
initialization and the Adam optimizer (Kingma and B a, 2014) for the gradient descent steps; learning
rates are tuned by hand to give stable training. We found that the LSGD optimizer performs best
with a higher learning rate than that of GD — roughly 10 times higher for ReLU networks, and 100
times higher for tanh networks. The results show that the loss in the LSGD method is typically
several orders of magnitude lower than the loss in the GD algorithm after the same number of

iterations. This is particularlly apparent for the tanh networks. However, we also included in Fig.
2 a rare case in which the LSGD loss is momentarily overtaken by the pure GD loss to show that
LSGD training and GD training do not admit a simple "global" comparison; for a further discussion
of this as well as computational cost of LSGD, see Appendix A.

4. The Box Initialization for deep ReLU networks

The first step in Algorithm 1 is to initialize the hidden layer parameters. An initialization resulting in

a well-conditioned, basis that is linearly independent in £2 (X) will provide a richer approximation

space for the least squares problem and give the gradient descent optimizer several "active' basis

functions to tune. In contrast, an initialization leading to poorly-conditioned, linearly dependent

basis functions — such as a basis functions with support disjoint from the data — will yield a less
expressive basis in which a local variation of the hidden parameters may not improve the loss.

4.1. Plain Neural Networks

Analyses of the representation power of ReLU networks have shed light on the role played by the
biases for representing continuous piecewise linear (CPWL) functions (Arora et al., 2016; Hanin,

2017; Hanin and Sellke, 2017; He et al., 2018). For example, for CPWL functions of one variable,
He et al. (2018) identified their single layer ReLU network representations E AiReLU(x — 0,)
with nodal finite element representations, with the nodes given by Oi. In higher dimensions, the

cut planes (See Figure 3) defined by the bias vectors of single layer ReLU networks correspond
to the facets of a CPWL finite element mesh. This implies that to obtain a "feature-riclf initial

basis, assuming the data input is normalized to [0, 1]d, one should scatter the cut planes of the ReLU
functions over [0, 1]d randomly.
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Figure 3: Notation used in the "box initializatioe of each node.
A random point p with random orientation n is used to
define a ReLU function of form a(k(x — p) • n). Using
Lemma 1, one may choose the slope of the ReLU a to
impose an upper bound on the output of each layer. We

refer to the hyperplane normal to n, where the ReLU
"switches on", as the cut plane.

Loosely speaking, if the above initialization results in hidden layer with "feature-rich" output,
it is reasonable to speculate that composing two such layers has a good chance to also result in

a "feature-ricV output, provided the first layer maps into the domain of the second layer and is
as close as possible to being onto. The idea behind the "box initializatioe for plain networks
is to normalize the output of each layer to [0, 1[d. The goal is to apply the above initialization

inductively for each hidden layer and prevent "blow-up" of the initial basis for deeper networks. In
the remainder of this section, we consider neural network architectures in which the width of the

hidden layers is a constant w throughout the network. This simplifies the analysis, although the
algorithm can be considered for networks with variable hidden layer width /Di, l= 1, L; see
Appendix B.

Referring to Fig. 3, the procedure is for each output row (1 . . . i . . . w) of the layer:

1. Select p E [0, 1]w at random.
2. Select a normal n at p with random direction.

3. Choose a scaling k such that

max a(k(x — p) • n) = 1. (8)

4. Row wi of I/0 and L4 are selected as bi = kp • n and wi = knT .
To initialize the first hidden layer, replace w by the input dimension d in steps 1 and 3 above.

A full description of this initialization and an efficient way to calculate the k may be found in
Algorithm 2 in Appendix B. With the layer initialized as above, consider feeding a box [0, 1]u' as
input into a given layer. For a plain neural network, the output xl+1 of layer l is given by

xi+i = a(Wixi + (9)

Then, we have for every component i E {1, 2, ... , w},

min (xi+i), = 0; max (xi+i), = 1. (10)
tE[0,1]. x1E[0,1]tu

Equation 10 implies that layer l maps [0, l]2" into [0, 1[u' . Moreover, ensuring the extrema are

achieved on [0, lr guarantees its image intersects each side of the hypercube at least at a point.
This does not imply however, that each layer map from [0, 1]w into [0, 1]w is onto. Nor, as we

will see, that the the composition of two layer maps will have guaranteed intersections with the
boundary. Assuming the input into the first hidden layer is contained in [0, 1[W, then box initializion
ensures that the hidden layers initially map

[0, 1] d h_Lit(4) [0, 1]„, iur_14o [0, 1]w ii_24) [0, 
1]w

 1124 1r2t4 [0, 
1]w
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Figure 4: Mean of 1og10(Loss) over 16 training runs of plain width-32 ReLU network with L =
1, 2, 4, 8 and 16 hidden layers for the He (left) and Box (right) initializations. The learning

rate is 0.005 throughout.

