

Algebraic Multigrid for Highly Convective Flow Simulations

SAND2019-14998C

Ray Tuminaro
Center for Computing Research
Sandia National Laboratories

**L. Berger-Vergiat, C. Siefert @ Sandia,
M. Brazell@NREL,
D. Mavriplis @ U. of Wyoming**

Dec 2019

Outline

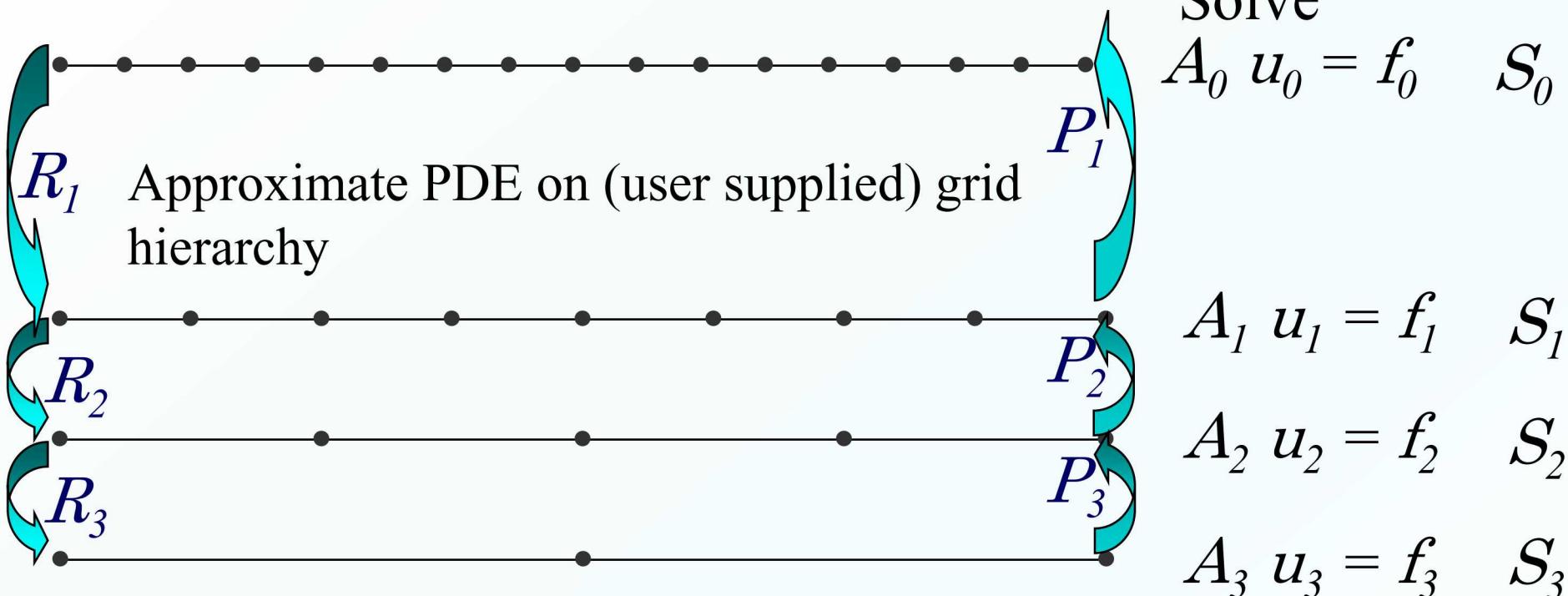
- Multigrid background for solving

$$A \ u = f$$

ideal setting *more complex situations
(stability of coarse operators)*

- Non-symmetric smoothed aggregation (NSA) & polynomials
 - Error expressions & stability
 - Model problem results
- Piecewise constant grid transfers & mass stabilization
 - Algorithmically simpler
 - Hypersonic problems in Sandia's SPARC code

Geometric Multigrid



Develop smoothers (approximate solve on a level)
Jacobi, Gauss-Seidel, CG, etc.

Develop grid transfers (e.g. linear interpolation)
Use coarse A_k 's to accelerate convergence for A_0

Algebraic Multigrid (AMG) for $A = A^T$

- Given A_0 , automatically build remaining MG operators:

A_k, P_k, R_k, S_k 's

- Once P_k 's are defined, the rest follows "easily":

- $- R_k = P_k^T$
- $- A_{k+1} = R_{k+1} A_k P_{k+1}$ (Galerkin coarsening)

- No need to supply mesh hierarchy!
- Divorces application a bit from MG development!
- Greater code reuse!

