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; ' Outline
» Multigrid background for solving

Au=f

ideal setting wmmm) more complex situations
(stability of coarse operators)

» Non-symmetric smoothed aggregation (NSA) & polynomials
» Error expressions & stability
* Model problem results

» Piecewise constant grid transfers & mass stabilization
* Algorithmically simpler _—
* Hypersonic problems in Sandia’s SPARC code @ o
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A 4
% Geometric Multigrid

Solve
oo o o o o o o o o o o o o o o A 0 uO = fO SO
P,
R, Approximate PDE on (user supplied) grid
hierarchy
([ @ L @ @ @ L L A] LI] — flz S]
- ¢ A u=f
[ @ @ @ 2 u2 — 2 SZ
e :
) ’ A;u;=1f 5

Develop smoothers (approximate solve on a level)
Jacobi, Gauss-Seidel, CG, etc.

Develop grid transfers (e.g. linear interpolation)

National

Use coarse A ’s to accelerate convergence for A Sandia
k 0
Laboratories
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%‘ Algebraic Multigrid (AMG) for 4 = A"

* Given A4,, automatically build remaining MG operators:

Ak’Pk’Rk’Sk’S

* Once P,’s are defined, the rest follows “easily™:
- A, =R, A, P, (Galerkin coarsening)

*No need to supply mesh hierarchy!
*Divorces application a bit from MG development!

*Greater code reuse!

Sandia
National
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Algebraic MG behavior

- '
4  High & low frequencies not available algebraically.

» These notions are replaced with || . || 4, or || . ”Ai

o |l ex ll4, orll ek ”Alzc small = low frequency

o |l ex ll4, orllex ”Ai large = high frequency

* Properties of AMG methods

— S, smooths errors with high energy (|| ex |4, large).
— P, must accurately interpolate low energy errors (small || e | 4, ).
— P, must interpolate errors not damped by smoothing.

cNote: || = VA |
@ Lﬁa%;]tﬁ%tlmes
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| ‘ ‘ A 2-level convergence result

Assume
2 2 2
150 €0||A0 < || eo||AO — all eoll 4z
(Jacobi & Gauss Seidel satisfy this for certain SPD matrices)
and

min|| eo—Pse; 15 < BlleollZ,
1

Then, 2-level MG (ST) satisfies the following independent of mesh

a
1SoTlla, = |1 ay;
\
e, is fine grid error, e, is coarse grid error, S, is smoother , T is
coarse grid correction operator.




Smoothed Aggregation AMG: P,

« Coarsen graph of 4,

— Graph based algorithms

— Aggregation lumps nodes together
« Compute P,’s coefficients

— Capture constant
— Minimize some A-norm type quantity.

o, ', wf’ — Sy - q' (— | ep—
- : , f
‘ ]

— ot

- &
® &
@ Root node

Aggregatec " : i Sandia
= G At ~H—t—— @ National
& Neighbor Q &djamuttﬂ aggregate £ | | Laboratories
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}- Smoothed Aggregation: P, coefficients

Finding P,

* Build tentative ‘P, to interpolate constant

1 if 7™ point within j” aggregate
—where ‘P (1,])= .
0 otherwise
Smoothed aggregation
+ Improves ‘P, with Jacobi’'s method: P, = (7- @, , diag(A,.;) 1 A, ;) ‘P,
+ P, emphasizes what is not smoothed by Jacobi
b R =R
. . . Sandia
Seek to adapt smoothed aggregation to highly convective systems @ National
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% Smoothed Aggregation

» take constant

» split into local basis functions

* smooth basis functions

Sandia
National
Laboratories
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}- What can go wrong?

* Lots of things, but we’ll focus on

« Simple smoothers (Jacobi & Gauss-Seidel) may not smooth all
high frequency errors

e A/’s (A, =R, A, , P, k> 0) are not guaranteed to be stable
even if 4,is stable, especially in non-symmetric case

e.g., linear interpolation for 2, with R, = P, often leads to
unstable A4, s for highly convective flows

Seek to adapt smoothed aggregation to highly convective systems

Sandia
National
Laboratories




Coarse Grid Stability & Piecewise Constant
Transfers (PCT)

PCT considered relatively safe

A, (fine level discretization) is M-matrix + PCT's =
A, (coarse discretizations) are M-matrices