In Figure 4 we compare the the box initialization for a plain ReLU network with width w = 32
against the He (see He et al. (2015)) initialization for approximating sin(27x) on [0, 1]. We average

over 16 independent training runs. The box initialized basis is significantly richer for up to 8 layers,
yielding a loss 2-4 orders of magnitude lower than that of the initialized He basis after the first least

squares step. This is borne out by the plots of the initialized basis in Fig. 16. The loss after 104

LSGD steps is also lower by 2 orders of magnitude. Despite this promising improvement over He
initialization, the box-initialized ReLU network with 16 layers fails to train, and plotting the basis
function reveals they are constant over the input to the network; see Appendix C.

To understand why this occurs, consider the image PL of the unit box [0, l]w under L hidden

layers of the network, excluding the d-dimensional input layer for now. Fig. 5 shows the evolution
of PL through each layer for different initialization approaches. Because each hidden layer does not
map [0, l]w onto [0, l]w , as the number of layers increases, we expect PL to shrink, lose dimension,
and eventually collapse to a point. In turn, for input dimension d < w, the image of the input

box [0, 1]d is a submanifold of PL, given by the parametrization ((1.1 (x),(1.2(x), ...(1.2„(x)) for x E
[0, 1]d. For example, for the DNNs shown in Fig. 5, with a one-dimensional input this submanifold

would be a curve within PL. The basis function is the projection of this submanifold onto the
ith coordinate axis; this is illustrated for a width w = 2 network with input dimension d = 1 in

Fig. 6. Once the image PL is a point, this submanifold within PL is also a point, so all initial 4),

will be constant. Fig. 5 demonstrates this for a width-two ReLU network; the He, Glorot, and box
initialization suffer from this flaw in the plain network case. While the growth in the magnitude
of the basis is controlled (as expected) by box initialization, and the support of the basis does not

collapse as quickly in this instance, a statistical study of this approach will indicate that the collapse
to a point for all three initializations is inevitable. One possible treatment of this collapse has
been proposed in Lu et al. (2019). Issues of training DNNs have also been discussed by Hanin

and Rolnick (2018), who proposed a scaling of depth to width as a possible solution. Next, we
illustrate how ResNets avoid this issue at higher depth, and propose an analogous box initialization
for ResNets.
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to constant basis functions.
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Figure 6: Artist's depiction of the d-dimensional manifold (red) parametrized by

(.T.1 (x), (x)), which is the image of the input domain [0, 1]d under the input
and hidden layers, as a submanifold of the image PL (blue) of the unit box [0, 1]1' under

the hidden layers. Here d = 1 and w = 2 to make visualization possible.

4.2. Residual Neural Networks (ResNets)

Consider a residual neural network with input dimension d and hidden layer width w. As usual for

a ResNet, unless d = w, the first hidden layer is initialized as plain layer as described in Section 4.1
above. Then, for the remaining hidden layers, to initialize the neuron i, 1 < i < w,

1. For m specified later, select p E [0, m] at random.
2. Select a unit normal n at p with random direction.

3. For 6 specified later, choose a scaling k such that

max o-(k(x — p) • n) = 6m. (12)
[0,mPE

We again apply Lemma 1 to find the maximal corner.

4. Row wi of TV and LX is selected as bi = kp • n and wi = knT .
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As for the plain DNN initialization, a more detailed description of the weight and bias initialization
procedure can be found in Algorithm 3 in Appendix B. With the layer initialized as above, consider

feeding a box [0, mr as input into a given layer. For a residual neural network, the output xl+1
of layer l > 1 is given by x1+1 = x1 + cr(Wixi + bi) while for the first layer we have x2 =

(Wi xi + bi). Then, we have for every component i E {1, 2, .. . , w}, l> 1

min (xj+i)i >
x1E [0,rn]v

min (xi), + min a(k(xi p) • n) > min (xi), > 0 (13)
xiEponpv xiE[oon],, xi E [Clon]w

max (xl+l)i max (xi), + max cr(k(xi — p) • n) < m + m6. (14)
xi E [0,m]w xi E[13,m]w xi E[1:),m]w

