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Abst ract

We investigate two single-reduce orthogonalization
schemes for both s-step and pipelined GMRES. The
first is based on classical Gram Schmidt with reorthog-
onalization (CGS2), and the second on modified Gram
Schmidt (MGS). Standard iterated CGS2 requires three
global reductions. In standard MGS, the number of
global reductions is proportional to the number of vec-
tors against which we are orthogonalizing. In both
cases, we can reduce this to a single global reduction,
including reorthogonalization for accuracy.

Our implementation is based on Trilinos software
components, and therefore, is portable to different ma-
chine architectures with a single code base. We first
demonstrate solver performance on the Intel Haswell
nodes of the NERSC Cori Supercomputer. For these ex-
periments, we integrated our solvers into Nalu-wind, a
computational fluid dynamics application. At each time
step, Nalu uses GMRES with a smoothed aggregation
algebraic multigrid (SA-AMG) preconditioner to solve
a pressure Poisson linear system. In this experiment, s-
step GMRES reduced Nalu's total GMRES solve time
by a factor of 1.4 x .

We then benchmarked the single-reduce orthogonal-
ization schemes on the ORNL Summit supercomputer.
In these experiments, our low-synchronization CGS2
and MGS improved the s-step GMRES performance by
a factor of 2.4x and 10.1 x on 384 NVIDIA V100 GPUs,
respectively, while on the IBM Power9 CPUs, they im-
proved the stability of the pipelined GMRES without
increasing the iteration time.

1 Introduction

Scientific and engineering simulations can spend much
of their time solving large sparse linear systems of equa-
tions. Krylov subspace projection methods [T71] are pop-
ular iterations for solving such systems. This is due
to their lower storage costs, compared with direct fac-
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torization, and their ability to work with a variety of
application-specific preconditioners for reducing itera-
tion count.

On modern computers, communication often domi-
nates simulation's run time. "Communication" includes
both data movement through the local memory hier-
archy, and data movement or synchronization between
parallel processes or threads. Krylov solvers especially
have communication-bound performance, because their
computational kernels (e.g., dot products and matrix-
vector multiplies) have little local data reuse and require
global communication and/or synchronization among
the processes.

To improve Krylov solvers' performance,
communication-avoiding (CA) variants have been
proposed [3, and the references within]. CA methods
are based on the s-step Krylov algorithm that generates
a block of s orthonormal basis vectors for the Krylov
projection subspace at a time. Hence, they have the
potential to reduce the communication costs by a factor
of .s. Another effort to improve solver performance
led to the development of pipelined variants of Krylov
solvers [M, N. These algorithms take inspiration from
the "software pipelinine technique that compilers
use to optimize code. They redesign the iteration
algorithm to use nonblocking global reductions, and
overlap the reductions with local computation or other
communication.

As a part of the Exascale Computing Project (ECP)
funded by the U.S. Department of Energy, we imple-
mented CA and pipelined Krylov solvers in the Trilinos
software framework [Ell]. In this paper, we summarize
our efforts to develop portable high-performance ver-
sions of these solvers for upcoming exascale computer
architectures. Here, we focus on variants of the Gen-
eralized Minimal Residual (GMRES) method [S] for
solving nonsymmetric linear systems, although we have
also implemented the pipelined variant [8] of the Conju-
gate Gradient method [12] exist for symmetric positive
definite systems.

Here are the key contributions of our paper:
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1. We extend the low-synchronization orthogonaliza-
tion schemes [M], which orthogonalize one vector at
time, for s-step GMRES to orthogonalize s vectors
at once. These are based on either classical Gram
Schmidt with reorthogonalization (CGS2), or mod-
ified Gram Schmidt (MGS), and require only one
global reduction to orthogonalize a set of s ba-
sis vectors against the previous basis vectors and
among themselves. In comparison, standard CGS2
requires three global reductions, while in standard
MGS, the number of global reductions would be
proportional to the number of vectors to be orthog-
onalized. Hence, with MGS, the total number of
reductions grows quadratically with the number of
GMRES iterations.

2. We deployed these new orthogonalizations in the
pipelined GMRES and s-step GMRES implemen-
tations in the Trilinos software library [11]. This
makes them available to many different applica-
tions. Our implementations use a combination of
MPI and shared-memory parallelism. The latter
uses the Kokkos [5] parallel programming model
for portable performance on many different node
architectures.

3. We measured performance of the new solvers
on the distributed Haswell CPU nodes of the
Cori supercomputer at NERSC, as integrated into
Nalu-wind [4], a computational fluid dynamics ap-
plication. Our s-step solver reduced Nalu's total
solution time by a factor of 1.4x .

4. We demonstrate performance portability of the
solvers with the NVIDIA Volta GPU nodes on the
Summit supercomputer at ORNL. The new imple-
mentations of CGS2 and MGS
performance by a factor of 2.4x
GPUs on Summit, respectively.

by applying the preconditioner M-1 and the sparse-
matrix vector product (SpMV) with the matrix A to the
previously orthonormalized basis vector qj (i.e., vj+1 :=
AM-1q3). The new vector q3+1 is then generated by
orthonormalizing v3+1 against all the previous basis
vectors qi, q2, , qa . This orthogonalization requires
global reductions across all the MPI processes, and local
computations are based on either BLAS-2 or BLAS-1
primitives. The resulting global synchronizations and
lack of data reuse makes it difficult to achieve high
performance from the orthogonalization kernels.