However, consider p(Xu, = f

with stencil [_2 1 i] p(x) and mesh space h.
h h h

Then

11p(x) = p(x; +26h) = Aji—1 = —Ait26i+27

where i row corresponds to x.. Then, aggregating i to i+26 gives

40 o

@ Sandia
National
— unstable ® Laboratories



AMG error expressions

'},7

Mg(Ay, uy, by, k) Assumptions
L——5 0, )
if not coarsest, 1) u, « S,(A, u, b,)
I, <« b-A,u 1S

u,, « 0 uy < ug+ @Dy (bo — Aotto)

MO(R, 1 AxPry1s Upy g, Ryl K+1)

IS
end u, <«ug+ oy (b —Aug)

u, < S(Ay, Uy, by) 1\
3) post smoothing only
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z | 'ﬂesulting multilevel error propagation
1 i1 o .
ed ™ = 1_[ (I — @ PR Dy Ag)™ e’
k=0
e m, is # of Jacobi/Richardson sweeps on level &

e[ is# of MG levels
‘P():RO:I - Pk:POpl'"Pk iﬁk:Rk"'RzﬁlRO

Consider
P, = 'P, (piecewise constant)
R, = A{P{ Dyt
R, = APl for k> 1
and A, is diag such that A, P, rows sums are 1

Then, P, R, is just an aggregate weighted average. When @ﬁagﬂial
aggregates are equi-sized, it's just simple averages bort

Laboratories



%i piecewise constants — scaled piecewise constant R,’s

™ ~ o .
eg P =TIkZh (I — @y PR, DG Ag)™ e’
W
averages
P, = ‘P,
R1 — AlpiTDo_l Note: Al = Al[ th]T(Do_lAO) th

Rk:/\kplzw for k> 1

and A force A, P; rows sums to be 1

For Z-level cycle with 1 relax. sweep per level has L Dy A4, ‘s. If
PR, =1, this would imply a V cycle =~ Jacobi sweeps Ok

Laboratories



A new non-symmetric Smoothed Aggregation
Algorithm

k>1

g;‘b‘
P, = (I — woDyt4) ‘P Pr=(I — wg_14k_1) Py

T _ T
Ry = Ay( *P1) Do — wo ADg ™)  Rx= A( "Pe) (I — oy Ay)
T _ —
= A1( tP1) (I — wo Dy *Ag)Dg "

SO
R, = P}
and

T _ _ _
Ay = A1( tPl) (I — wg Dq 1AO)DO 1Ao (I — woDy 1A0) tP1

\ )
\ 4

polynomial in Dy 1A,

Expressions get messy ... @ Nogorl

Laboratories




Smoothed Aggregation

Y

Expressions get messy, but ...

A= R S Qk+1()pk+1 k=0

K_/piecewise constants

scaled piecewise
constants

with  qo(Dg *A4g) = Do Ao
Qr+1( - ) = @O — WxPrs1Rr+1 qx () )?

\ §
averages

= A multigrid iteration can be fully expressed as D; 1A, FINE grid operators & averaging

For a L level Vcycle with 1 relax. sweep per level

#of Dy'dy  =1+3+..3:1= (3—1)2 () i

Laboratories
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»‘ Non-sym Smoothed Agg (NSA) summary

D,;lAk expression includes 3k Do_lAO operators

For a (m+1)-level NSA Vcycle with 1 relax. sweep per level
#of DylAg=1+3+.. 3™ = (3m—1)/2

For a m-level PCT Vcycle with 1 relax. sweep per level, #of D; 1A0= m
A, not necessarily even close to diagonally dominate
Choosing o's is problematic for highly non-symmetric problems

BIG ASSUMPTION: Jacobi with proper o converges
No convergence guarantee, but this is hard for non-symmetric systems.

D, can be blkDiag( A, ) for PDE systems Sandia
National
Algorithm somewhat similar but different than Sala & T, SISC’2008 @ ors
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1 7 7 7 7™ o Wi
ﬂesults: Bent Pipe SV YV
f”’//lo

1isE

s . —_— 1 \ Y
eAu+b - Vu=f in(0,1)x(0,1) N

u=0 on left, top, bottom BCs b—( —2x(1 — 5x) )Hii:\\\\\“*
“ayo-na-x/ I

u=y—.5onright BC

e =.1 for/(x —.5)% + (y — .5)? , otherwise € = .001

iters (levels )

