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Outline

> Multigrid background for solving

A u = f

ideal setting 1 > more complex situations

(stability of coarse operators)

> Non-symmetric smoothed aggregation (NSA) & polynomials

• Error expressions & stability

• Model problem results

> Piecewise constant grid transfers & mass stabilization

• Algorithmically simpler Sandia
National

• Hypersonic problems in Sandia's SPARC code Laboratories



Geometric Multigrid

• . . . . . . . . . . . . . . .

R1 Approximate PDE on (user supplied) grid
hierarchy

. . . . . . . .

-112
• •

. 

Develop smoothers (approximate solve on a level)

Jacobi, Gauss-Seidel, CG, etc.

Develop grid transfers (e.g. linear interpolation)

Use coarse Ak's to accelerate convergence for A0

Solve
•ik A0 /10 = fo so
P11

A1 111

A2 112

A3 113

= 4 s1

= f2 s2

= f3 S3
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Algebraic Multigrid (AMG) for A AT

• Given Ao, automatically build remaining MG operators:

Ak, Pk , Rk, Sk YS

• Once Pk's are defined, the rest follows "easily":

- Rk= PkT

- Ak+1= Rk+lAkPk÷l (Galerkin coarsening)

•No need to supply mesh hierarchy!

•Divorces application a bit from MG development!

•Greater code reuse!
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w
Algebraic MG behavior

• High & low frequencies not available algebraically.

• These notions are replaced with 11 • 11,4k or 11 • 114

• 11 ek IlAk or 11 ek 114 small low frequency

• 11 ek IlAk or 11 ek II jqc large high frequency

• Properties of AMG methods 

- Sk smooths errors with high energy (II ek IlAk large).

- Pk must accurately interpolate low energy errors (small 11 ek IlAk ).

- Pk must interpolate errors not damped by smoothing.

• Note: vl k V-17Av
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Assume

A 2-level convergence result

2 2 2
llso eollA0 11 eollAo — all eollA6

(Jacobi & Gauss Seidel satisfy this for certain SPD matrices)

and

minll eo—P1e1 E c fllle011A0el

Then, 2-level MG (ST) satisfies the following independent of mesh

Ilso TIIA0 —
a

13
eo is fine grid error, el is coarse grid error, So is smoother , T is
coarse grid correction operator.



Smoothed Aggregation AMG: Pk

• Coarsen graph of Ak
— Graph based algorithms

— Aggregation lumps nodes together

• Compute Pk's coefficients
— Capture constant

— Minimize some A-norm type quantity.

40-40 

Root node Op Aggregated

Neighbor 4104 Adjacent tar aggrega
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-/.4,* Smoothed Aggregation: Pk coefficients

Finding Pk

5 5 2 2 2 7 7

5 2 7

• Build tentative tPk to interpolate constant

- where tPk(1,1)=
1 if Ph point within jth aggregate

0 otherwise

Smoothed aggregation

+ Improves ti3k with Jacobi's method: Pk = (I cok-1 d1ag664-1) 1 Ak-J tPk

+ Pk emphasizes what is not smoothed by Jacobi

▪ Rk= (13k)T

Seek to adapt smoothed aggregation to highly convective systems
Sandia
National
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Smoothed Aggregation

• take constant

• split into local basis functions

• smooth basis functions
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What can go wrong?

• Lots of things, but we'll focus on

• Simple smoothers (Jacobi & Gauss-Seidel) may not smooth all
high frequency errors

• Ak's (Ak= RkAk_l Pk , k > 0) are not guaranteed to be stable
even if Ao is stable, especially in non-symmetric case

e.g., linear interpolation for Pk with Rk= P7c7 often leads to

unstable Ak's for highly convective flows

Seek to adapt smoothed aggregation to highly convective systems 
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Coarse Grid Stability & Piecewise Constant
Transfers (PCT)

PCT considered relatively safe

Ao (fine level discretization) is M-matrix + PCT's

Ak (coarse discretizations) are M-matrices

However, consider

with stencil

Then

P(.7c)ux = f

i 1.1 1 .11

I_ h Ti. Tii p'x'
and mesh space h.

