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Motivation
O Dislocation mobility laws are required for dislocation dynamics

simulations but cannot be measured experimentally.

O Dislocation mobility in alloys is indicative of solute strengthening.

O Stainless steels are important structural materials.

0 Past MD results of dislocation mobility in alloys are size sensitive.

O Mobility laws in a wide range of stresses and temperatures have not
been well understood.

O We attempt to understand size-insensitive mobility laws in a wide
stress-temperature space for stainless steels.



Goals

O Use MD to systematically study edge dislocation
mobility in random Fe0.7Ni0.11Cr0.19 over a range of
stresses and temperatures.

O Develop a theoretical mobility model to rationalize the
MD data.

O Understand when and why the mobility becomes
length-dependent.



Approach
CI Use an Fe-Ni-Cr EAM potential (Zhou et

al, 2018).

CI Stresses are modeled as forces on surface
layers of atoms (in ±x).

❑ NPT simulations are performed for 8 ns.

CI Dislocation distance is determined by
scaling the relative shift between upper /
lower halves of the crystal.

CI For each stress / temperature condition,
various sizes are explored.

Computational Geometry
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Lz: dislocation length, Ly: dislocation-surface spacing, Lx: periodic moving distance.
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0 Velocities are sensitive to dislocation length Lz but not to Ly and L.
0 Size-insensitive velocities can be obtained at high stresses and temperatures.



Selected Dislocation Distance/Velocity
Dislocation length L, = 3748 A
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CI Velocities reach
plateaus at high stresses.

CI At low stresses,
velocities increase with
temperature (solute
dragging).

CI At high stresses,
velocities decrease with
temperature (phonon
dragging).

CI Fraction stress (cf)
decreases with
temperature.



Friction Stress anð Plateau Velocity

(a) friction stress
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(b) plateau velocity at -c = 600 MPa
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LI Friction stress
criterion: velocity
0.25 A/ps.

LI At intermediate
temperatures,
friction stress and
plateau velocity
both linearly
decrease with
temperature.



Analytical Mobility Law
Account for solute, phonon, and "singular"
drag mechanisms:

1
Td = b P7.9.91 Fph Fsing)

/Fph = CTnv

Fsing s(cif v)fl
Marian and
Caro, 2004.
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Parameter: AEb, %KOH, ty01 C, n, s, cT, R.

Solute + Phonon only

Ty0 = 77.7 MPa
AEb = 0.725 eV
wwb = 4.35 x 104 m/s
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Kinetic Monte Carlo (kMC) Model

Varvenne et al. (2016)

glide
direction

Solid solution strengthening theory of
Leyson et al. (2010)
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Dislocation migrates through activation of segments.



MD vs. Model on Dislocation Velocity

(a) MD results at 500 K
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CI GE: standard
deviation of
energy barriers of
segments

CI Length
dependence comes
from solute
dragging effects.

CI Segment length

6000 
impacts the length
dependence.



MD vs. Model on Dislocation Shape

(a) MD results at 500 K, 60 MPa
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0 aE is standard deviation of energy barrier distribution.

0 Need a spatially varying energy barrier to reproduce large-scale
bowing.



Conclusions
❑ MD simulations reveal fundamental relationships between

stress, temperature, and size.

❑ Model accounting for solute, phonon, and singular dragging can
rationalize MD results.

❑ kMC results indicate that the size dependence origins from
activation of local dislocation segments.

❑ Energy barrier dislocation impact bowing scale.

❑ Results stimulate new strengthening ideas to limit activated
dislocation length such as nanostructuring and composition
modulation etc.