Algebraic MG behavior

- High & low frequencies not available algebraically.
- These notions are replaced with $\| \cdot \|_{A_k}$ or $\| \cdot \|_{A_k^2}$
 - $\| e_k \|_{A_k}$ or $\| e_k \|_{A_k^2}$ small \Rightarrow low frequency
 - $\| e_k \|_{A_k}$ or $\| e_k \|_{A_k^2}$ large \Rightarrow high frequency
- Properties of AMG methods
 - S_k smooths errors with high energy ($\| e_k \|_{A_k}$ large).
 - P_k must accurately interpolate low energy errors (small $\| e_k \|_{A_k}$).
 - P_k must interpolate errors not damped by smoothing.
- Note: $\| v \|_A = \sqrt{v^T A v}$

A 2-level convergence result

Assume

$$\|S_0 e_0\|_{A_0}^2 \leq \|e_0\|_{A_0}^2 - \alpha \|e_0\|_{A_0^2}^2$$

(Jacobi & Gauss Seidel satisfy this for certain SPD matrices)

and

$$\min_{e_1} \|e_0 - P_1 e_1\|_2^2 \leq \beta \|e_0\|_{A_0}^2$$

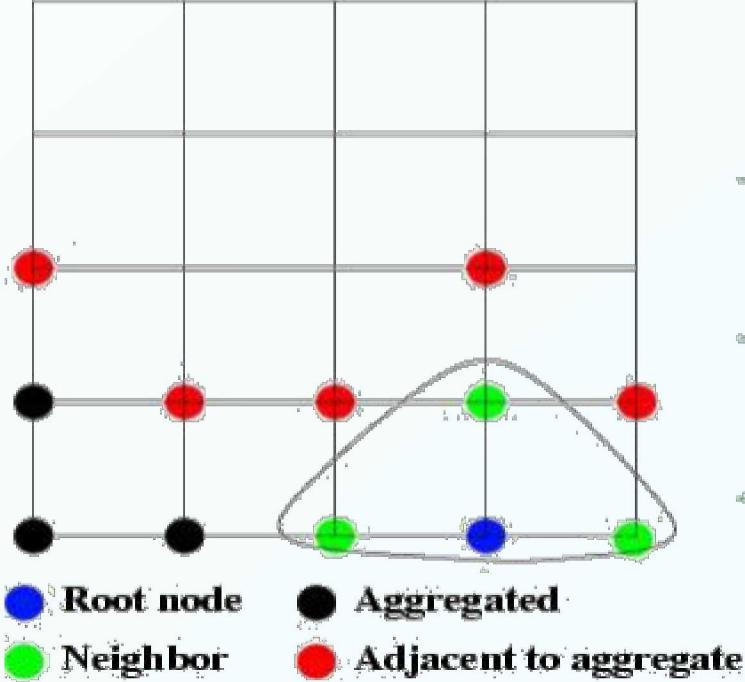
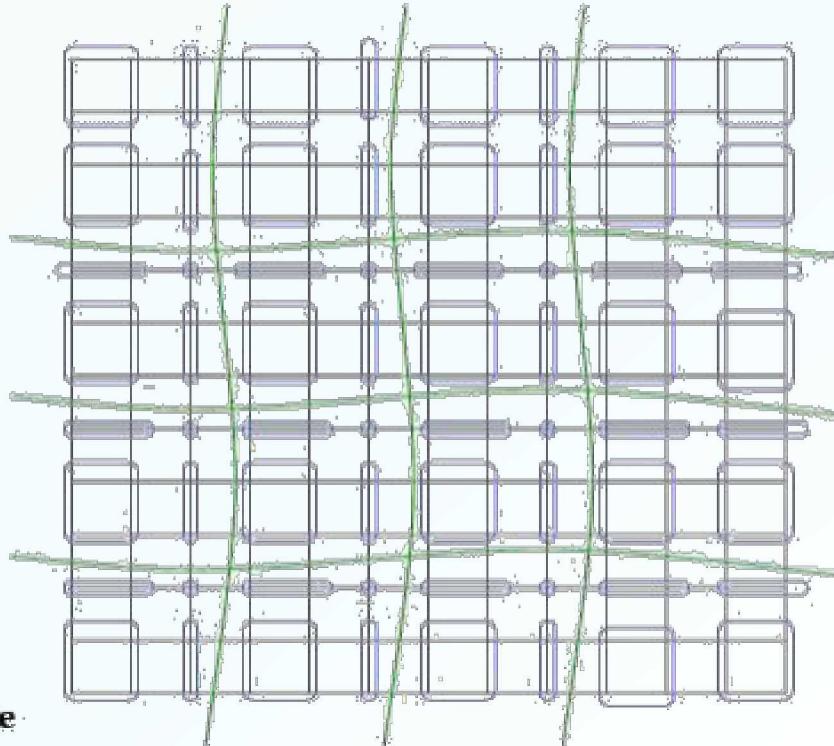
Then, 2-level MG (ST) satisfies the following independent of mesh

$$\|S_0 T\|_{A_0} \leq \sqrt{1 - \frac{\alpha}{\beta}}$$

e_0 is fine grid error, e_1 is coarse grid error, S_0 is smoother, T is coarse grid correction operator.