_ Mesh | flevel | PCT | NSA _
GMRES* +

upwind 81 x 81 492 116 (3) 88 (3) MGV(0,1 ® Jacobi)
243 x 243 1000+ 212 (4) 94 (4) o ~1/p(D'A4)
729 x 729 1000+ 391 (5) 113 (5) Stop when residual
reduction of 10 ¢
oy T T
5 2 3 81 x 81 171 (3) 173 (3) *no restarts
3 [—— . ﬁ] 243 x 243 1000+ 236 (4) 130 (4)

@ ﬁan_diaI
729 x 729 1000+ 416 (5) 130 (5) i



Results (with same solver options)

recirculating
—eAu+b-Vu=fin(0,1)x(0,1)

b= ( 4x(x—1)(1-2y) )
—4y (-1 -2x)
e & BCs as bent pipe

;/—-—'——'h—-——_.__m\\

1 | PCT I

upwind Level / ;‘;,_,__\:\:‘c
81x81 1000+ 154 (3) 111 (3) “ ! e
243 x 243 1000+ 261 (4) 113 (4) \QQ: A= }
729x729 1000+ 440 (5) 121 (5) WA\~ 2270

- 7 /

~ J

PCT its / NSA its Re
100 500 1000

(1,1) block of lid
driven cavity 33 x 33 37124 6457 92/ 87

incomp. NS via IFISS ~ 65x65 54/24 91/61 117/115
129x129 70/23 117/44 146/115
257 x257 119/26 198/42 249/68

using W cycle

(last Picard solve)



Compressible Navier-Stokes
dU dF;(U) 03G;(U)

E T a)('l B a}ii ak (1)
with
P PVi 0
U= |pv; |, Fi(U)= [ pviv; + Pdi; | and G;{(U) = Tij
pk pEv; 4+ Pv; TiiVy — g4
(2)

where p is the fluid density, v is the fluid velocity and E the fluid

energy per unit of mass which is expressed as E = 2v v; + e the sum
of the kinetic and internal energy e. P is the fluid pressure, Ti; is the
viscous stress tensor. qi = —K ?T is the heat flux, T the temperature

and k the thermal conductivity of the gas.

focused on Newtonian fluid & ideal gases, though SPARC also

employs non-ideal gas models @ Mool
Laboratories



s,

Sparc Details

~

* Only steady-state considered in this talk

» Sparc uses a conservative cell-centered control volume
discretization, 7 point stencil (actually 7 block), upwind-ish

fort=20, ...
Take adaptive pseudo-time step
1 Step of Newton’s method
Solve 15t order Jacobian approximation system inexactly

« Non-linear residual uses 2"9 order Jacobian

 Basic idea: small pseudo-steps needed initially for nonlinear

convergence, try to aggressively advance to large -
pseudo-steps to accelerate to steady-state @ National

Laboratories



VA
} Mesh Structure

Hypersonic objects generate strong shock-waves leading to

 Strongly flow diregti=——"-

» Low dissipation Recall the sleight of hand ... \
» Hard to resolve Dy+1 P D;t

TO help Wlth theS that now becomes BSh

Tier1PL T

which is not generally sparse.

Essentially, a sparse approximation to P} is
needed such that T, P{ ~ P/ T;*

Line-Jacobi is the method of choice for linear systems ® @ﬁ:ﬁﬂ‘ﬁm

Laboratories



‘
},‘ Blunt Wedge Problem
Structured mesh: 723, 144 or 288> cells, 5 degrees of freedom per
cell, supersonic input flow: Mach 3.
First attempt: use unstructured vs. structured aggregation, 1 sweep

ILU(O) as pre-smoother, 4 levels, coarsening rate: 3 per direction.

Mesh size 723 1443 2883
Unstructured | 46 87 N/C
Structured 36 88 256

. ) Table: Number of linear iterations (tol=1e-6)
Observations:

E linear interpolation with structured aggregation diverges
three and four level methods give same convergence

no scaling for either structured /unstructured methods

One representative linear system toward the latter part of the @ Sandia
simulation with large ot