Thus, layer l maps [0, m]w into [0, m(1 + b.)]w permitting some growth specified by 6. Assuming
the input into the first hidden layer is contained in [0,1]w, initializing the hidden layers with 5 =

leads to a network that maps

[0 1] d 
\ L-11 W

, ii2t4 [0, (1 +

L
[0, ntv in:)> [0, + into

r
O. (1 + —

IL)] w 

(15)
This implies the final output of the hidden layer is contained in the box [0, e]21; in other words, the

values of each basis function are contained in [0, e]. Thus, we use the initialization with parameters

/-1
= 1 and m = 1 for 1 = 1; = —

1 
and m = (1 —

1
) for l > 1. (16)

An interesting observation regarding the ResNet initialization is its connection to the recently

developed ODE based neural network architectures of Haber and Ruthotto (2017) and Chen et al.
(2018). In those cases, a time step size scales the activation function that roughly speaking goes

as 1/L where L is the number of steps. This ensures that the growth of the network features is a
function of the length of the time interval (assuming bounded weights and biases). This is identical

to what the analysis above shows for the initialization technique. An important difference; however,

is that the ODE architectures retain the scaling through out the training process.

We compare the use of the box initialization for a residual neural network with hidden layer

width 32 against the He initialization in Fig 7 for approximating sin(27x) on [0,1]. We average
over 16 independent runs. The box initialized basis is again richer than the He basis and yields an

initial LS loss consistently 4 orders of magnitude lower. The loss during training exhibits similar

improvements over the He basis. At 128 layers, it is now the He basis which fails to train.

The advantages of the box initialization over the He initialization can be illustrated for a width-
2 network by again studying the image P of the unit square [0,1]2 under both initialization in

Fig. 8. Note that the image of the square never collapses to a point due to the ResNet architecture,
regardless of initialization. Hence, the initialized basis will not consist of constant functions. This is

a new interpretation of the stability provided by residual neural networks; for other perspectives, see
Hanin and Rolnick (2018), Haber and Ruthotto (2017), and He et al. (2016a). Nevertheless, both the
Glorot and the He initialization exhibit different pathologies in the ResNet case as depth increases:
blow-up of the basis function magnitudes and convergence of the image P to lines through the
origin. The latter property implies linearly dependent basis functions 01 = CO2, again resulting

in a decreased expressive power of the initialized basis. All of these properties are illustrated in
the basis function plots in Fig 16 in Appendix C. The ResNet box initialization, however, exhibits

9



ROBUST TRAINING AND INITIALIZATION OF DEEP NEURAL NETWORKS:AN ADAPTIVE BASIS VIEWPOINT

6

4

1-4 

cn
O 2 11 2

2 0 0
bA

,4 • -2 -2

ca • _ -4

6 -6

(log scale)
-8 8
10° 101 102 103 104 10

He Initialization of width-32 ReLU network
6

4

Box Initialization of width-32 ReLU network

101 102 103 104

Figure 7: Mean of 1og10(Loss) over 16 training runs of residual width-32 ReLU network with L =
8, 16, 32, 64 and 128 hidden layers and training rate 2—(k+3) for the He (left) and Box
(right) initializations.

both the boundedness of P proven above and a remarkable preservation of the area of P as depth

increases. We have not yet found an explanation for the latter property, but these results explain the
benefits of the box-initializion for deep networks observed in Fig. 7.

We observe similar properties of the ResNet Box initialization in higher dimensions as well. In

Fig. 8 we examine the eigenvalues of the covariance of the image of a set of input points sampled

from /4[0, l]7" through networks of increasing depth. We find that for the Glorot and He initializa-

tions, the ratio between the smallest and largest eigenvalues quickly become zero with increasing

depth. This suggests that one basis function becomes linearly dependent upon the others with only
a few layers. Worse, the ratio between the second largest and the largest eigenvalues eventually

becomes zero, suggesting that the basis functions all become linearly dependent. In contrast, nei-
ther ratio tends toward zero for the Box initialization, indicating that the basis functions remain
independent, even for very deep networks.

5. Applications

5.1. One-dimensional regression

In this section, we compare the behavior of the Glorot, He, and Box initializations for regression.