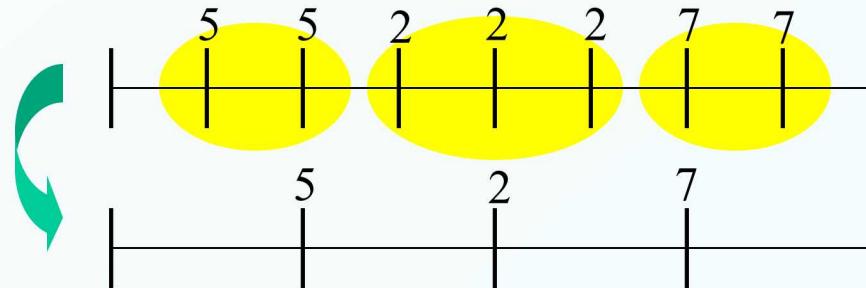
Smoothed Aggregation AMG: P_k

- Coarsen graph of A_k
 - Graph based algorithms
 - Aggregation lumps nodes together
- Compute P_k 's coefficients
 - Capture constant
 - Minimize some A-norm type quantity.



Smoothed Aggregation: P_k coefficients

Finding P_k



- Build tentative tP_k to interpolate constant

– where ${}^tP_k(i, j) = \begin{cases} 1 & \text{if } i^{\text{th}} \text{ point within } j^{\text{th}} \text{ aggregate} \\ 0 & \text{otherwise} \end{cases}$

- ◆ Smoothed aggregation
 - + Improves tP_k with Jacobi's method: $P_k = (I - \omega_{k-1} \text{diag}(A_{k-1})^{-1} A_{k-1}) {}^tP_k$
 - + P_k emphasizes what is not smoothed by Jacobi
 - + $R_k = (P_k)^T$

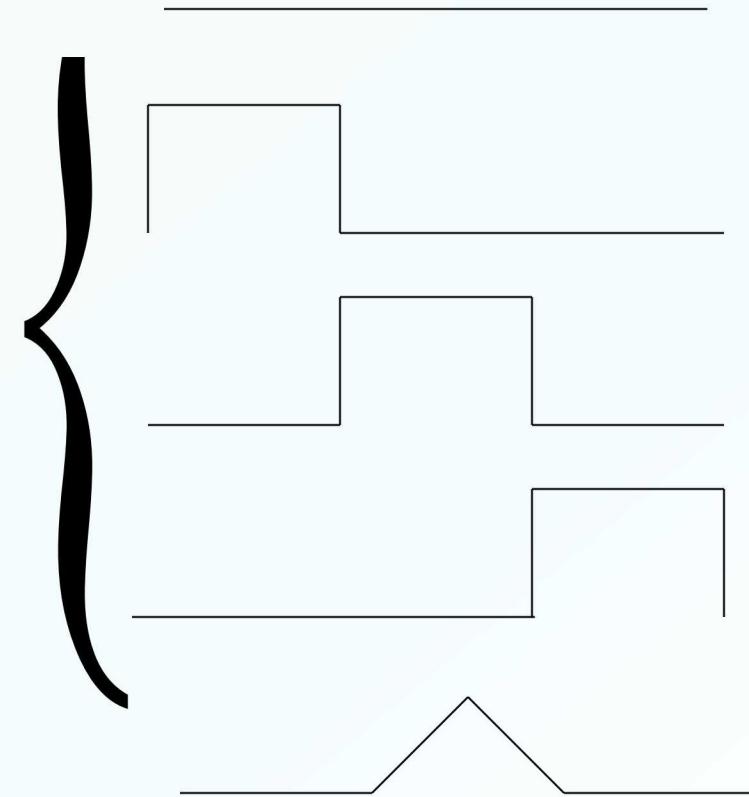
Seek to adapt smoothed aggregation to highly convective systems

Smoothed Aggregation

- take constant

- split into local basis functions

- smooth basis functions



What can go wrong?

- Lots of things, but we'll focus on
- Simple smoothers (Jacobi & Gauss-Seidel) may not smooth all high frequency errors
- A_k 's ($A_k = R_k A_{k-1} P_k, k > 0$) are not guaranteed to be stable even if A_0 is stable, especially in non-symmetric case
 - e.g., linear interpolation for P_k with $R_k = P_k^T$ often leads to unstable A_k 's for highly convective flows

Seek to adapt smoothed aggregation to highly convective systems

Coarse Grid Stability & Piecewise Constant Transfers (PCT)

PCT considered relatively safe

A_0 (fine level discretization) is M-matrix + PCT's \Rightarrow

A_k (coarse discretizations) are M-matrices

However, consider

$$\rho(x)u_x = f$$

with stencil

$$\left[-\frac{1.1}{h} \quad \frac{1}{h} \quad \frac{.1}{h} \right] \rho(x) \quad \text{and mesh space } h.$$

Then

$$11\rho(x_i) = \rho(x_i + 26h) \quad \Rightarrow \quad A_{i,i-1} = -A_{i+26,i+27}$$

where i^{th} row corresponds to x_i . Then, aggregating i to $i+26$ gives

$$\left[-\frac{1.1}{h} \quad 0 \quad \frac{1.1}{h} \right] \rho(x)$$

\Rightarrow unstable

AMG error expressions

$\text{Mg}(A_k, u_k, b_k, k)$

~~$u_k \leftarrow S_k(A_k, u_k, b_k)$~~

if not coarsest,

$$r_k \leftarrow b_k - A_k u_k$$

$$u_{k+1} \leftarrow 0$$

$\text{Mg}(R_{k+1} A_k P_{k+1}, u_{k+1}, R_k r_k, k+1)$

$$u_k \leftarrow u_k + P_{k+1} u_{k+1}$$

end

$$u_k \leftarrow S_k(A_k, u_k, b_k)$$

Assumptions

1) $u_0 \leftarrow S_0(A_0, u_0, b_0)$
is $u_0 \leftarrow u_0 + \hat{\omega}_0 D_0^{-1}(b_0 - A_0 u_0)$