11p(xi) = p(xi + 26h) Ai,i_1 = —A1+26,i+27

where ith row corresponds to xi. Then, aggregating i to i+26 gives

[ 1.1 1.11 p(x)

h ° h i

unstable ®

Sandia
National
Laboratories



1̀11440,

Mg(Ak, uk, bk, k)

if not coarsest,

rk bk- Ak Ilk

Uk+1

AMG error expressions

Mg(Rk+1AAPk+1, Uk+1, Rkrk, k+1)

Uk Uk Pk+1 Uk+1
end

Uk Sk(Ak, Uk, bk)

Assumptions 

1) uo

is
uo

S0(A0, uo, bo)

ft,u() + (,30Dc7 
1
vio Aouo)

2) uk Sk(Ak, Uk, bk) k >

is
Uk (bk — Akuk)

3) post smoothing only



Resulting multilevel error propagation

e0
(j+1) _ FIL-1

(I — (.3k PkRkDVAo)mk e0(i)
k=0

• Ink is # of Jacobi/Richardson sweeps on level k

• L is # of MG levels

•Po = Ro = I ) Pk = POP1 — Pk , Rk = Rk ... R2fi1 Ro

Consider

Pk = t Pk (piecewise constant)

R1 = A1P1rD0 1

Rk = AkK for k > 1

and Ak is diag such that AkK rows sums are 1

Then, PkRk is just an aggregate weighted average. When
aggregates are equi-sized, it's just simple averages
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riapk piecewise constants scaled piecewise constant Rk's

(1+1) _ L1e0 k k 0 0- nk=0 — 6)1c P D-1-A Ynk e0(j)
k_y_J
averages

Pk = Pk

Rl = All'IT

Rk = Ak137; for k >1

and Ak force AkK rows sums to be 1

Note: Al = Al[ tpd (Dc71A0) tPk

For L-level cycle with 1 relax. sweep per level has L D0-1-A0 's. If
PkRk = I , this would imply a V cycle Jacobi sweeps Sandia
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4VA new non-symmetric Smoothed Aggregation
Algorithm

k> 1

P1 =(I — WODO 1A0) t131 Pk= — w 
t D

k—lAk-1) k

= A1( t ply ,_,13 
1-1
A \ 
01
n 
-/0 I) il Dk= Ak( t POT — Wk Ak)

= A1( ti31)77 — Do IA(0DV

SO

and

Rk # Pk

A1 = A1( - 
t , 
PO — D01A0)D0 1A0 — WoDo 1A0) tp1

polynomial in Do I-A0

Expressions get messy ... Sandia
National
Laboratories



Smoothed Aggregation

Expressions get messy, but ...

Ak+1= R +1 qk+108KF1 1 c > 0

with q0(D(T1 A0) = D(T1 A0

qk+1( • ) = qk0( I — cokPk+1Rk+1 qk0 )2
ilibillyll

averages

_piecewise constants

scaled piecewise
constants

A multigrid iteration can be fully expressed as DVA0 FINE grid operators & averaging

For a L level Vcycle with 1 relax. sweep per level

# of DVA0 = 1 + 3 + ... 3L-1 = (3L _ 1)12 Sandia
National
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Non-sym Smoothed Agg (NSA) summary

DiTlAk expression includes 3k D0-1-A0 operators

For a (m+1)-level NSA Vcycle with 1 relax. sweep per level

# of DVA0= 1 + 3 + 3m-/ = (3m - 1)12

For a m-level PCT Vcycle with 1 relax. sweep per level, # of D0-1-A0= m

Ak not necessarily even close to diagonally dominate

Choosing as is problematic for highly non-symmetric problems

BIG ASSUMPTION: Jacobi with proper w converges

No convergence guarantee, but this is hard for non-symmetric systems.