2.1 Communication-avoiding GMRES. In order
to improve GMRES performance, the s-step method
first generates a set of s new Krylov vectors by applying
the preconditioner and SpMV without orthogonalization,
v3+k := AM'va+k_l for k = 1, 2, ... , s, using the
starting vector vj := q3. The new basis vectors are then
orthonormalized against the previous basis vectors all at
once, giving the potential to reduce the communication
cost by a factor of s.

To orthogonalize the new set of basis vectors against
the previous vectors, the two traditional block orthogo-
nalization schemes are modified Gram-Schmidt (MGS)
and classical Gram-Schmidt (CGS). In MGS, the new
basis vectors 173:3+, are orthogonalized against the pre-
vious basis vectors one at a time, as follows:

clk(clrilj:j+s)

for k = 1,2, ... , j —1
j-1

k=1

while in CGS, they are orthogonalized against all the
previous vectors at once, as follows:

improve GMRES
and 10.1x on 384

(2.1)

5. We measured performance of pipelined GMRES on
the IBM Power 9 CPUs on the Summit supercom-
puter. Single-reduce Gram Schmidt orthogonaliza-
tion can improve the solver's numerical stability
without increasing the iteration time.

2 Generalized Minimal Residual Method

The Generalized Minimal Residual (GMRES) [LS] is
a Krylov subspace projection method for solving a
nonsymmetric linear system Ax = b. The solution
computed by GMRES minimizes the residual norm
over the generated projection subspace. The j-th
right-preconditioned GMRES iteration first generates
a new basis vector v3+1 for the projection subspace

Vi:j+s — (21:j—i(QT:3_1Vi:j+s)
(I —

Therefore, MGS performs (j — 1) dot products, while
CGS performs only one dot product. Each dot product
requires a global reduction. In addition, MGS performs
most of its local computation using BLAS-2 matrix-
vector operations, whereas CGS is based on BLAS-3
matrix-matrix primitives. Therefore, in comparison to
MGS, CGS often achieves higher performance. How-
ever, when computing in finite-precision floating-point
arithmetic, CGS often results in a faster (.9(eK(V)2)
loss of orthogonality, compared with (.9(6K(V)) of MGS.
This may call for reorthogonalization in order to main-
tain the basis vectors' orthogonality and to avoid the
early stagnation of the solution convergence.

After one pass of CGS or MGS, the new basis
vectors need to be orthogonalized among themselves. In
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Figure 1: Single-reduce orthogonalization.

this paper, the focus is on Cholesky QR (CholQR) [22].
As illustrated in Figure 1(a), Cho1QR requires only
one global reduce, and performs most of the local
computations using BLAS-3 primitives. However, to
maintain orthogonality, the vectors may need to be
reorthogonalized by applying Chol QR again.

In this implementation, the first column vj of
the block columns V3:j+s being orthonormalized is the
last column qj from the previous orthogonalization
step. Thus, qj has already been orthonormalized
against all the previous vectors once. However, this
starting vector is included in the orthogonalization
process, and reorthonormalized against all the previous
vectors Qi;j_i. This improves the numerical stability of
the solver, and is critical for implementing our single-
reduce orthogonalization schemes in Section ®.

It is possible to apply SpMV in a CA fashion [CLE].
To reduce communication latency, each process com-
municates all the vector elements with neighboring pro-
cesses, which are needed to apply an SpMV s times with-
out further communication. Unfortunately, it is still
a challenge to apply the preconditioner in a CA fash-
ion [23, [111]. Researchers have only figured out how to
do so for a few preconditioners. In particular, the large
class of effective and scalable preconditioners that the
terms "multilever or "multigrid" encompass do not fit
naturally into the CA framework. In order to support a
wide range of applications, which use different precon-
ditioners, our current implementation does not use the
CA variant of SpMV and communicates for each applica-
tion of the SpMV or a preconditioner (both of which are

used as user-provided black-box subroutines). In many
application, the preconditioner scales better than the
orthogonalization scheme, and the solver performance
may be improved merely by avoiding communication
during the orthogonalization process. Previous work
shows that focusing only on orthogonalization can im-
prove performance significantly [CLE].

2.2 Pipelined GMRES. Rather than avoiding
global reductions, pipelined GMRES [c4 was designed
to hide communication by pipelining the Krylov itera-
tions and overlapping the global reduction with one or
more subsequent iterations. In this paper, the focus is
on a pipeline depth of one. With the pipeline depth
of one, SpMV is applied to the previous basis vector vj,
which has not yet been orthogonalized, such that the
global reduction required for the orthogonalization can
be overlapped with the SpMV.

Because SpMV is applied to the vector before orthog-
onalization, pipelined GMRES must update the vector
resulting from the SpMV,

vj+1 := A(vj —

= wj —

before orthogonalizing vj+1. This additional update re-
quires about the half of the computation cost of CGS1,
and an additional set of basis vectors Wi:j = AQi:j
must be stored. However, with this additional stor-
age and the local BLAS-2 operation, pipelined GM-
RES attempts to hide the global reductions. With a
deeper pipeline depth t, the global reduction may be
overlapped with the SpMV and orthogonalization in the
subsequent iterations.