We first consider regression on the discontinuous function,

x 0 < x < 0.5
ui (x) = (17)

— lx2 0.5 < x < 1

With a network width of 2, the three initializations, both Plain and ResNet architectures, and

varying depths, we use the LSGD method to fit u1. Our results are shown in Figure 9 using an

ensemble of initial random seeds for each initialization, architecture, and depth. Due to the narrow
width of these network, only deep networks are capable of providing good approximations to u1 .

However, we find that the Glorot and He initializations fail to find good fits to u1 , particularly for
deep networks and regardless of the architecture used. The Box initialization also results in a poor

fit, but only for the Plain architecture.

10
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Figure 8: (Left Subfigure:) Images of the unit square [0, 1] 2 under L initialized hidden layers
of ResNets for Glorot (top), He (center) and Box (bottom) initializations. Values are

presented on the square [-0.2,1/]2, where H is denoted to the bottom-right of each
image. Collapse to a line through the origin corresponds to linearly dependent basis

functions (i.e., cbi = CO2) (Right subfigure:) Ratio of the second largest to largest
eigenvalue (top) and smallest to largest (bottom) of the covariance of the image of samples

from U[0, 1] d . Results are shown for the ResNet architectures using dimensions w = d =

8 (—), w = 32 (— — -), and w = 128 ( ).

Our observations in Figure 5 and 8 suggest that the combination of initialization and architecture
can lead to a starting condition in which the span of the basis functions is limited. The results in

Figure 9, related to problem 17, indicate that it is difficult to escape from this poor initial starting
condition to a good fit. However, the Box initialization for the ResNet does not suffer from this lack

of initial expressivity in the basis functions, and we are able to observe improvements increasing
the depth of the network.

We next apply the Box initialization for ResNet to regress both u1 and a smooth function,

u2 (x) = sin 27rx for varying widths and depths. We observe first order convergence for the smooth
function with respect to both width and depth, but only realize convergence with respect to width

for the discontinuous functions (Figure 10).

5.2. Multi-function Regression

The regression problem described above learns the basis for a single function. In this section we
modify the loss function so that the basis is defined to approximate a set of N functions:

argmin E
e' n=1

uri (x, el)

2

£2 (X)

(18)

Here the target functions are denoted un, and each has a corresponding set of linear coefficients
The basis functions are defined by a single set of nonlinear weights el, that define the output of a
neural network as in single function regression described by Equation 2.

Our interest in multi-function regression lies in the fact that the adaptive basis representation
of a DNN (3) exposes the problem (2) as seeking a best w-term approximation to u in the £2 (X)

11
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Figure 9: RMS Error for 1D piecewise polynomial polynomial regression (Equation 17) using the
three initializations with Plain ( • ) and ResNet ( X ) architectures, respectively. Each
symbol corresponds to the loss achieved using a different random seed for initialization.

The green line (—) indicates first order convergence with respect to depth. Setting:
ReLU activation function, network width = 2, learning rate = 0.005.
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Figure 10: Convergence studies of regression with respect to width and depth on Equation 17 (left)

and u = sin 27rx (right). Setting: ReLU activation function, ResNet architecture.

norm. This is a form of nonlinear approximation that includes, e.g., wavelet and variable-order

spline approximation (Cohen et al., 2009; DeVore, 1998). Here, the terms in the approximation .1.i,

i = 1, w belong to the class of depth L — 1 DNNs with input dimension d, output dimension 1,
and nonlinear in the final layer; see Fig. 1. The multi-function regression problem (18) therefore

appears closely related to nonlinear w-widths in approximation theory (DeVore et al., 1989), and
has potential for a reduced order modeling strategy (Hesthaven et al., 2016) in which subspaces are

found as the span of {(Diliw_i to minimize a loss function of the form (18) given a large collec-
tion of data { ur }. While the benchmarks considered below are considerably simpler than such an

application, this represents a promising direction for future work.
A multi-regression problem is solved targeting the Legendre polynomials in L2( [0, 1]), normal-

ized to ensure equal weighting in the loss. The Legendre polynomials were chosen because of the
range of structure in the set of polynomials. Note that the algorithm described above has not been

12
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Figure 11: The left image shows the convergence of the loss of several multi-function regression

problems with 6 Legendre polynomials. Networks with 16 residual layers and width
6 using ReLU and tanh activation functions are used. Clearly, the LSGD training al-

gorithm achieves smaller losses and converges more rapidly than GD. The right image

shows the convergence as a function of depth of the RMS error. Note that as the width
growths, so do the number of Legendre polynomials used in the objective function.

