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Deploy surrogates that exploit structure in parameter to output map - seek low-rank

fLImctionaI tensor-train representation to reveal couplings in high-dimensional mod-
els.

Surrogate Models via Low-Rank Functional Tensor-Train Decomposition
Employ an approach analoguous to low-rank tensor decompositions:
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A compact expression can be assembled using a set of products of matrix-valued functions

_ / k(m()\k) / ;im(&) / /ilm)O‘k)
f 221)_(Ak) f ngQ)_()\k) f 1527%?()%)

SVOW BP0 BT 0w

Each matrix-valued function Fi()\;) is a collection of univariate functions indexed by two in-
dices (¢, 7) where ¢ spans the range of rank r,_; and j spans the range of rank r;.

F(AL Ao, oo Ag) = Fi( M) Fa(Aa) - - - Fal(Aa), Fi(N\i) =

Univarite Functions Represented via Polynomial Chaos Approximations

e The input parameter set X is in general viewed as a jointly distributed random vector, but
for surrogate construction over ranges A\; € [A;win, Akmax), fOr & =1,2,...,d, can be written
component-wise as

)\k = 0.0 ()\k,min - )\k,max - (Ak,max — )\k,min) "fk’)

¢ c [—1,1]7 - vector of d independent and identically distributed (i.i.d.) uniform random
variables

The univariate function f.”’(\;) can be viewed as a random variable induced by the uniform
random input &,
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and can written as a Polynomial Chaos Expansion [1] with respect to standard polynomials
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where p; is the number of basis terms chosen to approximate . (z,(&:)).

e Legendre polynomials are orthogonal with respect to uniform measure of &, n(&;) = 1/2in
:_17 1]
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e Other polynomials are available depending on the expected behavior of the Qols.

Fitting Low-Rank Models Through Sparse Data

Consider a number of simulation results y corresponding to a set of choices A for the model
iInputs. The coefficients for the low-rank functional representation are determined through
optimization

argming||y — F|[5 + Q[f]
A regularization term is added to minimize the number of non-zero functions in the matrix-
valued Fk()\k>
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e employ multi-way k-fold cross-validation to determine optimal knob values for the tensor-

frain approximation
—regularization parameter ~
—setofranks ry, 19, ..., 7y
—polynomial order p

e Quasi-Newton method using L-BBFGS

2 U.S. DEPARTMENT OF

e
2
E )
g sl
2. S
2 &5/
S ZirEs Ol
ATES' O

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-000R22725.

Tensor-Train Model
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Tensor-Network Model

e SELM is a lower-fidelity, python version of the land model compo-
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e Processes are shown with blue boxes with dependencies on en-
vironmental data.

e Parameter inputs associated with each process are listed in or-
ange rectangles.

If —47-dimensional input space

Optimal Low-Rank Functional Tensor Train Solutions

Typical cross-validation errors 5-10% for both Quantities of Interest targeted in this study, Gross
Primary Production (GPP) and Leaf Area Index (LAI)

¢ 5-fold cross validation
¢ 2-nd order univariate Legendre polynomials & univariate ranks between 2 and 4

Harvard Forest Site near Harvard Forest Site
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Combine Stochastic and Physical Spaces into a Joint Representation

Embed parametric (space and/or time) dependencies into a generalized low-rank functional
tensor-train decomposition

A) Concatenate the stochastic A and spatial x coordinates

f(x, A) = Fi(A)Fa(Ag) - - Fi(Aj) Fx(x) Fj1(Ajr1) - - - FalAa)

B) Augment the rank of select cores in the representation to generate a multi-output surrogate
corresponding to several spatial coordinates

f(x, A) = Fi(M)Fa(Aa) - - Fyoa(Aj-1) Fir1(Aje1) - Fa(Aa)

C) Augment the representation of select tensor-train cores with spatial dependencies

F(x,A) = Fi(A)Fa(Ag) - - - Fioa(Nj—1) Fj (%, Aj) Fje1(Aja) - - - Fa(Aa)

Next Steps

e Construct surrogate models that adapt simultanously to stochastic space/physical space depen-
dencies

e Adaptive sampling of the mixed stochastic/physical spaces to target regions of high-probability

and/or non-linear behavior in the joint space
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Global Sensitivity Analysis - Temporal and Spatial Similarities

Total Effect Sobol Indices for Model Parameters Relevant at Harvard Forest
Gross Primary Production (GPP)

Leaf Area Index(LAl)
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Total Effect Sobol Indices for Select Model Parameters around Harvard Forest
Average July Results
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Findings pertaining to the approximation model

e Low-rank Functional Tensor-Train models are within 5-10% of ELM-LF model results for the range of
conditions investigated.

—Iimproved performance compared to total-order Polynomial Chaos representations
Findings pertaining to the ELM-LF application

e |[dentified a set of 8-12 parameters (out of 47) that control model outputs of interest.

—Parta)llmeter contributions to the total variance is consistent with intuition based on the physics of the
problem.

— Expected similarities in space and time recovered via tensor-train models.
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