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Deploy surrogates that exploit structure in parameter to output map - seek low-rank
functional tensor-train representation to reveal couplings in high-dimensional mod-
els.

Surrogate Models via Low-Rank Functional Tensor-Train Decomposition
Employ an approach analoguous to low-rank tensor decompositions:
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A compact expression can be assembled using a set of products of matrix-valued functions
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Each matrix-valued function TOO is a collection of univariate functions indexed by two in-
dices (i, .1) where i spans the range of rank rk_t and j spans the range of rank rk.

Univarite Functions Represented via Polynomial Chaos Approximations
• The input parameter set a is in general viewed as a jointly distributed random vector, but

for surrogate construction over ranges Ak C Nrnin, Ak,max] for k = 1, 2, . . . d, can be written
component-wise as

Ak = 0.5 (Ak,min Ak,max (Akmax Ak,min) ek)

• C [-1 1]d - vector of d independent and identically distributed (ii.d.) uniform random
variables

The univariate function e)(k) can be viewed as a random variable induced by the uniform
random input
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and can written as a Polynomial Chaos Expansion [1] with respect to standard polynomials
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where pk is the number of basis terms chosen to approximate k(k)).
• Legendre polynomials are orthogonal with respect to uniform measure of (ek)

1

(Wa(ek)Wcci(ek)) Wegk)Wal(k)7(k)dk 0 if a a ,

• Other polynomials are available depending on the expected behavior of the Qols.
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Consider a number of simulation results y corresponding to a set of choices for the model
inputs. The coefficients for the low-rank functional representation are determined through
optimization

argmino +Q[er
A regularization term is added to minimize the number of non-zero functions in the matrix-
valued TOO
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• employ multi-way k-fold cross-validation to determine optimal knob values for the tensor-
train approximation
-regularization parameter 7
-set of ranks rt,r2, . , rd
polynomial order p

• Quasi-Newton method using L-BBFGS

https://climatemodelingscience.energy.gov/projectsioptimization-sensor-networks-improving-climate-model-predictions
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• sELM is a lower-fidelity, python version of the land model compo-
nent of E3SM
• Processes are shown with blue boxes with dependencies on en-
vironmental data.
• Parameter inputs associated with each process are listed in or-
ange rectangles.
-47-dimensional input space
• Tensor-Train and Tensor Network Models follow the structure of
sELM componennts.
-Tensor-Train models employ a collection of 2D/3D univariate
tensors associated with input parameters

-Tensor Network models offer more flexibility to replicate the
complex model structure; employs 2D/3D/4D univariate tensors

0• timal Low-Rank Functional Tensor Train Solutions

Typical cross-validation errors 5-10% for both Quantities of Interest targeted in this study, Gross
Primary Production (GPP) and Leaf Area Index (LAI)

• 5-fold cross validation

• 2-nd order univariate Legendre polynomials & univariate ranks between 2 and 4

Harvard Forest Site near Harvard Forest Site
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Embed parametric (space and/or time) dependencies into a generalized low-rank functional
tensor-train decomposition

A) Concatenate the stochastic a and spatial x coordinates
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B) Augment the rank of select cores in the representation to generate a multi-output surrogate
corresponding to several spatial coordinates
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C) Augment the representation of select tensor-train cores with spatial dependencies
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Next Steps

• Construct surrogate models that adapt simultanously to stochastic space/physical space depen-
dencies
• Adaptive sampling of the mixed stochastic/physical spaces to target regions of high-probability
and/or non-linear behavior in the joint space

[1] Ghanem, R., and P. Spanos (1991), Stochastic Finite Elements: A Spectral Approach, Springer Verlag, New York.

[2] Gorodetsky, A. A. and Jakeman, J. D. (2018), Gradient-based optimization for regression in the functional tensor-train format, Journal of Computational Physics, 374,
1219 - 1238.
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Findings pertaining to the approximation model

Low-rank Functional Tensor-Train models are within 5-10% of ELM-LF model results for the range of
conditions investigated.

improved performance compared to total-order Polynomial Chaos representations

Findings pertaining to the ELM-LF application 

. Identified a set of 8-12 parameters (out of 47) that control model outputs of interest.

Parameter contributions to the total variance is consistent with intuition based on the physics of the
problem.
Expected similarities in space and time recovered via tensor-train models.

U.S. DEPARTMENT OF

N E RGY
 •

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA-0003525. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-000R22725.

 •

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Offices of Biological and Environmental Research
and Advance Scientific Computing Research. This study used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

SAN D201 9-XXXX
SA .V 

twao
/// V kv
National Nuclear Security Administration

SAND2019-14983C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