Merely overlapping global communication may
achieve a maximum possible speedup of two. When the
iterations can be effectively pipelined, a greater speedup
may be possible. Pipelined Krylov methods have also
been shown to mitigate hardware performance varia-
tions ("noise' or "jitter") [Th,

3 Single-reduce Block Gram Schmidt

To implement the single-reduce orthogonalization
schemes for s-step GMRES, we first merged block CGS'
global reduction with CholQR's global reduction, as
shown in Figure g.

Then, in order to maintain the orthogonality of
the new basis vectors against the previous vectors,
reorthogonalization is performed by applying CGS twice
(CGS2). It is possible to apply this reorthogonalization
without additional global reduce by taking advantage of
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1. // compute dot-product

Ri:j+s,j:j-Es :=[Qi:j-i,Vj:j+51TVjj-Es
2. // CGS to orthogonalize against previous vectors

V3:3-bs :=V3:3-ks -Q1:3-1R1:3-1,3:3-ks
3. // update the Gram matrix

Rj:j+s,j:j+s := Rj:j+s,j:j-ks

4. // compute Cholesky factorization

Rj:j+s,j,j+,:= cho1(Ri,j+5,j,j+5)

5. // triangular-solve to generate orthonormal vectors

qi:j+s:=Vi:j+.Rjj-ks,j:j-Es

Figure 2: Single-reduce CGS+Cho1QR algorithm to
orthonormalize the s + 1 vectors V3:3+s against C21:3-1.

the following equalities:

Vi:j+s

(3.2)

= (I - Ql:j-1(41:j-1)17j:j-ks

(I - Qi:j_i(2I - T)QT:j_i)Vj:j+s

Vj:j+s - Ch,j_1(21. - T)Ri:j_i,j;j-ks

= Vjj-ks (21:j-1141:j-1,j:j+s,

where = QT • I7.• •1:3-i 3.3+.9 and T =

Cgj-ic2i:j-i. Hence, for the single-reduce CGS2, the
j-th through the (j + s)-th columns Ri:j_i,j;j+, of the
upper-triangular matrix Ri:j+s,j;j+, is replaced with

k1:3-1,3:3-Fs = (21 - T)Ri:j-i,j:j-Fs. At every s-th step,
the last s columns of T and R are computed with a sin-
gle global reduce, i.e., :=

An alternative approach to improve orthogonality is
to replace CGS with MGS. It is possible to apply MGS
with a single reduction, based on the following equality:

Vj:j+s (I - j-i

H clkcinV.i:j+s
k=1

Vj:j+s - (21:3-1(1- - L)-1111:j_i,j,j+s

(3.3) Vj:j+s - Qi:j-iRi:j-i,j:j+s,

where L is the strictly lower-triangular part of T.
Hence, for single-reduce MGS, Ri,j_i,j;j+,, is replaced

with i4i:j-i,j:j+s := (I - In exact

arithmetic, T = I and L = 0, and hence, /1:j_i,j:j_ks in

(3.2) and in (3.3) both equal Ri:j-1,3:j+s•
Due to the rounding error, we may also loose

the orthogonality among the new s basis vectors.
Since the single-reduce CGS2 and MGS compute

QT:j-3(23-s:3-11 CholQR can use the
last s rows of the resulting matrix, for
reorthogonalizing Qj_s:j_i among themselves. Hence,
we combine this reorthogonalization with CGS2 or MGS
to orthogonalize the next s basis vectors Vj+s,j+2s
against Qi:j+8-1 without needing an additional global

reduction. Figure 1(b) illustrates the vectors being or-
thogonalized.

The last vector q3+, was not reorthogonalizaed us-
ing Cho1QR. Instead, the next s-step orthogonalization
process reorthogonalizes q3+8, which is the starting vec-
tor for generating the next s basis vectors V3-Fs+1:3-F2s
(as discussed in Section 2). If the starting vector
q3+, is reorthogonalized with Cho1QR, then the vectors

V3+s+1:3+2.57 which are generated by applying an SpMV
to qj+s, must be updated accordingly. This requires
additional computation and storage (similar to what
pipelined GMRES does, as explained in Section 2.2).

Furthermore, at Step 3 in Figure g, single-reduce
CGS+Cho1QR updates the Gram matrix, assuming the
orthogonality of Qi:j_i. Using the auxiliary matrix T,
it is possible to update the Gram matrix without this
assumption:

v7J+.9v.i:J+s

(Vj:j+s - (17,j:j-Fs Ql:j-1R1:j-1,j:j+s)

V.T.j+sVj:j-ks RTj_i,j,j+s(QT:j_iCh:j-1)R1:j-1,j:j-ks

VL+,,Q1:j-1R1:j-1,7:7-Es

= Rj:j+s,j:j-Es

5pT 
Rl. • -1 jj-Es,-RT,.; -_L '3 • •, s

where Ri:j-i,j:j+s = or R1:3-1,3:3-ks =
Ri:j_ij:j-Fs using single-reduce CGS2 or MGS from
(3.2) or (3.3), respectively. In the previous scheme
in Figure g, it was assumed T = I and hence,

Ri:j-1,3:3-Fs = R1:3-1,3:3-Fs•
Figure 3 shows the resulting single-reduce orthogo-

nalization schemes, and Figure 4 lists the cost of each.
Compared with the standard orthogonalizations, their
single-reduce counterparts require about the same com-
putational cost, but perform fewer global reductions.

