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Background

• Rock reconstruction

o The rock with complex morphological geometry and compositions such as shale and
carbonate rocks, is typically characterized with sparse field samples because of an
expensive and time-consuming characterization process.

o Accurate capture and realization of the underlying complex stochastic properties of the
geological texture with a limited set oi samples has long been an important issue in the
rock reconstruction.

• Geostatistical methods
o Many geostatistical methods such as multiple-point statistics have been developed and

achieved in many successful applications.
o But they suffer from limitations inherent to the algorithms :

computational Cost, visual artifacts, and a low variability in the realization

• Generative models using deep learning
o Recently, Generative Adversarial Neural Networks (GANs) have demonstrated remarkable

results in terms of image or texture synthesis.
o Variation of GANs-based models have been developed and applied to the rock

reconstruction.
o However, the rock reconstruction with GANs framework still reauires considerable

computational costs which can be prohibitive for high-resolution applications (2D and 3D)
and scalable applications due to a constraint on the size of training samples.

Objective
• To improve the computational cost and scalability of standard GANs framework,

we proposed a fast and scalable GANs framework, called the spatially
assembled GANs framework (SAGANs).

Generative Adversarial Neural Nets (GANs)
• GANs are deep learning frameworks to develop generative models via adversarial

two neural network models (G and D model).
• G model (generator) - a generative model generates samples through learning to

map from a latent space to a particular data distribution of real samples
• D model (discriminator) - a discriminative model determines whether given

samples were a generated (fake) sample by G model or real samples.
• Deep Convolutional GANs (DuGANs) : GANs adopting deep convolutional nets.
• Fully convolutional nature of DCGANs allows the stable training and the

generation of many samples that contain the similar properties to training data and
with computational efficiency.
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Spatially Assembled GANs (SAGANs)

• Main conceptual idea
The local prombility in the disassembled generated images (segments) is estimated
by the discriminator, and then assembled into a global probability.

• No architectural constraint between G and D model
fhe size of the generated output in the G model need not to be identical to the size
of the input of D model.

• This enable SAGANs to produce the realizations with the scalability and
computational efficiency.

z

fully connected
neural nets (FCN-G)

reshape

(1 by d)
C • k • (1

z'

Loss of D model:

Loss of G model:

p layers

min J(D)

G(z) = x'

11G

WG

Training Sample

•
• •

.................. s:11::211

2 {E,Pdata(x) 
[log D (x)]

i=1

X"

X

lip

D(X) =1 D(X")=

fully connected
neural nets (FCN-D)

D

wx = = \yr)

hx = h'G = hp

z pz(z)Vog(1 - D(x,"))11

1 n
min j(G) Ez,pz(z)Vog(D(x1:))]

2rt
i=1

p' layers

Development of DCGANs & SAGANs

•Training Images
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< Training images (TIs) used in this study >
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• Three training images (TIs) datasets widely
used for geostatistical simulation.

• These datasets have simple structures, but
are proven to be very challenging as the
training image for the GANs

- the long-range connectivity
- discrete and dispersing nature

< Summary of training images (TIs) >

Original datasets This study

size
color
scale

size
color
scale

Experiment
case

Strebelle's TI 250*250*1

Beadpack 500*500*500*1

Fold Aquifer 180*150*120

Binary, 0/1 256*256
Gray, 256*256*256
0 - 255 256*256*256*1

Binary, 0/1 128*128*128*1

Binary,

1/0

2D
2D
3D
3D

• Architecture and Parameters of GANs 

• The architecture of deep convolution neural networks for DCGANs and
SAGANs was constructed based on the guidelines proposed by Radford et al. (2016)

• All computational works in this study were performed using the same computer
equipped with two NVIDIA TITAN-V GPU cards.

< Architecture and Parameters applied to GANs in this study >

Parameter Value
Latent Space Dimension, z.

Convolutional Layers / Filters

Kernel Size
Optimizer
Learning Rate / Momentum
Epoch / Mini-batch Size
Dropout rate /
Batch normalization Momentum

Activation Function

Loss Function

100
3 to 5 layers. filters (4/8/16/32/64/128)
Symmetric for D and G model
3 x 3 x 3 (for 3D TIs), 5 x 5 (for 2D TIs)
Adam with mini-batch
2 x10-4/0.5
Max 100,000 / 4 to 64

0.25 / 0.8

ReLu, tanh (G model) /
LeakyReLu with alpha = 0.2, sigmoid (D model)
Binary Cross-entropy
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Experimental Results

Strebelle's TI (2D)

• Standard GANs (DCGANs) with a single TI generated the same realization of
images as the TI.

• SAtiAis produced the various patterns and arbitrary size of realization
with keeping its statistics (the long-range connectivity) even in a single TI.
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<Comparison of results on Strebelle's TI> <Morphological descriptor>

• Beadpack (2D)
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<Arbitrary size of realization on Strebelle's TI >
(1,040 by 528)

• Both DCGANs and SAGANs produced the realizations with various size of
spherical beads.

• Beads in the realizations by SAGANs have more spherical shape and less
overlapped each other (well-spread) than the realizations by DCGANs.
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(b) SA-GANs

<Comparison of results on Beadpack(2D) >
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<Morphological descriptor>

• Beadpack (3D) & Fold Aquifer

• SAGANs could produce the 3D realizations
and with diversity even in a single of 3D TI.

• SAGANs could also produce the larger size
computational time and load which DCGANs
lack of GPU memory.

Beadpack (3D) TIs
(I of 256 voxel)

Fold Aquifer (3D) TI
(1 of 128 voxel)
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<Comparison of results on 3D TIs >
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< Arbitrary size of 3D realization by SAGANs >

• DCGANs have the limits
in generating the arbitrary
large size of realizations
due to the cropping area
(or the seam) of the
original TIs.

• SAGANs can produce
seamless arbitrary size of
realization.

of the arbitrary larger size

of 3D realizations with low
could not generate due to the

< Comparison of training time between SA-GANs and DCGANs >

TIs
Training Time (Sec.)Generated Size Model Segment size (Decrease)

Beadpack (2D)
(256 of 256 x 256)

256 x 256 DCGANs 45.54
SA-GANs 128 x 128 27.70 (-39%)

512 x 512
(Larger than TIs)

DCGANs 120.92
SA-GANs 128 x 128 51.26 (-58%)

Strebelle TI (2D)
(1 of 256 x 256)

256 x 256 DCGANs
SA-GANs 130 x 130

512 x 512 DCGANs 196.94
(Larger than TIs) SA-GANs 131 x 131 61.17 (-69%)

53.70
22.92 (-57%)

528 x 1040
(Larger than TIs)

SA-GANs 144 x 144 120.86

Beadpack (3D)
(1 of 256 x 256 x 256)

128 x 128 x 128 DCGANs 909.83
SA-GANs 64 x 64 x 64 250.78 (-72%)

256 x 256 x 256 DCGANs 6531.66
SA-GANs 64 x 64 x 64 839.30 (-87%)

256 x 256 x 320
(Larger than TIs)

SA-GANs 64 x 64 x 64 1013.89

Fold Aquifer (3D)
(1 of 128 x 128 x 128)

64 x 64 x 64 DCGANs 231.00
SA-GANs 34 x 34 x 34 81.30 (-65%)

128 x 128 x 128 DCGANs 1066.1
SA-GANs 66 x 66 x 66 234.06 (-78%)

256 x 256 x 256
(Larger than TIs)

SA-GANs 67 x 67 x 67 839.26
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