2) $u_k \leftarrow S_k(A_k, u_k, b_k), k > 0$
is $u_k \leftarrow u_k + \hat{\omega}_k (b_k - A_k u_k)$

3) post smoothing only

Resulting multilevel error propagation

$$e_0^{(j+1)} = \prod_{k=0}^{L-1} (I - \widehat{\omega}_k \bar{P}_k \bar{R}_k D_0^{-1} A_0)^{m_k} e_0^{(j)}$$

- m_k is # of Jacobi/Richardson sweeps on level k
- L is # of MG levels
- $P_0 = R_0 = I$, $\bar{P}_k = P_0 P_1 \dots P_k$, $\bar{R}_k = R_k \dots R_2 \tilde{R}_1 R_0$

Consider

$$P_k = {}^t P_k \quad (\text{piecewise constant})$$

$$R_1 = \Lambda_1 P_1^T D_0^{-1}$$

$$R_k = \Lambda_k P_k^T \quad \text{for } k > 1$$

and Λ_k is diag such that $\Lambda_k P_k^T$ rows sums are 1

Then, $\bar{P}_k \bar{R}_k$ is just an aggregate weighted average. When aggregates are equi-sized, it's just simple averages

piecewise constants \Rightarrow scaled piecewise constant R_k 's

$$e_0^{(j+1)} = \prod_{k=0}^{L-1} (I - \hat{\omega}_k \underbrace{\bar{P}_k \bar{R}_k D_0^{-1} A_0}_{\text{averages}})^{m_k} e_0^{(j)}$$

$$P_k = {}^t P_k$$

$$R_1 = \Lambda_1 P_1^T D_0^{-1}$$

$$R_k = \Lambda_k P_k^T \quad \text{for } k > 1$$

and Λ_k force $\Lambda_k P_k^T$ rows sums to be 1

$$\text{Note: } A_1 = \Lambda_1 [{}^t P_k]^T (D_0^{-1} A_0) {}^t P_k$$

For L -level cycle with 1 relax. sweep per level has $L D_0^{-1} A_0$'s. If $\bar{P}_k \bar{R}_k = I$, this would imply a V cycle $\approx L$ Jacobi sweeps

A new non-symmetric Smoothed Aggregation Algorithm

$k > 1$

$$P_1 = (I - \omega_0 D_0^{-1} A_0)^T P_1$$

$$P_k = (I - \omega_{k-1} A_{k-1})^T P_k$$

$$R_1 = \Lambda_1 ({}^T P_1)^T D_0^{-1} (I - \omega_0 A_0 D_0^{-1})$$

$$R_k = \Lambda_k ({}^T P_k)^T (I - \omega_k A_k)$$

$$= \Lambda_1 ({}^T P_1)^T (I - \omega_0 D_0^{-1} A_0) D_0^{-1}$$

so

$$R_k \neq P_k^T$$

and

$$A_1 = \Lambda_1 ({}^T P_1)^T (I - \omega_0 D_0^{-1} A_0) D_0^{-1} A_0 \underbrace{(I - \omega_0 D_0^{-1} A_0)^T P_1}_{\text{polynomial in } D_0^{-1} A_0}$$

Expressions get messy ...

Smoothed Aggregation

Expressions get messy, but ...

$$A_{k+1} = \bar{R}_{k+1} q_{k+1} \circ \bar{P}_{k+1} \quad k \geq 0$$

piecewise constants

scaled piecewise constants

with $q_0(D_0^{-1}A_0) = D_0^{-1}A_0$

$$q_{k+1}(\cdot) = q_k(\cdot) \underbrace{(I - \omega_k \bar{P}_{k+1} \bar{R}_{k+1} q_k(\cdot))^2}_{\text{averages}}$$

⇒ A multigrid iteration can be fully expressed as $D_0^{-1}A_0$ FINE grid operators & averaging

For a L level Vcycle with 1 relax. sweep per level

$$\# \text{ of } D_0^{-1}A_0 = 1 + 3 + \dots + 3^{L-1} = (3^L - 1)/2$$

Non-sym Smoothed Agg (NSA) summary

$D_k^{-1}A_k$ expression includes $3^k D_0^{-1}A_0$ operators

For a $(m+1)$ -level NSA Vcycle with 1 relax. sweep per level

$$\# \text{ of } D_0^{-1}A_0 = 1 + 3 + \dots + 3^{m-1} = (3^m - 1)/2$$

For a m -level PCT Vcycle with 1 relax. sweep per level, $\# \text{ of } D_0^{-1}A_0 = m$

A_k not necessarily even close to diagonally dominate

Choosing ω 's is problematic for highly non-symmetric problems

BIG ASSUMPTION: Jacobi with proper ω converges

No convergence guarantee, but this is hard for non-symmetric systems.