modified to take advantage of their orthonormality. The left image in Fig. 11 shows the conver-

gence of networks with 16 residual layers of width 6 trained to match 6 Legendre polynomials is

studied (a one-to-one relationship between width and target functions). Here, the mean loss over
10 repeated simulations is plotted as a function of iteration. The LSGD and GD training algorithms

are compared. From the figure, LSGD reaches a smaller magnitude loss in fewer iterations than
the equivalent network trained with GD. Furthermore, the usage of tanh leads to a smaller loss

than with ReLU, thus better representing the set of Legendre polynomials. This is attributed to the
broader support and greater smoothness of tanh.

For the right image in 11 we use a ReLU ResNet with width w to fit a space of Legendre

polynomials of dimension w. For each realization we compute the error as the minimum over all
iterations of the maximum RMS errors over the target polynomials and we then plot the mean RMS
error over all the realizations. The learning rate for these simulations is set at 0.0005. The image
demonstrates more accuracy is achieved as a function of depth.

5.3. Physics-informed neural networks

We consider now a physics-informed neural network (PINN) solution to the linear transport equation

atu(x, t)+a(x, t) axu(x, t) = 0 on the unit space-time domain (x, t) E [0, 1]2 , with initial condition

u(x , t = 0) = uo (x) and homogeneous Dirichlet boundary data u(x = 0, t) = 0. The loss function
considered here is

J = EJ1+ J2 + J3,
= —1 

+ axa(x,t).AllAri12,
ZEXl

1 1
= ivr2 E lAr.Ari(x,o) —11,012, = ivr3 lArAri (0, 012

iEx2

13

(19)
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where X1, X2 and X3 are Cartesian point clouds with spacing Ax on the interior, left and bottom
boundaries, respectively. We note that the loss function is typically further augmented with a term

to match given data (see e.g. Raissi et al. (2019)), and PINNs thus amount to regularizing traditional
regression with the least-squares solution of a collocation scheme using the neural network as basis.

For all results we will use ResNets and consider as initial condition a tent function u0 E Co.
It is an open question how to choose the parameter E scaling the first term of the J so that the

three competing loss functions have the same magnitude under refinement - in the literature this

penalty parameter is tuned to a given architecture to demonstrate good agreement, but preventing

a formal convergence study. Traditionally in a FEM penalty method, one would scale by a mesh
diameter h so that each term in Equation 19 has consistent units, and comparable magnitude. In the

current context, the adaptive basis has no inherent lengthscale, as the gradient of the basis may grow
arbitrarily large as the hidden weights evolve and cut planes may approach each other.

101 - ------

10-

••••

 -
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— LS/GD

1 1 1 1100 1 1 1 2 103 10 0 04
Iteration

io5
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0.8 - GD /11111r 0.8

0.6 - 0.6
LS/GD 11"

0.4 - 0.4

0.2 -

/

0.2

0.0 - L 0.0
0.00 0.25 0.50 0.75 1.00

x

Figure 12: Left: PINNs solution for transport equation with constant velocity. Loss evolution over
training for GD and LSGD. Right: Solution after 5000 iterations for GD and 500 itera-
tions for LSGD. Setting: Box initialization, ReLU activation function, network width =
32, depth = 1, learning rate = 0.005.

We first consider in Figure 12 the case of constant velocity, a(x, t) = 1, with corresponding
analytic solution u(x, t) = u0 (x - t), and use a shallow one-layer ReLU network. For this case, the
exact solution is in the range of the network for width > 3, and at this point Ji = = = 0,
rendering the choice of E unimportant (we set € = 1). In this case we observe similar trends to the
previous sections; the proposed LSGD training strategy converges to 10-15 in double precision with

orders of magnitude fewer iterations than GD. From the evolution of the cut planes during training
(see Appendix D), it is clear that the basis is adapting to the characteristics of the PDE.