Do can be blkDiag( Ao ) for PDE systems

Algorithm somewhat similar but different than Sala & T, SISC'2008
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iy:"FrResults: Bent Pipe

--eAu+b • Vu= f in(0,1)x(0,1)

u = 0 on left, top, bottom BCs

u = y — .5 on right BC

b =
( —2x(1 — .5x)

—4 y (y — 1)(1 — x

E = .1 f or - \ I (x — .5)2 + (y — .5)2 , otherwise E = .001

upwind

nasty

1 [ 5 2 31

8 I_ h h hi 243 x 243 1000+ 236 (4) 130 (4)

81 x 81

iters (levels )

///...0.0w....w...........m-em-o.

f///,P..o...r................

1 1 / / if r ,---..........

lliii//::

...
,,

• •
• •

, t t
1 k \ \ \ \ \ N., .......

Ik\\\\NN............,.....
itikvv.,..........,.....,......._
\\ mk.......Ar...n.....F....:W....p1...dmlg..-mllP-40—.

GMRES* +
492 116 (3) 88 (3) MGV(0,1 co Jacobi)

243 x 243 1000+ 212 (4) 94 (4) co ,'t', 1 /p (D-'24)

729 x 729 1000+ 391 (5)

81 x 81 688 171 (3)

113 (5)

173 (3)

729 x 729 1000+ 416 (5) 130 (5)

Stop when residual
reduction of /0 -8

*no restarts
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4110416, 4OPPr Results (with same solver options)

recirculating 

—E Au +b•Vit= f in (0,1) x (0,1)

c & BCs as bent pipe

upwind

b = 4 x (x — 1)(1 — 2y)
y (y — 1)(1 — 2x))

1
Level

81 x 81 1000+ 154 (3) 111 (3)

243 x 243 1000+ 261 (4) 113 (4)

729 x 729 1000+ 440 (5) 121 (5)

PCT its / NSA its

(1,1) block of lid
driven cavity 
incomp. NS via IFISS

using W cycle

(last Picard solve)

33 x 33 37 / 24 64 / 57 92/ 87

65 x 65 54 / 24 91 / 61 117 / 115

129 x 129 70 / 23 117/ 44 146 / 115

257 x 257 119 / 26 198 / 42 249 / 68

/ ; 
::::::-7::—°..---I 
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t 1 t . . t i
t t t • i i i

A
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e / 1

/ /
It \\........... — 0,

....... 0, of /\ \\ \‘ ....‘ ..__ a" 400

0.0.140V111%.110*...1111...,...ipe• 40.0.' /

Ilk 

gloo.:104.4*...-.0--.2.--.44....-%r" Ar'''' /



Compressible Navier-Stokes

diFi(U) aGi(u)
axi oxi

with

( pvi 0
LT = rwj Fi(U) = pvivj + P4Sii and Gi(U) Tii

PE pEvi + Pvi iiivi

(1)

(2)
where p is the fluid density, v is the fluid velocity and E the fluid
energy per unit of mass which is expressed as E = + e the sum
of the kinetic and internal energy c. P is the fluid pressure, Tii is the
viscous stress tensor. q i = -Kr is the heat flux, T the temperature
and K the thermal conductivity of the gas.

focused on Newtonian fluid & ideal gases, though SPARC also
employs non-ideal gas models
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or Sparc Details

• nly steady-state considered in this talk

• Sparc uses a conservative cell-centered control volume
discretization, 7 point stencil (actually 7 block), upwind-ish

for t = 0, ...

Take adaptive pseudo-time step

1 Step of Newton's method

Solve 1st order Jacobian approximation system inexactly

• Non-linear residual uses 2nd order Jacobian

• Basic idea: small pseudo-steps needed initially for nonlinear
convergence, try to aggressively advance to large
pseudo-steps to accelerate to steady-state

Sandia
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Mesh Structure

Hypersonic objects generate strong shock-waves leading to

• Strongly flow dire  

• Low dissipation Recall the sleight of hand ...