D_0 can be blkDiag(A_0) for PDE systems

Algorithm somewhat similar but different than Sala & T, SISC'2008

Results: Bent Pipe

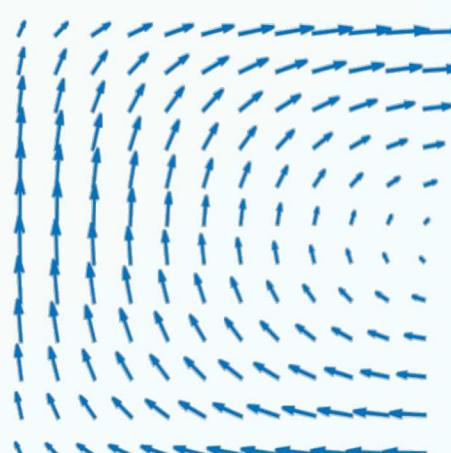
$$-\epsilon \Delta u + \mathbf{b} \cdot \nabla u = f \text{ in } (0,1) \times (0,1)$$

$$u = 0 \quad \text{on left, top, bottom BCs}$$

$$\mathbf{b} = \begin{pmatrix} -2x(1 - .5x) \\ -4y(y-1)(1-x) \end{pmatrix}$$

$$u = y - .5 \text{ on right BC}$$

$$\epsilon = .1 \text{ for } \sqrt{(x - .5)^2 + (y - .5)^2}, \text{ otherwise } \epsilon = .001$$



iters (levels)

Mesh	1 Level	PCT	NSA
81 x 81	492	116 (3)	88 (3)
243 x 243	1000+	212 (4)	94 (4)
729 x 729	1000+	391 (5)	113 (5)

upwind
GMRES* +
MGV(0,1 ω Jacobi)
 $\omega \approx 1/\rho(D^{-1}A)$

nasty
Stop when residual
reduction of 10^{-8}

Mesh	1 Level	PCT	NSA
81 x 81	688	171 (3)	173 (3)
243 x 243	1000+	236 (4)	130 (4)
729 x 729	1000+	416 (5)	130 (5)

*no restarts

Results (with same solver options)

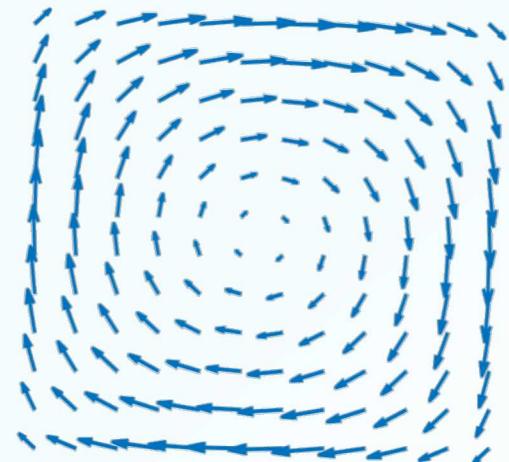
recirculating

$$-\epsilon \Delta u + \mathbf{b} \cdot \nabla u = f \text{ in } (0,1) \times (0,1) \quad \mathbf{b} = \begin{pmatrix} 4x(x-1)(1-2y) \\ -4y(y-1)(1-2x) \end{pmatrix}$$

ϵ & BCs as bent pipe

upwind

Mesh	1 Level	PCT	NSA
81 x 81	1000+	154 (3)	111 (3)
243 x 243	1000+	261 (4)	113 (4)
729 x 729	1000+	440 (5)	121 (5)



PCT its / NSA its

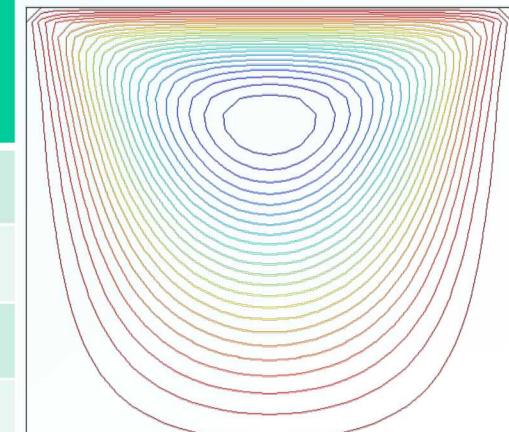
(1,1) block of lid
driven cavity

incomp. NS via IFISS

using W cycle

(last Picard solve)

Mesh	Re		
	100	500	1000
33 x 33	37 / 24	64 / 57	92 / 87
65 x 65	54 / 24	91 / 61	117 / 115
129 x 129	70 / 23	117 / 44	146 / 115
257 x 257	119 / 26	198 / 42	249 / 68