We next consider nonconstant velocity, a(x, t) = x, with corresponding analytic solution
u(x, t) = uo(x exp(-t)) (Figure 13). In this case we must fix € independent of the neural net-

work size to realize convergence, and we hypothesize € = Solutions for a E {0, 2,1, 3, 2}
reveal 0 (W1 ) convergence for CC = 2. Following the FEM interpretation of shallow networks (He

et al. (2018)), we interpret h NA, and selecting € = WA corresponds to non-dimensionalizing

the loss, allowing a realizatiion of first-order convergence with respect to h. To consider the effect

14



ROBUST TRAINING AND INITIALIZATION OF DEEP NEURAL NETWORKS:AN ADAPTIVE BASIS VIEWPOINT

GD

4
Depth

16

iO1
Width

1

0

—2 -

1

—I— Depth 1
—I— Depth 2
—I— Depth 4
—I— Depth 8
—I— Depth 16

4 8 16 32.

Width

LSGD

4
Depth

16

Figure 13: RMS error for ResNet PINNs with Box initialization for the nonconstant velocity case.

Top: Convergence of ReLU-PINNs solutions with respect to penalty scaling € W.
Middle: Convergence of ReLU (left, learning rate 0.001) and tanh (right, learning rate

0.01) using a = A. Bottom: Comparison of between GD (left) and LSGD (right)

training for tanh activation functions, learing rate 0.01, width 32 and 5000 epochs. The

x's indicate the errors as a function of the number of layers for different realizations

of the Box initialization. The line indicates second order convergence with respect to
depth.
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of depth we repeat the previous experiment for increasingly deep ReLU and tanh networks. Finally,
to gauge the effectiveness of our training strategy, we compare using GD only vs LSGD.

While a thorough study of PINNs is beyond the scope of this paper, we conclude that the combi-
nation of LSGD, Box initialization, and choice of € provides substantial performance gains relative

to traditional GD, and we conclude that depth plays an important role in the convergence of PINNs.

6. Conclusions

Motivated by recent theoretical advances in the approximation theory of DNNs, this work takes an

adaptive basis viewpoint of neural network training and initialization. This perspective naturally

leads to a hybrid least squares/gradient descent training algorithm. We demonstrate that this ap-

proach leads to accelerated training for regression, multi-function regression and physics-informed

neural networks, in the context of both ReLU and tanh activation functions. In a novel development,

we proposed a new "box initializatioe procedure inspired by the basis viewpoint that dramatically
enhances the training of deep ReLU networks. As part of this we analyzed a potential failure mode
for certain initializations that leads to a highly linearly dependent initial basis and demonstrated this
failure for the Glorot and He initializations that are commonly used to initialize ReLU networks.
For ResNets, we showed how the box initialization leads to a significantly improved basis, ulti-

mately leading to more efficient training than the He initialization. Finally, using the combination
of both Box initialization and LSGD training, we demonstrate in several scenarios the ability for

neural networks to achieve relatively robust convergence as a function of both width and depth, for
both single- and multi-function regression problems and PDE applications using physics-informed

neural networks.
That machine learning algorithms can be understood as providing an underlying adaptive basis

from data is a viewpoint that permeates many areas of deep learning (Murphy, 2012; He et al., 2018;

Fokina and Oseledets, 2019; Wang et al., 2019). We believe this viewpoint is amenable to numerical

analysis. The techniques developed here, in addition to improving the training of neural networks,

demonstrate how an adaptive basis perspective can be used to attack critical issues hindering the
robustness of machine learning. Taking a numerical analysis viewpoint has shed new light on the

issues confronting neural network training and has provided intuition regarding the use of physics-
informed neural networks to solve PDEs. We believe that additional advances are possible when
considering the numerical implications of choices made in machine learning. Our work aims to

strengthen the numerical properties of existing ML approaches and also provide a mathematical

foundation in response to the need suggested in Baker et al. (2019) to obtain rigorous results for use
in scientific machine learning.
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Appendix A. Properties and Performance of LSGD training

We provide here some supplemental results providing additional insight into the properties and

advantages of LSGD and the computational cost relative to GD. We consider first a toy 2D problem
in Figure 14, where we compare GD to LSGD for minimizing the loss 5x2-6xy-F5y2. This function

is quadratic in both x and y, but to make an analogy to (6) we take the x-direction to correspond
to the linear activation variable L and the y-direction to the hidden variable I I . We can visualize
explicitly that LSGD realizes the global minimum in x at each step, and thus approaches the global
minimum in (x, y) along a trajectory (xk, yk) where the the coordinate xk always satisfies the least

squares problem xk = LS(yk) and is "optimal" for the coordinate yk.

—2

—4

• LS+GD

• GD

100

10',

10.

10,

1 10,
10.

