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Background

o Generative models using deep learning
o Recently, Generative Adversarial Neural Networks (GANs) have demonstrated remarkable
results 1n terms of 1mage or texture synthesis.

o Variation of GANSs-based models have been developed and applied to the rock

and scalable applications due to a constraint on the size of training samples.

Objective

o The rock with complex morphological geometry and compositions such as shale and
carbonate rocks, i1s typically characterized with sparse field samples because of an
expensive and time-consuming characterization process.

o Accurate capture and realization of the underlying complex stochastic properties of the
geological texture with a limited set of samples has long been an important issue in the

o Many geostatistical methods such as multiple-point statistics have been developed and
achieved 1n many successful applications.

o But they suffer from limitations inherent to the algorithms :
computational cost, visual artifacts, and a low variability in the realization

o However, the rock reconstruction with GANs framework still requires considerable
computational costs which can be prohibitive for high-resolution applications (2D and 3D)

e To improve the computational cost and scalability of standard GANs framework,
we proposed a fast and scalable GANs framework, called the spatially

assembled GANs framework (SAGANSs).

Generative Adversarial Neural Nets (GANSs)

o (GANSs are deep learning frameworks to develop generative models via adversarial
two neural network models (G and D model).

e (G model (generator) — a generative model generates samples through learning to
map from a latent space to a particular data distribution of real samples

e D model (discriminator) — a discriminative model determines whether given
samples were a generated (fake) sample by G model or real samples.

o Deep Convolutional GANs (DCGANSs) : GANs adopting deep convolutional nets.

e Fully convolutional nature of DCGANs allows the stable training and the
| generation of many samples that contain the similar properties to training data and
‘ with computational efficiency.
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Spatially Assembled GANs (SAGANSs)

e Main conceptual idea
The local probability 1n the disassembled generated images (segments) 1s estimated
by the discriminator, and then assembled 1nto a global probability.

e No architectural constraint between G and D model

The size of the generated output in the G model need not to be 1identical to the size

of the mput of D model.

e This enable SAGANs to produce the realizations with the scalability and
computational efficiency.
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Development of DCGANs & SAGANSs

eTraining Images

e Three training images (TIs) datasets widely
used for geostatistical simulation.

e These datasets have simple structures, but
are proven to be very challenging as the
training 1mage for the GANs
- the long-range connectivity
- discrete and dispersing nature

< Summary of training images (TIs) >
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< Training 1images (TIs) used in this study >

e Architecture and Parameters of GANs

e The architecture of deep convolution neural networks for DCGANs and

SAGANs was constructed based on the guidelines proposed by Radford et al. (2016)

e All computational works 1n this study were performed using the same computer

equipped with two NVIDIA TITAN-V GPU cards.

< Architecture and Parameters applied to GANSs in this study >
Value

Parameter

100
3 to 5 layers, filters (4/8/16/32/64/128)
Syvmmetric for D and G model

3 % 3 %3 (for 3D TlIs), 5x.5 (for 2D TIs)

Latent Space Dimension, 2
Convolutional Layers / Filters

Kernel Size

Optimizer Adam with mini-batch
Learning Rate / Momentum 2 x107%/0.5
Epoch / Mini-batch Size Max 100,000 / 4 to 64

Dropout rate _ |
pomkTabe ) 0.25 / 0.8

Batch normalization Momentum
A niEotten Thneliot ReLu, tanh (G model) /
Activation Function . . .
LeakyReLu with alpha = 0.2, sigmoid (D model)

Loss Function Binary Cross-entropy
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Experimental Results

e Strebelle’s TI (2D)

e Standard GANs (DCGANSs) with a single TI generated the same realization of
images as the TI.

e SAGANS produced the various patterns and arbitrary size of realization
with keeping its statistics (the long-range connectivity) even in a single T1.
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<Comparison of results on Strebelle’s TI>
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<Morphological descriptor>
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Segments: 144 by 144 (overlapping 16 pixels)

<Arbitrary size of realization on Strebelle’s TI >
(1,040 by 528)

e Both DCGANs and SAGANs produced the realizations with various size of
spherical beads.
e Beads 1n the realizations by SAGANSs have more spherical shape and less

overlapped each other (well-spread) than the realizations by DCGANS.
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<Comparison of results on Beadpack(2D) >

<Morphological descriptor>

e Beadpack (3D) & Fold Aquifer

seamless arbitrary size of

realization.

e SAGANS could produce the 3D realizations of the arbitrary larger size
and with diversity even in a single of 3D T1.
e SAGANS could also produce the larger size of 3D realizations with low
computational time and load which DCGANSs could not generate due to the
lack of GPU memory.

<Comparison of results on 3D TIs >
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< Arbitrary size of 3D realization by SAGANs >

< Comparison of training time between SA-GANs and DCGANs >

TIs Generated Size  Model Segment size

Training Time (Sec.)
(Decrease)

Beadpack (2D)
(256 of 256 x 256)

256 x 256

DCGANSs

SA-GANSs 128 x 128

45.54
27.70 (-39%

DCGANs
SA-GANSs

512 x 512

(Larger than TIs) 128 x 128

120.92
51.26 (-58%

Strebelle TI (2D)
(1 of 256 x 256)

DCGANSs
SA-GANs

256 x 256
130 x 130

Z
53.70
22.92 (-57%

512 x 512
(Larger than TIs) SA-GANs

DCGANSs
131 x 131

)
)
)
196.94

61.17 (-69%)

£9Q
)28 x 1040 SA-GANs

(Larger than TIs) L 1ad
DCGANs

120.86

Beadpack (3D)

128 x 128 x 128
(1 of 256 x 256 x 256) SA-GANs

64 x 64 x 64

909.83
250.78 (-72%)

256 x 256 x 256 DCGANS

SA-GANs 64 x 64 x 64

6531.66
839.30 (-87%)

256 x 256 x 320 SA-GANs

(Larger than TIs) O RO et
DCGANSs

1013.89

Fold Aquifer (3D)

64 x 64 x 64
(1 of 128 x 128 x 128) SA-GANs

34 x 34 x 34

231.00
81.30 (-65%)

DCGANSs
SA-GANSs

128 x 128 x 128
66 x 66 x 66

1066.1
234.06 (-78%)

256 X 256 X 256 ¢\

(Larger than TIs) b Kol %

839.26

Acknowledgement

This study was supported by Hawai’i Experimental Program to Stimulate Competitive Research (EPSCoR), the Faculty Research
Participation Program at the U.S. Engineer Research and Development Center, Coastal and Hydraulics Laboratory administered by the Oak
Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ERDC. This work
was also supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. This paper describes

objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the

- views of the U.S. Department of Energy or the United States Government.