Previously, single-reduce orthogonalization schemes
were used to orthogonalize one basis vector at a time for
the standard GMRES iteration, by merging two global
reductions [21, A. The low-synchronization CGS2 and
MGS algorithms, with O(e) and O(En(V) orthogonality
errors, respectively, were presented in ZIA. We
extend these algorithms to orthogonalize a set of s basis
vectors in s-step GMRES.

These single-reduce orthogonalization techniques
can be also integrated into pipelined GMRES. While
standard CGS1 computes the non-blocking dot prod-
ucts  3QT • -iv3 for generating the coefficients
in (2.1), single-reduce CGS2 and MGS compute

vi]. Though this does not increase the
communication latency, it doubles the computational
cost and communication volume for the non-blocking
operation. However, the main benefit is to improve nu-
merical stability of the pipelined solver.
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// Global reduce

[Li,j+s,j—s:j-1,R1:j+s,j:j-Es[:= [Qi:j—I,Vj:j-Fs[T[Qj—s:j-1,Vj:j-Es[

// Lagged re-normalization by CholQR
// Cholesky factorization

:=
//re-normalize the previous vectors cpj_s;j_ i;

Qj-s:j-i '=
// update the previous normalization coefficients
Rj_s:j-i,j-s:j-i :=

// update the coefficients

Li,j_i,j—s:j-1 :=

// update the coefficients QT_s:j_iC2j_s,j_i

// convergence check for GMRES

Orthogonalize new vectors against previous vectors

,= // save original coefficient
// update coefficient for block MGS
if MGS then

R1:)-1,j:j-Es := (I —
end if

// form T := L LT — I
Tl:j-1,k:j := Ll:j-1,k:j

Tk:j,i:j-1 LT:j-1,k:j
// update coefficient for block CGS2
if CGS2 then

:=

end if
// Orthogonalize Vj ;j+ s against Qi: j — I
Vj:j-ps := Vj:j-ps Qi:j—iRl:j—i,j:j-ps

// Normalization by single-reduce CholQR
// update coefficient

Rj:j_ps,j:j-ps :=

—RT,j 1,j:j+sR1,j-1,j:j-ks RT;j_i,j; ±sR1:j-1,j:j+s

// Cholesky factorization
Rj:j+s,j:j+s := chol(Rj:j_ps,j:j_ps)
// normalize new vectors

Vi.j-FsR1:11-ps,j:j-ps

Figure 3: Pseudocode of single-reduce orthogonal-
ization schemes to orthogonalize a set of A vectors lig
against a set of j 1 vectors Q0,3 and among V. It also
performs lagged normalization of the previous s vectors.
L is stored as T in the actual code.

# of reduces flop count
standard CGS + Cho1QR

single-reduce CGS + CholQR
standard MGS Cho1QR

single-reduce MGS CholQR
standard CGS2 Cho1QR2

single-reduce CGS2 Cho1QR2

2 (4sj 282)n
1 (4sj 2s2)n
j (4sj 282)n
1 (6sj 2s2)n
4 (8sj 482)n
1 (6sj 2s2)n

Figure 4: Cost of orthonormalizing s 1 vectors Q3,3+.5
against the previous j — 1 vectors (21:3-1, where n is the
number of rows in the basis vectors.

4 Numerical Results with Single-reduce GS

4.1 Pipelined GMRES. We first give numerical re-
sults using standard and pipelined GMRES combined
with three different orthogonalization schemes: CGS1,
CGS2, and MGS. Figure 5 shows the decreasing rela-
tive residual norm 11Ax3 — and increasing
orthogonality error 11T - /11 at each iteration when solv-
ing the linear system with diagonal coefficient matrix of
dimension 100, A = diag(0.001, 1, 2, . , 99) [D]. All of

our experiments were conducted in double precision.
In Figure 5, the pink, blue, and green lines with the

x , or * markers show convergence of GMRES with
different orthogonalizations. CGS2- and MGS-based
GMRES have the same convergence rates (the blue
and green lines overlap) and both reach the minimum
achievable residual norm E • (1113112 111111211x112) with
the machine epsilon E. However, when using CGS1
(pink line with *), GMRES stagnates before reaching
the minimal residual norm, because the built-up loss
of orthogonality eventually affects the basis quality.
Similar to CGS1, the orthogonality error with MGS
increases, but at a slower rate C9(rk) (compared with
O(Ek2) with CGS1), where Ic is the condition number
of the Arnoldi matrix [ro, Al4Th]. In fact, MGS-based
GMRES can always obtain the minimal residual norm
before complete loss of orthogonality [9]. Finally,
CGS2 maintains orthogonality, and GMRES converges
without any stagnation.