Compressible Navier-Stokes

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}_i(\mathbf{U})}{\partial x_i} - \frac{\partial \mathbf{G}_i(\mathbf{U})}{\partial x_i} = \mathbf{0} \quad (1)$$

with

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho v_j \\ \rho E \end{pmatrix}, \quad \mathbf{F}_i(\mathbf{U}) = \begin{pmatrix} \rho v_i \\ \rho v_i v_j + P \delta_{ij} \\ \rho E v_i + P v_i \end{pmatrix} \text{ and } \mathbf{G}_i(\mathbf{U}) = \begin{pmatrix} 0 \\ \tau_{ij} \\ \tau_{ij} v_j - q_i \end{pmatrix} \quad (2)$$

where ρ is the fluid density, v is the fluid velocity and E the fluid energy per unit of mass which is expressed as $E = \frac{1}{2}v_i v_i + e$ the sum of the kinetic and internal energy e . P is the fluid pressure, τ_{ij} is the viscous stress tensor. $q_i = -\kappa \frac{\partial T}{\partial x_i}$ is the heat flux, T the temperature and κ the thermal conductivity of the gas.

focused on Newtonian fluid & ideal gases, though SPARC also employs non-ideal gas models

Sparc Details

- Only steady-state considered in this talk
- Sparc uses a conservative cell-centered control volume discretization, 7 point stencil (actually 7 block), upwind-ish

for $t = 0, \dots$

Take adaptive pseudo-time step

1 Step of Newton's method

Solve 1st order Jacobian approximation system inexactly

- Non-linear residual uses 2nd order Jacobian
- Basic idea: small pseudo-steps needed initially for nonlinear convergence, try to aggressively advance to large pseudo-steps to accelerate to steady-state

Mesh Structure

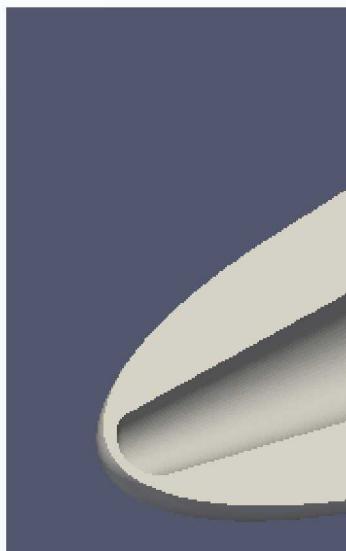
Hypersonic objects generate strong shock-waves leading to

- Strongly flow directional...

- Low dissipation

- Hard to resolve

To help with these



Recall the sleight of hand ...

$$D_{k+1} P_k^T D_k^{-1}$$

that now becomes

$$T_{k+1} P_k^T T_k^{-1}$$

which is not generally sparse.

Essentially, a sparse approximation to \hat{P}_k^T is needed such that $T_{k+1}^{-1} \hat{P}_k^T \approx P_k^T T_k^{-1}$

Blunt Wedge Problem

Structured mesh: 72^3 , 144^3 or 288^3 cells, 5 degrees of freedom per cell, supersonic input flow: Mach 3.

First attempt: use unstructured vs. structured aggregation, 1 sweep ILU(0) as pre-smoother, 4 levels, coarsening rate: 3 per direction.

