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The Bayesian Perspective:
We update uncertainty as information or observations (D) are added
(Bayes' Theorem)
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Applications 
Calibrate model parameters p(O1D)
Compare model structures p(MID)

Challenges of Bayesian Methods:
• Markov Chain Monte Carlo (MCMC) is often used to sample the

posterior in these applications
• We desire methods that quickly explore the posterior, require little tuning,

can be parallelizem, and leverage multifideiity models

Sequential Tempered MCMC5,6 (STMCMC) :
• Update prior to posterior through intermediate distributions to aid

exploration through an annealing factor to gradually introduce data,
sensors, or adjust model fidelity
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• A population of parallel MCMC chains quickly explore and sample the
intermediate distributions

Single MH Markov Chain Parallel MH Markov Chain

• ST-MCMC adapts online based on statistics from
the intermediate samples with iittle user tuning
e.g. adaptively weight sensors to avoid difficult to
sample intermediate distributions

• Pseudo-Marginal MCMC7 can be used to
marginalize over sources of uncertainty using an
unbiased likelihood estimate
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Problem Set up:
• Infer the event parameters: Longitude, Latitude, Depth, Magnitude, Time

• Observations: Seismometer waveforms at various locations

• Uncertainty to integrate: Travel time uncertainty, earth structure
heterogeneity, event focal mechanism, background noise process

Bayesian Seismic Data: D Likelihood: p (D 0)
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Challenge:
• Detecting and locating very weak seismic signals requires sensor fusion

and utilizing more information signal waveforms

• Uncertainty quantification is essential since there is limited knowledge
about the complexities of models, sensors, and data

• Historic data or simulations will need to be used to understand these
complexities and synthesize them into tractable models

Potential Impact:
• Provide event information with well calibrated confidences for decisions

• Provide a framework to fuse multi fidelity and phenomenology data

• Enable experimental design methods to quantify a network's ability to
detect events and test improvements to the processing system

Existing Methods:
• Detection-Based (e.g. BayesLocl, NET-VISA2): The event likelihood is

based on comparing the predicted seismic wave arrival time to the
observed arrival time. This uses a simple travel time model but has
difficulty with weal< signals when it is hard to detect the arrival.

• Signal-Based (e.g. SIG-VISA3): The event likelihood is based on comparing
the predicted waveform to the observed waveform. This requires a
complex predictive waveform model but can identity weak signals.

Our Approach:
• Formulate an inference problem based upon predicting waveform features

instead of the waveforms themselves since this is more tractable

• Simulate waveforms4 to build a statistical model of waveform features with
uncertainty to accelerate inversion

• Use Sequential Tempered MCMC to sample posterior event parameters

MCMC
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Inference Model:
• Feature-based inference requires building st tistical

certain features and the likelihood of those f atures
Event Parameter Sign

Graphical Model:

Mathematical Model: p (0

Post rior

Waveform Features:
• The arrival times of P and S wa es

define five signal windows each ith
associated features e.g. total sig al
power within the window.
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• Build a statistical model for the signal
power feature likelihood p(Fle) using
simulations and the signal noise model
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Identification of Synthetic Events:
Identification of strong event

Power Time Series
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Post-event background

Identification of weak event
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Conclusion:
• Feature-based inference provides a promising approach to signal-based full waveform

monitoring that reduces the complexity of the statistical problem

• Advanced MCMC techniques can be employed to reduce the computational burden of the
Bayesian inference problem and allow for the explicit integration of uncertainty

• Future work will focus on developing a richer set of features to better isolate information
from the seismic event and integrating more complex uncertainty models
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