`q

c
o
O 10-5
0
O

o

to°

10-1()

—e—GMRES+CGS1
—1— GMRES+CGS2
—..—GMRES+MGS
—a— Pipeline+CGS
- Pipeline+CGS2
—e— Pipleine+MGS

Orthogonality Errors

0 20 40 60

iteration
80 100

Figure 5: Orthogonality error and relative residual
norm using standard or pipelined GMRES with different
orthogonalization schemes, for solving the linear system
with the diagonal matrix diag(0.001, 1, 2, ... , 99) [E1A].

The red, orange, and blue lines with the square,
circle, and triangle markers show convergence results
for pipelined GMRES with the single-reduce variants of
the same three orthogonalization schemes: "CGS1" (red
line) based on the previous scheme PI], and "CGS2" (or-
ange line) and "MGS" (blue line) introduced in this pa-
per. Our experiment was designed to stress the numeri-
cal stability of GMRES (e.g., generating the projection
space of dimension n without restart). Pipelined GM-
RES, which implicitly computes two sets of the vectors
Q and W, faced numerical difficulties, even when the
orthogonality among the basis vectors was maintained.
Consequently, the pipelined GMRES with CGS1 failed
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at the 56-th iteration due to a non-positive normaliza-
tion factor. Although the new orthogonalization scheme
could not achieve the solution accuracy obtained by the
standard GMRES, it was able to obtain a higher solu-
tion accuracy than that obtained by the previous or-
thogonalization scheme.

4.2 CA GMRES. Figure p displays the relative
residual norm and the orthogonality error for s-step
GMRES when solving two different problems: one nu-
merically difficult problem with steam1 in Figure
and the standard 3D Laplace problem in Figure
Figure 6(a) shows the same convergence behavior of the
standard GMRES (i.e., green lines), as in Figure 5,
where MGS- and CGS2-based GMRES converge, but
CGS1-based GMRES stagnates.

Figure 6(a) also demonstrates that when s =1, our
implementation of s-step GMRES is more stable than
the standard GMRES, because it reorthogonalizes the
starting vector every s-th step. In fact, with s= 1, the
algorithm behaves similarly to GMRES+CGS2.

Figure 6(b) then compares the loss of orthogonality
and residual norms of the standard GMRES, with those
obtained from the s-step GMRES with s= 5, when
solving a 3D Laplace problem. For the standard Laplace
problem, the single-reduce schemes obtained similar
orthogonality errors when compared to the standard
scheme.

6(a)

5 Trilinos Software Framework

6 (b)

Trilinos [1] 1] is a collection of C++ software packages
for large-scale, complex, multiphysics engineering and
scientific applications. Many of these packages work to-
gether to solve large sparse linear systems via Krylov
subspace methods and preconditioners. Several appli-
cations depend on Trilinos for linear solvers. Further-
more, Trilinos provides and uses software components
that make it easier to write high-performance solvers
that are portable to different computer architectures
with a single code base, including architectures that do
not exist yet. Thus, making our new solvers available
in Trilinos could have a large impact on several appli-
cations on different current and future architectures.

5.1 Tpetra. We used Trilinos' Tpetra software pack-
age [2] to implement our solvers. Tpetra provides par-
allel data structures and computational kernels for con-
structing and solving large sparse linear systems. "Par-
ana' here includes both distributed memory (via the
Message Passing Interface (MPI)) and shared memory.
Tpetra uses Kokkos [5] for shared-memory parallelism
and memory management. Kokkos presents a single
programming model and software interface for many dif-

to°

flp-tn

COS2

10",,

1 a°

104

lads

50 100 150 200

iteration

—standard
- -s-step
--single-reduce

iteration iteration

(a) steaml matrix, with n = 240 and s = 1.

COS2
to°

f,

1,0,0

0 200 400 600 800
iteration

COS1
to°

200 400 600 800 0 200 400 600 800
teration iteration

(b) Laplace 3D matrix, with n = 100000 and s= 1.

Figure 6: Orthogonality error and relative residual
norm using different orthogonalization schemes, "GM-
RES" displays results based upon the standard GM-
RES, while the remainder employ s-step GMRES with
different orthogonalization algorithms, e.g., for CGS2,
"standar& uses CGS2 for both block QR and TSQR,
and "s-step" applies CGS2 for block QR and then
Cho1QR2 for TSQR, while "single-reduce relies on the
single-reduce CGS2+Cho1QR2.

ferent underlying programming models (e.g., OpenMP
and CUDA) and architectures (e.g., CPUs and GPU).
It promises "performance portability" - that is, one
code base can perform reasonably well on many different
node architectures, even if they don't exist yet. Some
shared-memory parallel computational kernels need to
be tuned specifically for each architecture. For this,
Tpetra uses the kokkos-kernels package for a portable
interface to these kernels.

In order to implement pipelined solvers, we have
introduced a new function idot to Tpetra to perform
non-blocking dot-products. idot uses the nonblocking
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collectives in version 3 of MPI. Nevertheless, Tpetra
must support older versions of MPI as well, and in fact,
must build even if MPI is not available. For correctness'
sake, idot must always be nonblocking. We solved this
problem using C++ abstractions as follows.

• idot returns std: : shared_ptr<CommRequest>.

• CommRequest is an abstract base class (in C++
terms) representing the pending communication
request. Its wait method blocks until the pending
request completes, and its destructor cancels the
request. The latter avoids memory leaks if users
let the request fall out of scope.