• Hard to resolve Dk+lPic'Dk 1
To help with thes that now becomes ash

Tk+11317;71k-1

which is not generally sparse.

Essentially, a sparse approximation to 87,' is

needed such that T/T+11/37;

Line-Jacobi is the method of choice for linear systems Sandia
National
Laboratories



Blunt Wedge Problem

Sr;thred mesh: 723, 1443 or 2883 cells, 5 degrees of freedom per
cell, supersonic input flow: Mach 3.
First attempt: use unstructured vs.i structured aggregation, 1 sweep
IRO) as pre-smoother, 4 levels, coarseninm rate: 3 per direction.

Obsertartions:

Mesh size
Unstructured
Structured

723 1443 2883
46 87 N C
36 88 256

Table: Number of linear iteratians (to1=1e-6)

la 'linear interpolation with structured aggregation cliverges

three and four level methods give same convergence

3 scahng for either 'str uctured unstructured methods

One representative Iinear system toward the latter part of the
simulation with large 43t
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•

Line-Jacobi vs. ILU smoothing

411—• ILU 1 level •—• Jacobi 1 level

• 1LU 2 levels M—M Jacobi 2 levels

A ILU 3 levels Jacobi 3 levels

* ILU 4 levels 0,—* Jacobi 4 levels

ti

ti

3.8x iterations reduction

•

1i)i) (doi
linear iterations

serial
Overall good benefit
with MG

• ILU 1 rank

IN- • ULU 2 minks

fr- A ILU 32 ranks

Jacobi 1 rank

N--0 Jacobi 2 ranks
A—A Jacobi 32 ranks

•

•

•

■

ti

11111 17,H

linear iterations
200 250

parallel

Domain decomp. ILU
takes fewer iterations
in serial but scales
less well in parallel

Note: Have successfully
run NSA on aero-blunt
wedge



Mass Stabilization

• Add diagonal term to coarse grid operator

A k+i = Rk Ak Pk + (a- 1) Rk Mk Pk

where Mk's are projected mass matrices

oc
Unstructured

723 1443 2883
Structured

723 1443 2883

1

4

8
10

46
45
45

46

46

48

87
86
87

89
92
95

N/C

N/C
N/C

N/C

N/C

N/C

36

35
34

35

36

37

88
82
75
74

77
81

256
205
97

86

83

85

Observations

•helpful with structured
coarsening

•optimal a at bottom of U

a is parameterized in
terms of a CFL number
provided by the user
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Hifire + SA turbulence model

6 dofs per node

L3 et,i13 M dofs

L2 ,,,i106 M dofs

L1 idi856 M dofs

LO ,Pii6.8 B dofs

• Lots of nonlinear convergence problems
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2 level results

iterations over different linear solves (1 level in blue, 2 level in red)

66

60

45

40 -

25

20

15 -

10 
0

MSolve
2Iev MG

10 20 30 40 50 80 70

L2
80 90

5

45

25

20

15

10

1°1

tri
2LevMG

„,, 1, 1111111, ,•114

50 100 150 . OC 250 300

A sequence of linear solves with moderate time step

Nonlinear solver eventually stalls

L1
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46.‘W Conclusions

•  ypersonic problems are hard for multigrid

• NSA polynomial connection relevant for strong convection

— Assumes (block) Jacobi method converges reasonably

— MG iteration can be equivalent to fine Jacobi sweeps + averaging

— NSA generally better than PCT on model problems

• SPARC hypersonic flow application introduces challenges

— Stability often lost on coarse grid for PCT & NSA

— An NSA variant can accelerate convergence over PCT for model problem

— PCT can accelerate convergence on harder SPARC problems for large öt

... but results are mixed due to stability issues

— Line solve commuting needs to be worked out for NSA 7V1137;

Support provided by DOE ASCR program & NNSAATDM program
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