S paper a:aject echcalasulanany ySUJect views or opini might expamed

haperd t necessarily represent the views of the Department of Ei gyh edStes overnmen

Sandia National Laboratories

The Bayesian Perspective:
We update uncertainty as information or observations (D) are added
(Bayes’ Theorem)
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Challenges of Bayesian Methods:
* Markov Chain Monte Carlo (MCMCQC) is often used to sample the
posterior in these applications

* We desire methods that quickly explore the posterior, require little tuning,

can be parallelized, and leverage multifidelity models

Sequential Tempered MCMC>¢ (ST-MCMCQC) :

* Update prior to posterior through intermediate distributions to aid
exploration through an annealing factor 3 to gradually introduce data,
sensors, or adjust model fidelity

Intermediate Distributions: 7; (6) < p (D | 9,/\/1)& p@| M) B €|0,1]
' Posterior

* A population of parallel MCMC chains quickly explore and sample the
intermediate distributions
Slngle MH Markov Chaln Parallel MH Markov Chain

Distribution

Markov Chain
Multiple Markov Chains

* ST-MCMC adapts online based on statistics from P¥I¥ETN
the intermediate samples with little user tuning . FEUNTNEIEI TS
e.g. adaptively weight sensors to avoid difficult to
sample intermediate distributions

* Pseudo-Marginal MCMC’ can be used to

marginalize over sources of uncertainty using an
unbiased likelihood estimate
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Feature-Based

Inference Model:

Infer the event parameters: Longitude, Latitude, Depth, Magnitude, Time * Feature-based inference requires building statistical models for the likelihood af a signal given

e Observations: Seismometer waveforms at various locations

* Uncertainty to integrate: Travel time uncertainty, earth structure
heterogeneity, event focal mechanism, background noise process

Bayesian Seismic Data, D Likelihood: p (D | 0)
| Physics Model

Monitoring Framework | ] %ﬁ Sensor Model
gb o Uncertainty Model
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Challenge:

* Detecting and locating very weak seismic signals requires sensor fusion
and utilizing more information signal waveforms

certain features and the likelihood of those ffatures given an hypotheésized event

Event Parameter Signal Features Sigihal Waveform

Graphical Model:

Likelthhood Prjor o
Signal Lik¢lihood Feagure Likelihood
p (0

SAND2019- 14984C

p(Y
Mathematical Model: D ((9 ‘ Y) | 9 D (Y | F)p (F ‘ 9) dF> p(@)
P

(Y)

Evidénce

Postgrior

Waveform Features: - Examble Waveform P Duration| S Duration

* The arrival times of P and S wayes
define five signal windows each with P Arrival
associated features e.g. total sighal g
power within the window.

S Arrival

TimeN

* P andS arrival times and uncertainty
can be found using models like AK 135
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* Build a statistical model for the signal  ~

* Uncertainty quantification is essential since there is limited knowledge power feature likelihood p(F|0) using - - Window 5
" simulations and the signal noise model ' —7—7—"7 —" | o
about the complexities of models, sensors, and data & Pre-signal background > S~ Post-event background
* Historic data or simulations will need to be used to understand these
complexities and synthesize them into tractable models Results
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the predicted waveform to the observed waveform. This requires a
complex predictive waveform model but can identity weak signals.

Our Approach:

* Formulate an inference problem based upon predicting waveform features

instead of the waveforms themselves since this is more tractable

e Simulate waveforms* to build a statistical model of waveform features with

uncertainty to accelerate inversion

Conclusion:

* Feature-based inference provides a promising approach to signal-based full waveform
monitoring that reduces the complexity of the statistical problem

* Advanced MCMC techniques can be employed to reduce the computational burden of the
Bayesian inference problem and allow for the explicit integration of uncertainty

* Future work will focus on developing a richer set of features to better isolate information
from the seismic event and integrating more complex uncertainty models

* Use Sequential Tempered MCMC to sample posterior event parameters
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