10-0

10,

10-,
40 60

Iterations

100

Figure 14: Left: Paths (xk, yk) taken by LSGD and GD to minimize the function 5x2 — 6xy + 5y2,
for learning rate of 0.1 and initial guess of (x, y) = (-4, 1). Least squares optimization
corresponds to finding the global minimum in coordinate x for fixed y at each step. Note
that for LSGD, after the initial least squares solve, each plotted (xk, yk) is the result of
gradient descent followed by least squares, rather than either of these steps individually.

Right: LSGD achieves lower loss for the same number of iterations as GD.

We next provide in Figure 15 a sketch explaining how the LSGD approach may offer gains due
to the fact that the dynamics of training are constrained to follow a manifold L = LS(EH) which

necessarily contains all local minima. This figure also makes clear that the paths of GD training
and LSGD training are not comparable globally. While training on this manifold may be more

stable and lead to faster training, nothing precludes the existence of barriers along this manifold

between an initial condition and a "good" local minima, which may be bypassed by GD training,

as alluded to in Section 3 during the discussion Figure 2. Figure 15 also illustrates that LSGD can
be viewed as type of coordinate descent method (Nocedal and Wright, 2006) in which steps in EL
are taken until a global minimum is reached before the variables are alternated, although we find
a global minimum in one shot with a least squares solver. We also conjecture that there may be

interesting connections with the dynamical system interpretation of training ResNets (Haber and

Ruthotto, 2017; Chen et al., 2018) and work on fast/slow manifold dynamics (Gear et al., 2005).
The computational cost of including the least squares step for EL after each gradient descent

step in EH depends heavily on the implementation details of both steps — for example, the specific
least squares solver, whether GPU acceleration is used for gradient descent, memory access pattern
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eL = LS(ell)

L

Figure 15: Artist's depiction of the LSGD algorithm. The black dot denotes the initial guess and
the black star a minimum that the user wants train the neural network to. The red line

represents the submanifold in parameter space (e I , -1') for which e' is a solution to
the least squares problem for fixed e I . Note that because the local minimum illustrated

by the black star must also be a global minimum in e ' , it must lie on the manifold

e = L S (e I ) illustrated by the red line. Note also that 'V = (VeJ, 0) on the

manifold e = LS(e). The blue curve represents a path of the GD method, while the
rectilinear green curve a path of LSGD. An initial least squares solve (dashed green line)

moves the neural network parameters to the submanifold e' = L S (el). In the LSGD

algorithm, all gradients are computed from this manifold. Each step of gradient descent

can move the parameters off this manifold, but the least squares solve that follows will
project back onto the manifold.

used to overwrite linear layer variables, etc. Generally, the least squares solve only increases with

the width of the network (O(W3) for dense solvers), whereas the gradient descent step increases
with both the width and the depth, as indicated by Table 1.

Depth (hidden lyers)

Width

4 16 64 256
4 1.67 1.60 1.43 1.36
16 2.08 1.50 1.44 1.41

64 1.68 1.37 1 1.37 1.33
256 2.00 1.65 1.52 1.49

Table 1: Relative increase in wall time for 1000 iterations of LSGD vs pure GD (using the Adam
optimizer) for a plain ReLU network, obtained using CPU implementation of Tensorflow

on an Intel i7-8700K processor. For deeper networks, the increase is smaller since the
computational cost of gradient descent, unlike that of least squares, grows with the depth
and dominates the wall time.
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Appendix B. Box Initialization Algorithms & Details

We provide in Algorithms 2 and 3 concise definitions of the box initialization algorithm for both

plain and ResNet DNNs, respectively.
Algorithm 2 initializes layer l, and takes as input the dimension of the input to this layer, i.e., the

width '10_1 of the previous layer, and the output dimension w1. The main points of this algorithm

are outlined in Section 4.1. Note that the random normal vector with uniform random direction n

is conveniently sampled (lines 3 - 4) by sampling from a isotropic multivariate normal of mean 0

and then normalizing. Once p and n have sampled, a cut plane for a ReLU function is defined.

To compute the scaling constant k in Section 4.1 such that the maximum of the ReLU function on

[0, 1]'1-1 is 1, it is necessary to locate the furthest corner pmax E [0, in the direction of n

from the cut plane of the ReLU function. To do this efficiently, we provide a closed form expression
in line 5 for the corner of the box where the maximum occurs; this formula is proven in Lemma 1.
The scaling factor k is then the inverse of the distance of the cut plane to this corner.

