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Objective: to assess what degree paragenetically controlled
properties influence chemically-affected rock strength and
stiffness in separate lithofacies of Morrow B Sandstone

Justification: in Farnsworth Unit,Texas, injected CO2 is changing
brine chemistry. Mechanical responses that result from changes in
subsurface chemistry are poorly characterized

Hypothesis: the paragenetic sequence can predict mechanical
reservoir sensitivity to changes in pore-water chemistry

Planned Work: we couple flow-through of a CO2 rich solution
with mechanical testing on two lithofacies of the Morrow B
sandstone, a CO2-EOR reservoir in the Farnsworth Unit, Texas.
The lithofacies are sandstones with different degrees and types
of cementation: siderite, and pore-filling clay

• Cement mineralogy, burial history, and cement
texture control mechanical sensitivity of
Morrow B sandstone to CO2 injection

• This work will test the porosity facies remaining
afterWu et al. (submitted).We show results
from four CO2 enriched flow-through tests on
siderite and clay cemented samples

• Currently we are running two brine only control
tests to compare results

• Mechanical strength degradation expected in
siderite samples based on paragenetic sequence

Methods
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Figure I . Flow-through set up. Blue lines
indicate flow of DI water and red indicates
the flow of CO2-enriched brackish solution,
although DI water flows through all lines
before and after each experiment. Arrows
indicate flow direction

• In situ flow-through of CO2
• 7 I °C
• 290 bar pore fluid pressure
• Brackish reservoir fluid

• 345 bar confining pressure
• Major ion chemical analysis
• Flow rates
• 0.01 and 0.1 ml/min

• Pre- and Post-test
• Thin Sections
• Ultrasonics (I MHz resonant

frequency)
• X-ray Computed Tomography

• Unconfined Compressive Strength
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Sample Dry Mass Sat Mass DensityB Porosity
ID g g glcm3 % 

Sid2

Sid3

62.70 65.43 2.37 10.50

Sid4

56.81 60.63 2.25 15.10

56.70 60.23 2.27 14.20

C2 64.05 67.13 2.45 7.36

C3 61.33 63.48 2.42 8.50

CS 59.76 62.95 2.32 12.40

C6 61.37 64.42 2.34 11.60

igure 3. P- and S-wave velocities for
four samples and photo of the
ultrasonic rig at Sandia National
L:abratory.TOA for P- and S- waves
were picked.TOA and core length
were used to calculate velocities

41111 (Vp and Vs)

ermeability

Sample
ID

Sid2

Pre-test
Perm mD

6.58

Post-test

Perm mD

9.65

Change
mD 

3.07

Sid3 6.04 10.94 4.90

Clay2 0.17 1.22 1.05

Clay3 0.40 0.38 -0.02

microXRCT

• Micro-XRCT scans performed on a Zeiss
Xradia 520Versa

• Scans performed over the entire core
plugs at 27-vim pixel size

Higher resolution I I-11m scan at core top
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Figure 6. Clay2 pre- and post-test scans. Red represents
framework grains, green and yellow are two cements
assumed to be carbonates, dark blue represents
micropores and clays, and lighter blue is macropores.
Some of the green phase is dissolved post-test.
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Downstream Water Chemistry
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Siderite-cemented sam les
Figure 9. Concentration of major cations through time for
siderite cemented facies. Rapid increase of Ca2+, Mg2+, and
Fe2+ attributed to dissolution of carbonate cements
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Figure 10. Concentration of major cations through time for
clay cemented facies. Clay2 shows high input of Ca2+ from
calcite and Mg2+ from dolomite dissolution. Some ion
exchange possible
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Figure I I . Carbonate minerals are generally undersaturated
in the initial experimental solution, but fluids are generally
saturated with respect to quartz and siderite upon exiting
the core
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Figure 12. Outlet fluids were generally near saturation with
respect to calcite, dolomite, siderite, and quartz during the
Clay2 experiment, while saturated minerals in outlet fluids
were limited to siderite and quartz during the Clay3
experiment

Discussion
• Siderite and clay cemented sandstones show some changes from pre- to post-test P- and S-

wave velocities. Control test velocity changes will provide insight on degradation influence
Porosity variations based on depositional and diagenetic history observed for these lithofacies
Permeability constrained using a series of flow rates both pre- and post-test to provide better
resolution with less uncertainty
Micro-CT data confirms presence of cement mineral alterations in Clay2.This is identified as
change in the green phase of figure 6 (carbonate cement) and a large macropore shown in the
grayscale image. New porosity is attributed to the removal of carbonate cements
Chemical data confirms input of ions from carbonate (calcite, dolomite, siderite), and possibly
clay (illite, chlorite) cements. lon inputs for siderite cements at both flow-rates are consistent
and expected based on mineralogy, however vast differences and large quantities of carbonate
cements in Clay2 and Clay3 were somewhat unexpected. This interval is expected to be rich in
clay minerals (kaolinite) and fluid analysis has shown little indication of this.This may be because
kaolinite has shown stability under CO2 conditions, resisting dissolution and providing no
aluminum input.Thin section and microprobe analysis will confirm cement mineralogy

Future Work
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• Post-test unconfined compressive strength

• Provide elastic moduli, yield point

• Thin section analysis

• Flow-through of remaining samples

• Post-test XRCT of remaining cores
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