Mesh size	72^3	144^3	288^3
Unstructured	46	87	N/C
Structured	36	88	256

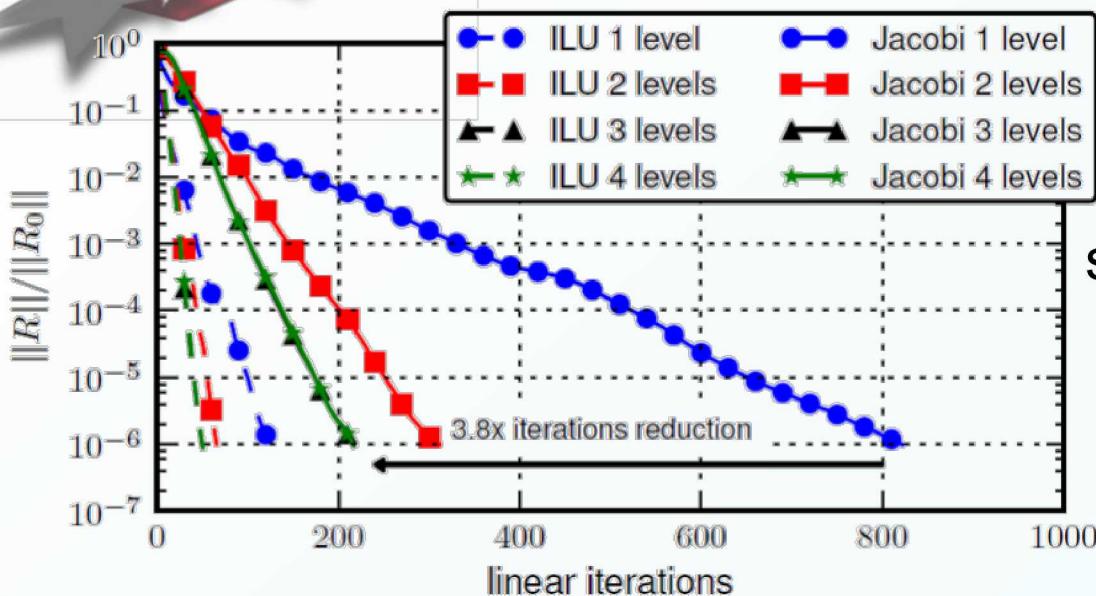
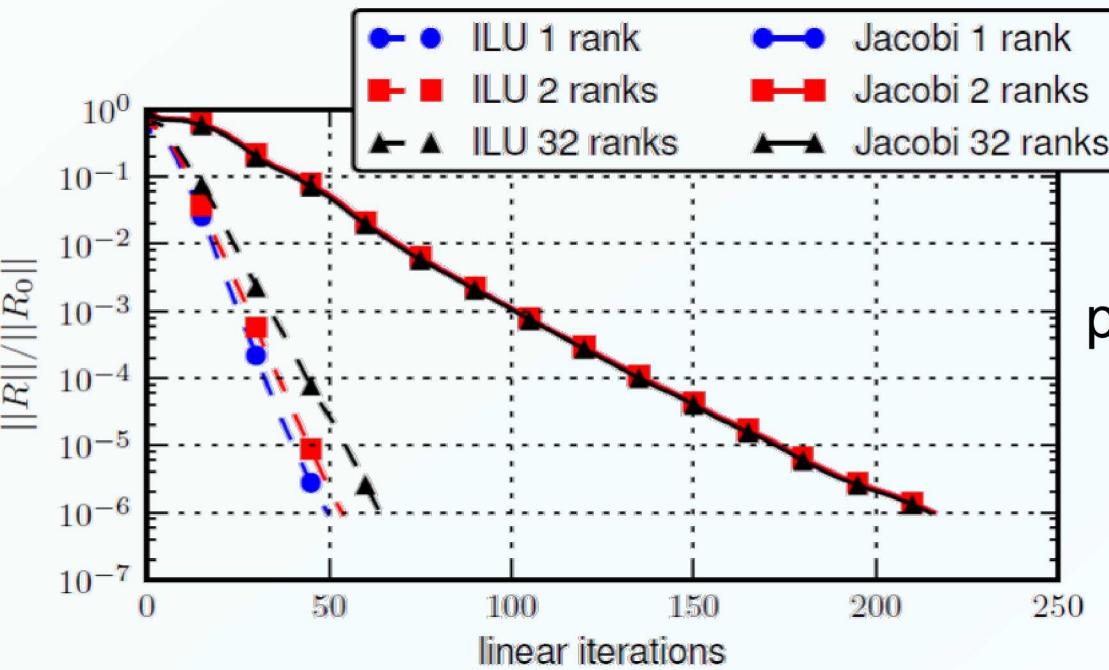
Table: Number of linear iterations (tol=1e-6)

Observations:

- 1 linear interpolation with structured aggregation diverges
- 2 three and four level methods give same convergence
- 3 no scaling for either structured/unstructured methods

One representative linear system toward the latter part of the simulation with large δt

Line-Jacobi vs. ILU smoothing



Note: Have successfully run NSA on aero-blunt wedge

Mass Stabilization

- Add diagonal term to coarse grid operator

$$A_{k+1} = R_k A_k P_k + (\alpha-1) R_k M_k P_k$$

where M_k 's are projected mass matrices

α	Unstructured			Structured			Observations
	72^3	144^3	288^3	72^3	144^3	288^3	
1	46	87	N/C	36	88	256	• helpful with structured coarsening
2	45	86	N/C	35	82	205	• optimal α at bottom of U
4	45	87	N/C	34	75	97	
6	46	89	N/C	35	74	86	α is parameterized in terms of a CFL number provided by the user
8	46	92	N/C	36	77	83	
10	48	95	N/C	37	81	85	