Algorithm 2 Plain Network Box Initialization

1: function PLAININIT(wj-i, IQ)
2: p U[0, 1]"-1><"
3: n Ar[0,

4: nij
5: pmax = max(0, sign(nij))
6: kj = 1/ Ei ((pmax — Pij)nij)
7: Alii = kinii

8: ba = Ei kiniipii

9: return A1, bl
10: end function

> Sample wl points in [0, 1]l-1
> Sample from a normal distribution

> wl random unit vectors of dimension wi_1

Lemma 1 Let ET be a (d - 1) dimensional hyperplane inRd and let n be a normal to IHI. Then, the
maximum distance along direction n from HE and any point in the unit hypercube [0, 1]d is achieved

on
(max(sgn(ni), 0), max(sgn(n2), 0), , max(sgn(nd), 0)) = max(sgn(n), 0). (20)

Proof Let us refer to the distance in question as the directed distance. The maximum directed

distance is achieved on a corner of [0, 1]d, not necessarily unique. Let C* be such a corner; the
fact that C* maximizes the directed distance from IHI is invariant under parallel transport of the
hyperplane in direction n. Parallel transport IHI in direction n until the plane lands on C*; then
every point in [0, 1]d is either on IHI or on the opposite of ET from n. Let CZ c {0, 1} denote the
coordinates of C*. Make C* the origin. Consider the d unit vectors vi from C* to the other d

corners of [0, 1]d along one of the axes. If the coordinate Cz had been 1, then vi = -ez; else if Cz
had been 0, then vz = ei. Since the other corners are separated from n by IHI, we have that

0 > (n v) = 
ni if C: = 0 

(21), i 
-nz, if C: = 1.

Hence if 0 > ni, then C: = 0, while if 0 < ni, then C: = 1. If ni = 0, then both the corner C*

and that corner with the bit C: flipped achieve the same directed distance from HE, so we may take

C,* = O. •
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Algorithm 3 follows from the outline in Section 4.2 in a similar way. We initialize the first
hidden layer as a plain hidden layer using Algorithm 2 above (this is necessary for d w). Then
pmax is found by applying the same algorithm in Lemma 1 and scaling by the constant m to yield a
corner in the box [0, mr -1. The scaling constant k now includes the factor L 1 1.

Algorithm 3 ResNet Box Initialization

1: function RESNETINIT(wi_i, wl, L)
2: if 1 == 1 then
3: return PlainInit(wi_i,w1)
4: else
5: m = (1 + 1/(L — 1))l

6: p U[0, m]w1-1"1
7: .Ai[0,1]w1-1"1

8: nij —
9: prnax,ij = m max(0, sign(%))
10: lCj = 1/ Ei (pmax,ij — piAnii(L — 1))
11: AZ = kinii
12: bi = Ei

13: return A1, bl
14: end if

15: end function
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Appendix C. Basis Function Plots

Figures 16 and 17 show the basis functions at initialization for Plain and ResNet architectures,

respectively, in one-dimension.
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Figure 16: Plain network basis functions, (1),, after initialization for Glorot (left column), He (mid-

dle column), and Box (right) initializations with increasing depth and width 8. The input

is one-dimensional. As discussed in Section 4.1, these figures illustrate that the Box ini-
tialized basis is richer in features than the He and Glorot initialized bases, but suffers

from "collapse' to constant functions as depth increases (notice that this tendency is also
visible for the He and Glorot basis functions).
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Figure 17: ResNet basis functions, after initialization for Glorot (left column), He (middle col-
umn), and Box (right) initializations with increasing depth and width 8. The input is

one-dimensional. As discussed in Section 4.2, these figures illustrate that for ResNets,
the box initialization consistently (with depth) produces basis functions with more fea-

tures in the input domain than the He and Glorot initializations. The box initialized basis
no longer suffers from the collapse to a constant basis as for plain architectures, nor does

it exhibit the blow-up evident in the He basis, as depth increases.
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Appendix D. PINNs snapshots

The images below depict the PINN solution to the constant coefficient transport equation at training

step i with the cut planes of the ReLU basis superimposed as dashed red lines. These training
snapshots demonstrate that the LSGD trained PINN (right column) finds the correct characteristics
of the PDE with ReLU cutplanes far faster than the GD trained PINN (left column) Note that the
i's are different in the two columns, and both networks have identical initializations.
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