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Overview of Sierra Mechanics

Goal: massively parallel coupled
multiphysics calculations

Modules for structural dynamics,
solid mechanics, fluids, thermal,
etc

DOE ASC Funded

- Advanced Simulation and
Computing Program



Sierra/SD:A Brief History

Sierra/SD was created in the 1990's at Sandia National Laboratories for large-scale
structural analysis

Intended for extremely complex structural and structural acoustics models

• Routinely used to solve models with 100's of millions of degrees of freedom

Scalability is the key

• Sierra/SD can solve n-times larger problem using n-times many more compute processors,
in nearly constant CPU time

• Main approach to reduced order modeling
• domain decomposition

O parallel iterative solver

•



Overview of Sierra/SD Structural Acoustic Capabilities

Massively parallel

Hex, wedge, tet acoustic elements (up to order p=6), coupled with both 3D and 2D
(shell) structural elements

Allows for mismatched acoustic/solid meshes

O Mortar or multi-point constraints (MPC)'s

Infinite elements and Perfectly Matched Layers (PML)

Solution procedures:

- Frequency response (frequency-domain)

o Transient (time-domain)

o Eigenvalue (modal) analysis

0 Linear and quadratic (complex modes)



I6 Parallel Scalability of Sierra/SD
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• Goal — Understand current

limitations of Sierra/SD on large

problems

• All Results are shown with Default

Solver Parameters

• 2 Billion DOF limit has since been
overcome

• Performed on "Serrano (84/455)"

and "Trinity (6/7)"

Table 1. Size of Each Finite Element Model
Model Elements Nodes DOFs
Mesh 1 8,980 16,462 49836
Mesh 2 25,734 38,012 114,036
Mesh 3 57,472 76,668 230,004
Mesh 4 118,144 148,460 445,380
Mesh 5 231,690 279,675 839,025
Mesh 6 461,168 537,744 1,613,232
Mesh 7 957,966 1,079,941 3,239,823
Mesh 8 1,941,306 2,136,292 6,408,876
Mesh 9 4,254,244 4,254,244 12,762,732
Mesh 10 7,711,844 8,201,009 24,603,027
Mesh 11 15,240,615 16,012,998 48,038,994
Mesh 12 30,086,430 31,307,640 93,922,920

Mesh 13 61,694,752 63,647,304 190,941,912
Mesh 14 121,924,920 125,009,272 375,027,816
Mesh 15 240,691,440 245,569,752 736,709,256
Mesh 16 493,558,016 501,359,996 1,504,079,988
Mesh 17 975,399,360 987,726,396 2,963,179,188

•(Bunting) Strong and Weal< scaling of the Sierra/SD Eigenvector Problem to a Billion Degrees of Freedom



7 I Parallel Scalability of Sierra/SD
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Processors

- Solver Initialization
—N-- Overlap Preconditioner
- Coarse Corrections

Orthogonalization
—•— Total Solver
-Ai-- Total Sierra/SD Run

Strong Scaling (1 Million Nodes) Weak Scaling (3,500 Nodes / Proc)

•(Bunting) Strong and Weak scaling of the Sierra/SD Eigenvector Problem to a Billion Degrees of Freedom
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Sierra/SD on the GPU

• Next Generation of Supercomputers will have (Do Have!) GPUs
• Sierra (2 on Top500.org), LLNL

• Vortex (Sandia Testbed — Sierra Clone)

Salinas Solver Solver solve
Complete initialization phas%

22 CPU 31:29 I 6 sec I 830 sec

22 CPU + 2 GPU 12:32 89 sec 621 sec

22 CPU + 4 GPU 9:5 I 86 sec 463 sec



I9 Partitioned Coupling for Structural Acoustics

Problem:

Can we solve Structural Acoustics with FSI style Partitioned Coupling

Motivation:

Better matrix conditioning of systems, more accurate solves

Couple large deformation nonlinear code with linear acoustics capability

•(Bunting, Miller) - "Partitioned Coupling for Structural Acoustics" — ASME Journal of Sound & Vibration 2020



io Partitioned Coupling for Structural Acoustics

ns FSA

vc. (tn+1) = VV(tn+l)

Transfer predicted velocities

Solve structure for u(tn+I )

psfi+ CAI — V • TR = psb Tranfer corrected pressures

tsC (tn+1) = p(tn-k 1)n

nA

Solve acoustic fluid for 11I(t"+ I )

i* + Ca* — V2V = 0

Nonlinear, Large Linear Acoustics

Deformation (Sierra/SD)

(Sierra/ SM)

•(Bunting, Miller) - "Partitioned Coupling for Structural Acoustics" — ASME Journal of Sound & Vibration 2020



ii Partitioned Coupling for Structural Acoustics
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12 Infinite Boundaries

Problem:

Can we solve Acoustics Problems in Infinite Domains?