Laboratories
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=
=
&

&[]/ Roll

Line-Jacobi vs. ILU smoothing

o |LU 1 level
B-E LU 2 levels
&~ A LU 3 levels
..... *= % LU 4 levels

®—® Jacobi 1 level
Bl Jacobi 2 levels
k= Jacobi 3 levels
= Jacobi 4 levels

AR T e ial
seria

102 P - - --Jg--- - e WG s
107 "L\ A S S U
10—6 [ W & ... X.. . wm38xiterationsreduction ___"WNg ... ..
10—7 ! i | |

0 200 400 600 200 1000

linear iterations
oo LU 1rank e—e Jacobi 1 rank

109 B B LU 2 ranks B—8 Jacobi 2 ranks

a—~ A LU 32ranks

A—4A Jacobi 32 ranks

10-1 - ;e .
10=2 |- W0 - - -GG e e e -

-3 L . S S ]
S . 1 parallel
10—4 f----- R TR STERE, LT E TR E P T EE-PERPTTERD .
10— T e g -
10-6 : . h
10-7L L - - - —

0 50 100 150 200 250

linear iterations

Overall good benefit
with MG

Domain decomp. ILU
takes fewer iterations
in serial but scales
less well in parallel

Note: Have successfully
run NSA on aero-blunt
wedge



Mass Stabilization

» Add diagonal term to coarse grid operator
A 1 =R APt (1) Ry My Py

where M,’s are projected mass matrices

U”StrUCtU red StrUCtured Observations
x | 723 1443 2883 | 723 1443 288° T
1 |46 87 N/C[36 8 256  Coacening
2 45 30 N/C 35 82 205 eoptimal « at bottom of U
4 45 87 N/C 34 75 97
6 | 46 89 N/C| 35 74 86  «ais parameterized in
S 46 0?2 N/C 36 77 33 terms of a CFL number
10 | 48 05 N/C 37 31 35 provided by the user

Sandia
National
Laboratories



o
%‘ Hifire + SA turbulence model

6 dofs per node

L3 =13 M dofs
L2 ~106 M dofs
L1 ~856 M dofs
LO ~6.8 B dofs

* Lots of nonlinear convergence problems

Sandia
National
Laboratories



2 level results

60 T T T —~v-—-—»-|—~~-— "“vlr-““‘" T T T 55 T T r T T

i‘ triSolve : tri
55 4“ Ih; 2lev MG | | 50 _H ' 2LevMG i

\ |

L i Il
) ;‘ k‘: 45H'WL.
) ‘ll‘ \“» a f‘ ‘ | 40 LJ W[ “WWWW

) | ‘\ f J"'v .“'\,
sl A\ N . ! "

‘“‘ L‘ "f “ " ’V" | “i 4"“!‘1‘ /"‘ i w V NLA } A
36 - v 1\ ”‘ L /r‘ \/ ‘; " ‘\ f"‘ A ' ' 1“‘ |
\ ‘v“ \f \' / “ ‘« | (] | y ‘r I
o | an | 1"“ 1 n | ) m QLT A ‘H’ W AW‘M“i"'i.‘mﬂl',i,.;I\I,]}‘[,I‘t|W "M
U \ LA -

25 V ‘<H>(‘M‘a J’rl‘\f‘\ n 1 25J|q “ w”

«\\f \\/\ J\ U “l \: “’L )“‘ ~|‘ ".‘( l‘\" /“I “‘,\ /’1 \ ,",\,‘ N A n ‘ Q‘INWQN‘WMM " ‘I
201 ' s V V,' L’u‘/ \;“'J i‘u<"'/ \'v‘" \/ x / 7 20 M \AJW ‘ W\

“\ / /\ H W A | ) Nwww V\M f>
o J VAAN ’\]\ / NANAAA— a \WA‘WWWWWNM W“ MMM W
10 1 1 1 1 1 1 L 1
0 10 20 30 40 50 60 70 80 90 10 . . . L L
0 50 100 150 200 250 300

L2 L1

A sequence of linear solves with moderate time step i
\di
Nonlinear solver eventually stalls @ P



Conclusions

:;,'

» Hypersonic problems are hard for multigrid

* NSA polynomial connection relevant for strong convection
— Assumes (block) Jacobi method converges reasonably
— MG iteration can be equivalent to fine Jacobi sweeps + averaging
— NSA generally better than PCT on model problems

« SPARC hypersonic flow application introduces challenges
— Stability often lost on coarse grid for PCT & NSA
— An NSA variant can accelerate convergence over PCT for model problem
— PCT can accelerate convergence on harder SPARC problems for large &t
... but results are mixed due to stability issues
— Line solve commuting needs to be worked out for NSA T, L P! ~ PIT;?!

Sandia
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