Hifire + SA turbulence model

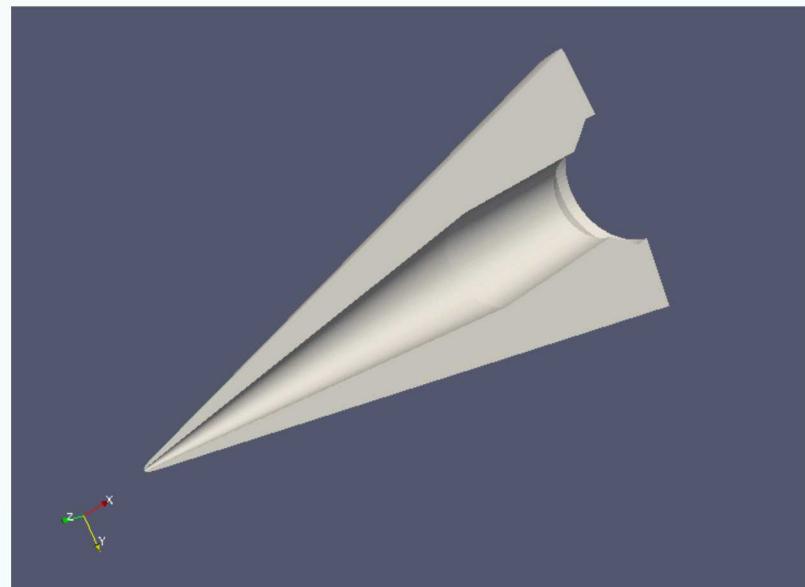
6 dofs per node

$L_3 \approx 13$ M dofs

$L_2 \approx 106$ M dofs

$L_1 \approx 856$ M dofs

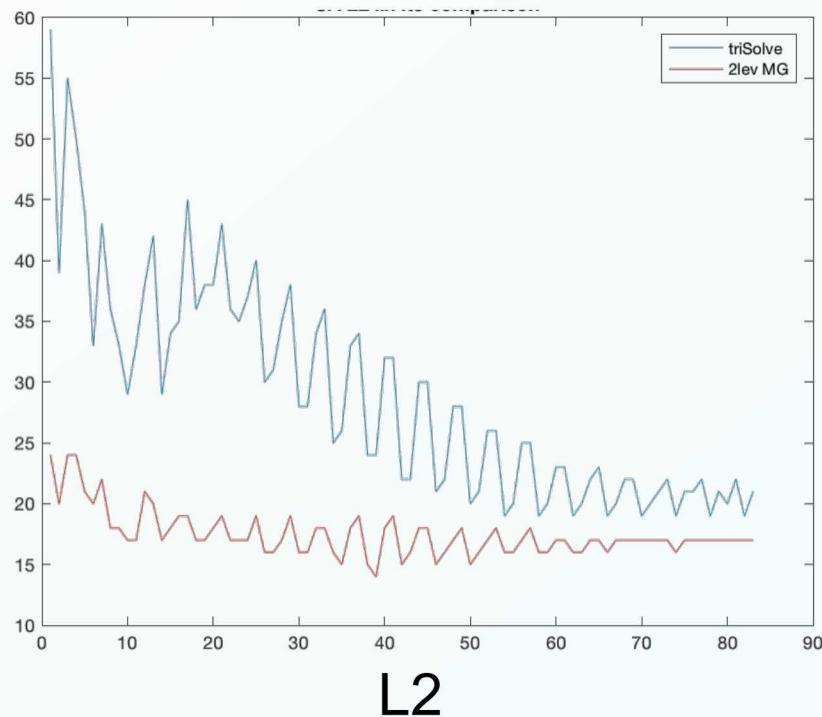
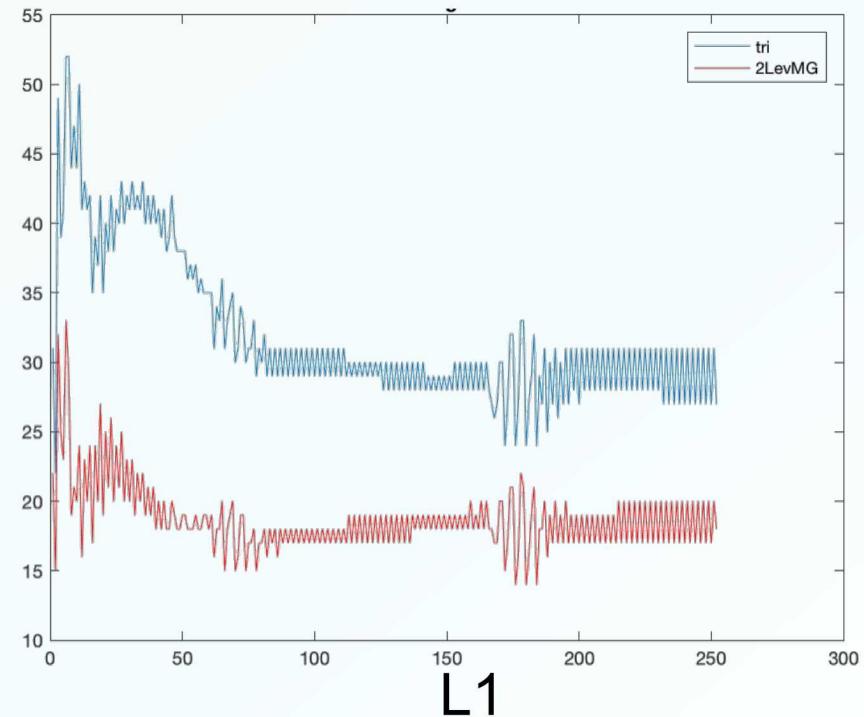
$L_0 \approx 6.8$ B dofs



- Lots of nonlinear convergence problems

2 level results

iterations over different linear solves (1 level in **blue**, 2 level in **red**)



A sequence of linear solves with moderate time step
Nonlinear solver eventually stalls

Conclusions

- Hypersonic problems are hard for multigrid
- NSA polynomial connection relevant for strong convection
 - Assumes (block) Jacobi method converges *reasonably*
 - MG iteration can be *equivalent* to fine Jacobi sweeps + averaging
 - NSA generally better than PCT on model problems
- SPARC hypersonic flow application introduces challenges
 - Stability often lost on coarse grid for PCT & NSA
 - An NSA variant can accelerate convergence over PCT for model problem
 - PCT can accelerate convergence on harder SPARC problems for large δt
 - ... but results are mixed due to stability issues
 - Line solve commuting needs to be worked out for NSA $T_{k+1}^{-1} \hat{P}_k^T \approx P_k^T T_k^{-1}$