• Use of std: : shared_ptr avoids "double cancella-
tion" if users make extra copies of the request.

• If Tpetra was built with MPI 3, idot calls
MPI_Iallreduce to sum the results of the local
dot products. The returned CommRequest manages
the resulting MPI_Request. Its wait method calls
MPI_Wait, and its destructor calls MPI_Cancel.

• If Tpetra was built without MPI or with a ver-
sion of MPI older than 3, then the returned
CommRequest hides a closure (a C++ "lambdal
that captures the input and output to the idot,
and calls MPI_Allreduce (if MPI is available). The
closure "delaye the blocking all-reduce until the
user calls wait.

• With all implementations, idot can capture the
input and output using reference-counting types.
This prevents users from accidentally deallocating
space for the input and output before the all-reduce
completes.

idot can handle both a single dot product of two
vectors, and multiple dot products of one vector with
each of a collection of vectors in turn. The latter op-
eration is useful for pipelined Krylov methods. Tpetra
optimizes it by only doing a single local computational
kernel launch and a single all-reduce for all the vectors.

5.2 Belos. Trilinos' Belos package implements
Krylov subspace methods [4. All solvers implement
the Belos : :SolverManager interface. Users can
get a solver instance by passing the solver name to
Belos : :SolverFactory. They may then set param-
eters (e.g., stopping criteria and orthogonalization
scheme) and the problem (linear operator, precondi-
tioner, and right-hand-side vector). Finally, the user
can compute the solution by calling the solve function.
Figure 7 illustrates the interface.

// create solver

Belos::SolverFactory<SC, MV, OP> factory;

RCP<Belos::SolverManager<SC, MV, OP> > solver;

solver = factory.create (solverName, Teuchos::null);

// set solver parameters

params->set ("ConvergenceuTolerance",

commandLineOptions.tol );

params->set ("MaximumuIterations",

commandLineOptions.maxNumIters);
params->set ("StepuSize",

commandLineOptions.stepSize);

params->set ("ComputeuRitzuValues",

commandLineOptions.computeRitzValues);

params->setRightPrec(M);

solver->setParameters (params);

// set /inear system to solve

auto problem

= rcp (new Belos::LinearProblem<SC, MV, OP>

(A, rcpFromRef (X), B));

problem->setProblem

solver->setProblem (problem);

// solve the linear system

solver->solve ();

Figure 7: Illustration of Belos linear solver interface.

Belos uses so-called "traite classes to define a
fixed interface to vector, matrix, and preconditioner
operations that the solvers can use. Users can specialize
the traits classes for their own vector, matrix, and
preconditioner types. Belos provides specializations
of the traits classes for Trilinos' native linear algebra
classes, including Tpetra.

Belos' use of traits classes for polymorphism makes
it difficult to expand the set of linear algebra operations
that "generic" solvers can use. This is because the
traits classes use compile-time polymorphism through
template specialization. If we add methods to the
generic traits class and use them in a generic Belos
solver, then users who have specialized the traits for
their own linear algebra classes won't be able to compile
Belos with their classes any more. This would break
backwards compatibility — an important consideration
for production software.

This is a problem for CA and pipelined solvers that
require new types of linear algebra operations, such
as nonblocking dot products and the matrix powers
kernel. However, Belos has an option for developers
to implement solvers that are specific to a set of
linear algebra types, and make them available through
SolverFactory, just like Belos' generic solvers. We
use this facility to develop our new solvers using native
Tpetra functionality, like idot. Applications who use
SolverFactory can, in turn, access our solvers without
changing their C++ code, just by using a different solver
name in their input decks.
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6 Performance with Nalu-wind on Cori

To study the performance of our solvers in a real appli-
cation, we integrated our solvers into Nalu-wind, a com-
putational fluid dynamics application. Nalu can simu-
late air flow over tens or hundreds of wind turbines,
and is one of the ECP applications. At each time step
of the simulation, it solves a nonlinear problem by self-
consistent iteration over several linear systems. It repre-
sents the linear systems with Tpetra sparse matrices and
dense vectors, and solves them with Krylov methods
from Trilinos' Belos package and preconditioners from
Trilinos' Ifpack2 and MueLu packages. We focus in this
paper on the "pressure Poisson" linear system, which is
usually the most difficult of the linear systems. Nalu
normally solves this with Belos' GMRES and an alge-
braic multigrid preconditioner from the MueLu package.

We deployed our new Krylov solvers by mak-
ing them available through Belos' solver factory (Sec-
tion 5.2). This means that we did not need to change
any Nalu C++ code. We merely had to change one line,
specifying the solver name, in Nalu's "input deck," a
text file that users write and that Nalu reads on startup.

To
ta

l 
so
lu
ti
on
 t
im
e 

102

-e-GMRES+ICGS
-0-s-step, newton, standard CGS+CholQR
-8-s-step, newton, single-reduce CGS+ChoIQR2
-A-s-step, monom, single-reduce CGS+ChoIQR2
- - -linear

1.4x

1.5x
1.4x

1.4x

1.4x
1.4x

256 512 1024

Process count

1.4x

1.4x
A3x
1.4x

2048 4096

Figure 8: GMRES performance on Cori Intel Haswell
nodes for solving the pressure Poisson systems from
Nalu-wind (n = 95M). With the monomial basis, s-step
failed on 2048 processes.