Motivation:

Infinite elements have poor conditioning at large orders and large processor counts



13 Infinite Boundaries (Absorbing BC, Infinite Elements, PML)

Absorbing BC

• Simple Implementation, least computational cost

Infinite Elements

O Time Domain, Frequency Domain

o Homogenous Material on External Domain

o Capable of computing far field pressures

o Poor matrix conditioning

O High Computational Cost

Perfectly Matched Layers
O Implementation restricted to Frequency Domain
O Can absorb evanescent waves

•(Bunting et al) "Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains"
Journal of Theoretical and Computational Acoustics 2018



Results: Infinite Element - PML
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For a fixed level of accuracy
• PML required many less iterations

than infinite elements
• PML solution times were much

faster
• In frequency domain, PML is clear

winner over infinite elements

14
•(Bunting et al) "Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains"

Journal of Theoretical and Computational Acoustics 2018



Higher Order Elements with Infinite element absorbing
boundary

• Using 3rd order P-Elements in interior with 6th order Infinite elements
• Reproduces pressure contours of infinite domain
• No reflections observed
• Higher order elements allow us to coarsen mesh — only one element between

hollow sphere and boundary
• Geometry still approximated by linear element



16 Handoff from Fluid Codes

Problem:

Can we use acoustics for far field noise

Motivation:

High fidelity fluid codes are expensive over large volumes



17 Fluid-Structure Interaction with Sierra/TF

Use Sierra/TF (convection) to compute Lighthill tensor as an acoustic noise source

Expensive, done on small subsection of domain

Sierra/TF provides the Lighthill tensors as a nodal variable

Sierra/SD is used for far field acoustic noise modeling

Time = 0.17000

ori

_Apressure

1.000e+02

5.000e+01

0.000e+00

-5.000e+01

-1.000e+02



18 Moving Acoustic Mesh

• Want — Large Scale acoustics of moving pieces
• Time Domain Handoff (one-way coupling) with Sierra/SM
• Generate "Doppler EffecC at a stationary point

_Apressure
3. 739e+07
1.879e+07
1,974e+05
-1.840e+07
-3.700e+07

Minimum Apressure vs. Time
Lb 2e-1-07

le+07

0

-1e+07
0 2e-05 4e-05 6e-05 8e-05 0.0001

Time



I Larger Gear Example

_Apressure

4.201e+11
3.024e+11
1.846e+11
6.678e+10
-5.100e+10

■



I Application —Acoustic Source Inversion

Acoustic source inversion
Goal:
Solve inverse problem to obtain acoustic patch

inputs that produce the given microphone

measurements. 2 approaches:
• Frequency domain
• - broadband frequency sweep
• 2. Time domain
• - implicit time integration

200
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-150  
0

simulation

experimental data

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time (s)

STRUCTURAL DYNAMICS

Surface patches for sources

Microphone locations

• •
41 .0; 40 

•

•(Walsh, Aquino, Ross) — Source Identification in Acoustics and Structural Mechanics using Sierra/SD



2 I Application - Orion Capsule in Reverb Chamber •

• Publicly available model from NASA (not Sandia application)

• Vibroacoustic Test Facility (VATF)
• Rectangular Box - 6.58m by 7.50m by 9.17m

• Simulation

• 140 dB Acoustic excitation provided by loudspeaker in bottom corner of room

• 2.5 Million Hex20 Elements, 10 Million Dofs

• 1000 Time Steps, 2 Hours Simulation Time (256 Cores)



22 Orion Capsule — Diffuse Field



23 Orion Capsule -Video ■



Conclusions ■

Production Finite Element Analysis code used to solve real world problems

Massively parallel finite element structural acoustics capability Sierra/SD has been developed
for large-scale analysis

Applicable to large-scale models with many degrees of freedom.

Continuously adding additional capability for specific problems and uses cases

Capability has been applied to a variety of problems inside and outside of Sandia
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