Figure 5 shows the total time needed to solve the
pressure Poisson systems during a 20 time step simu-
lation on the Intel Haswell nodes of the Cori Super-
computer at NERSC. We complied our code using the
Cray compiler wrapper CC for the Intel C++ compiler and
linked to the Cray Scientific Libraries package, LibSci.
We used the default Nalu-wind setup: GMRES with a
restart length of 100 and the smoothed aggregation al-
gebraic multigrid (SA-AMG) preconditioner in MueLu.
(Our solvers can be used with any SpMV and precon-

ditioner kernels.) The solution was considered to have
converged when the relative residual norm became less
than 10-5. With this setup, GMRES needed 62-193
iterations for solving each system.

For s-step GMRES, we used s = 5, with a Newton
basis [1] for numerical stability. We computed shifts
for the Newton basis with Ritz values from five itera-
tions of standard GMRES. By reducing the communi-
cation needed for orthogonalization, the s-step method
was able to reduce GMRES iteration time (red dia-
mond markers compared with blue circle markers). The
single-reduce schemes further reduce orthogonalization
time (green square markers), although in this applica-
tion, the iteration time was not significantly reduced.
This is because the s-step method reduced orthogonal-
ization time such that iteration time is now dominated
by the multigrid preconditioner.

Overall, on a small number of CPUs, single-
reduce CGS+Cho1QR2 was slower than standard
CGS+Cho1QR due to the additional computation for
applying Cho1QR twice, but the single-reduce algorithm
provides more stability. When the CPU count increases,
the communication cost for the orthogonalization be-
comes more dominant, and the single-reduce scheme be-
comes faster than the standard scheme (single-reduce
with one global reduce compared with the standard
CGS+Cho1QR requiring two global reduces).

7 Performance with 3D Laplace on Summit

To demonstrate our solver implementation's portability,
we show solver performance on the Summit supercom-
puter at Oak Ridge National Laboratory. Each Sum-
mit node has two 21-core IBM Power 9 CPUs and six
NVIDIA Volta V100 GPUs. The code was compiled us-
ing g++ compiler version 6.4 or NVIDIA Cuda 9.2 with
the optimization flag -03, and linked to the IBM Engi-
neering and Scientific Subroutine Library (ESSL) ver-
sion 6.1 and Spectrum Cuda-aware MPI version 10.3.

7.1 CA GMRES on Volta GPUs. Figure
displays the average iteration time when applying the
different orthogonalization schemes for solving the 3D
Laplace problem, without a preconditioner. On a fixed
number of GPUs, GMRES converges with the same
iteration count when using any of the orthogonalization
schemes (except that the s-step method can result in a
maximum of s-1 additional iterations because it checks
for convergence every s steps). Thus, the speedup
obtained in terms of the time to solution is the same
as the speedup obtained with respect to the time per
iteration.

The standard GMRES iteration time (i.e., the black
line) in Figure (9(a)) shows that MGS-based GMRES

9(a)
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Figure 9: GMRES performance on Summit NVIDIA
V100 nodes for solving 3D Laplace (n = 8M).

is faster than GMRES with CGS1 on a small number
of GPUs. Also, when using MGS, s-step GMRES
is slower than standard GMRES. These unexpected
results are because both orthogonalization and solver
performance depend strongly upon local computational
kernel performance, especially on a small number of
GPUs.

For computing dot products with multiple vectors
at a time, we use NVIDIA's cublasDgemm function,
wrapped in kokkos-kernels' portable gemm interface.
To compute single-vector dot products, we use the
portable kokkos-kernels function dot. We have found
that cublasDgemm is not optimized for many cases
of "tall and skinny" matrices. Figure 1.() shows that
cublasDgemm does not perform as well as dot unless
there are a large number of basis vectors (e.g., s = 50).

Developing a high-performance dense matrix-
matrix multiply kernel for the GPU is not only a
lot of work, but it calls for architecture-specific (even
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Figure 10: DGEMM and DDOT performance of computing
the dot products QT:3 Q3+1,3+s on NVIDIA Volta 100
GPU (n = 8M).

GPU model-specific) details that would hinder our goal
of performance portability. This is why we rely on
NVIDIA's native cuBLAS library. Some of the au-
thors have experience implementing custom CUDA ker-
nels for tall and skinny matrix-matrix multiplies, but
an important goal for Trilinos development is avoid-
ing architecture-specific code. Our next step is to
use Kokkos to implement these kernels in a platform-
independent way. The performance of the solvers using
CGS, and its s-step and single-reduce variants, is ex-
pected to improve further when a matrix-matrix mul-
tiply kernel optimized for tall and skinny matrices be-
comes available.

Nevertheless, s-step GMRES still outperforms stan-
dard GMRES on a large enough number of GPUs, where
the inter-GPU communication becomes much more sig-
nificant. Then, by further reducing communication cost,
the single-reduce variant of GMRES outperforms the
s-step variant (respective maximum speedups of 2.4 x ,
10.1 x , and 1.4 x over s-step, using CGS2, MGS, and
CGS1). In fact, the single-reduce variant of CGS2 or
MGS takes about the same iteration time as the CGS1
variant, suggesting that using the CGS2 or MGS vari-
ant, the stability of the GMRES iteration can be greatly
improved without slowing down the iteration time.

Figure 9(b) shows the breakdown of the iteration
time. On a large enough number of GPUs, the iteration
is dominated by SpMV and the benefit of using the single-
reduce orthogonalization kernel starts to diminish I

'With an increase in the GPU count, the standard GMRES
iteration time will start to grow due to the quadratic time inter-
GPU communication cost. For these extreme strong-scaling tests,
the s-step or single-reduce iteration will delay the increase in the
iteration time to a larger number of GPUs. These extreme setup
cases are not shown as they are of no interest for the practical
cases.
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#Size Overall(us) Compute(us) Pure Comm.(us) Overlap(%)

8 10.43 6.47 5.66 30.00
16 10.43 6.47 5.68 30.27
32 10.70 6.59 5.73 28.30
64 10.49 6.47 5.75 30.03
128 11.61 7.24 5.91 25.87
256 11.75 7.29 5.98 25.48
512 13.04 8.01 6.79 26.00
1024 13.64 8.72 7.11 30.73
2048 15.22 9.41 8.23 29.34

Figure 11: Non-blocking allreduce latency test between
four processes, with two process on one node of Summit.

7.2 Pipelined GMRES on Power9 CPUs. We
now show performance of the single-reduce orthogonal-
ization schemes, in combination with pipelined GM-
RES, on the ORNL Summit Power 9 CPUs.

The performance of pipelined GMRES depends
strongly on the performance of nonblocking MPI col-
lective communication operations, in particular, how
well they make asynchronous progress. MPI does not
promise that nonblocking collectives do anything at all
until users wait on them. In practice, MPI implementa-
tions use an extra thread per MPI process to drive asyn-
chronous progress. This "progress threads" option may
impose a cost on every MPI send and receive, and it may
not be enabled by default. For our experiments, we did
not use the progress threads (it improved the overlap-
ping of the communication and computation, but slowed
down the iteration, i.e., SpMV).

To study this, we first ran the Ohio State Univer-
sity Micro-benchmarks. Figure Illl shows an overlap of
around 30% between communication and local compu-
tation. Unfortunately, this may not reflect the actual
solver performance. This is because the solver also per-
forms point-to-point communication for SpMV between
the nonblocking collective and the local SpMV compu-
tation. Thus, in order for collective communication
to overlap with computation, the collective operations
must also be pipelined with the point-to-point commu-
nication. Overall, Figure I12I suggests only a marginal
benefit from pipelining on thousands of processors.

However, the focus of the experiments is to study
the overhead of our single-reduce CGS2 or MGS or-
thogonalization schemes over the performance of the
pipelined GMRES with the standard CGS. In Sec-
tion 4, we have already demonstrated that these improve
the stability for solving ill-conditioned linear systems.
For the performance experiments in Figure 1-21, the 3D
Laplace problem was examined (also in Figure 9). For
this problem, the pipelined GMRES does not encounter
the same numerical difficulties, and thus, all variations
of pipelined GMRES performed the same number of it-
erations with the equivalent MPI process count. The
figure shows that the extra stability can be obtained
without significant overhead (in some case, it can be
faster due to the performance of underlying kernels).

laGMRES+MGS, proc/core
-*Blocking CGS1, proc/core
ABlocking CGS1, proc/socket
'Non-bbcking CGS1, prodcore
-B-Single-reduce MGS, proc/core

14 21 42 84 168 336 672 1344 2688 53

Number of CPU cores

Figure 12: Time per iteration for solving 3D Laplace
problem (n = 8M) using the pipelined GMRES on
Summit Power 9 CPUs.

8 Conclusion

We studied the performance of single-reduce Gram
Schmidt orthogonalization schemes for s-step and
pipelined GMRES. These implementations reduce the
communication cost of the corresponding orthogonaliza-
tion schemes, or equivalently, improve the orthogonality
of the generated basis vectors with a single global re-
duce. Our implementation is based on the Trilinos soft-
ware framework, which allows us to develop solvers that
perform well on many different computer architectures
with a single code base. Our numerical and performance
results on three different architectures demonstrated the
potential of the new orthogonalization schemes.

We have also shown that the performance of these
solvers depends strongly on the performance of the
underlying communication and computational kernels.
We expect better performance of the communication-
avoiding or pipelined solver, and the benefit of the
single-reduce orthogonalization, as the performance of
these kernels mature on the new architectures (e.g., the
BLAS-3 kernel for the tall and skinny dot products).
Also, it is still a challenge to overlap the nonblocking
all-reduce (followed by point-to-point communication)
with the computation, especially with the GPUs. We
are currently looking at supporting this feature more
effectively in Trilinos.

We are studying the extension of the orthogonaliza-
tion algorithms, to improve the orthogonality of the ba-
sis vector generated by single-reduce CGS2 with extra
computation. The GPU implementations of different
preconditioners are beyond the scope of this paper, but
we would like to study the performance of our solvers
in a real application on GPUs.
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