

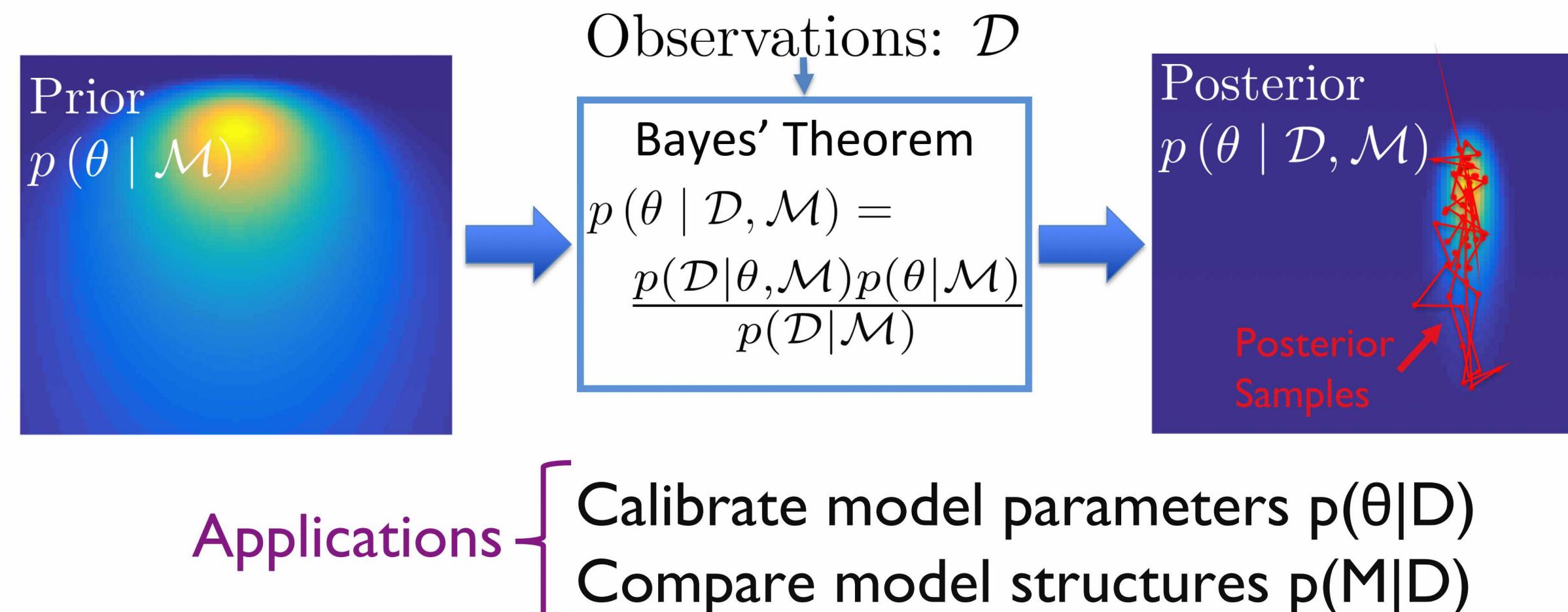
Seismic Monitoring with Feature-based Bayesian Inference and Sequential Tempered MCMC

Thomas Catanach, Nathan Downey, and Christopher Young | Sandia National Laboratories

Bayesian Inference Problems

The Bayesian Perspective:

We update uncertainty as information or observations (\mathcal{D}) are added (Bayes' Theorem)



Applications

- Calibrate model parameters $p(\theta | \mathcal{D})$
- Compare model structures $p(M | \mathcal{D})$

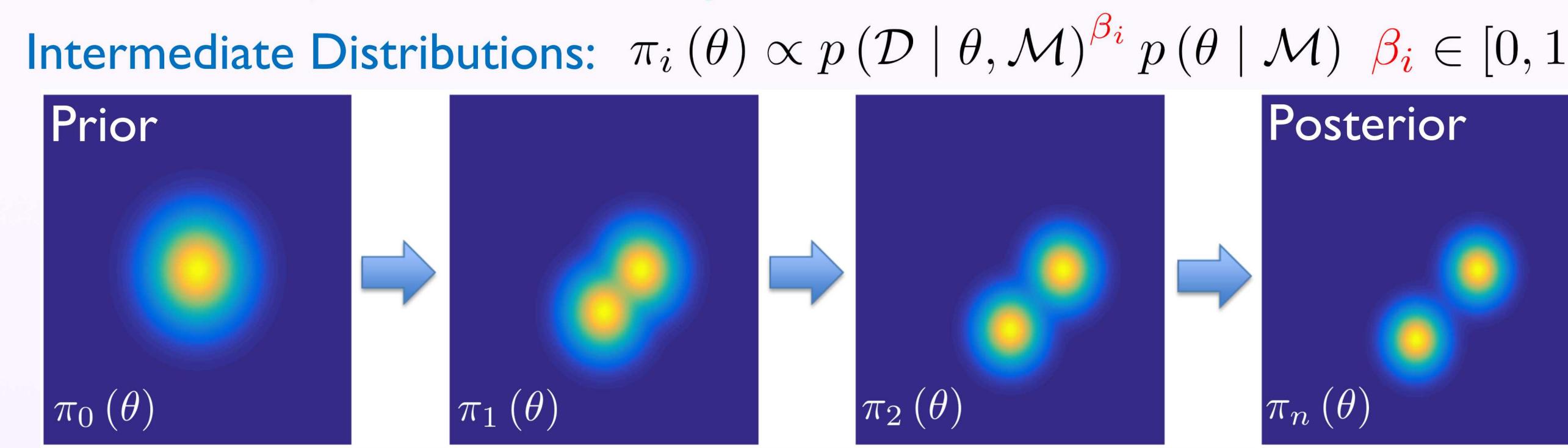
Challenges of Bayesian Methods:

- Markov Chain Monte Carlo (MCMC) is often used to sample the posterior in these applications
- We desire methods that quickly explore the posterior, require little tuning, can be parallelized, and leverage multifidelity models

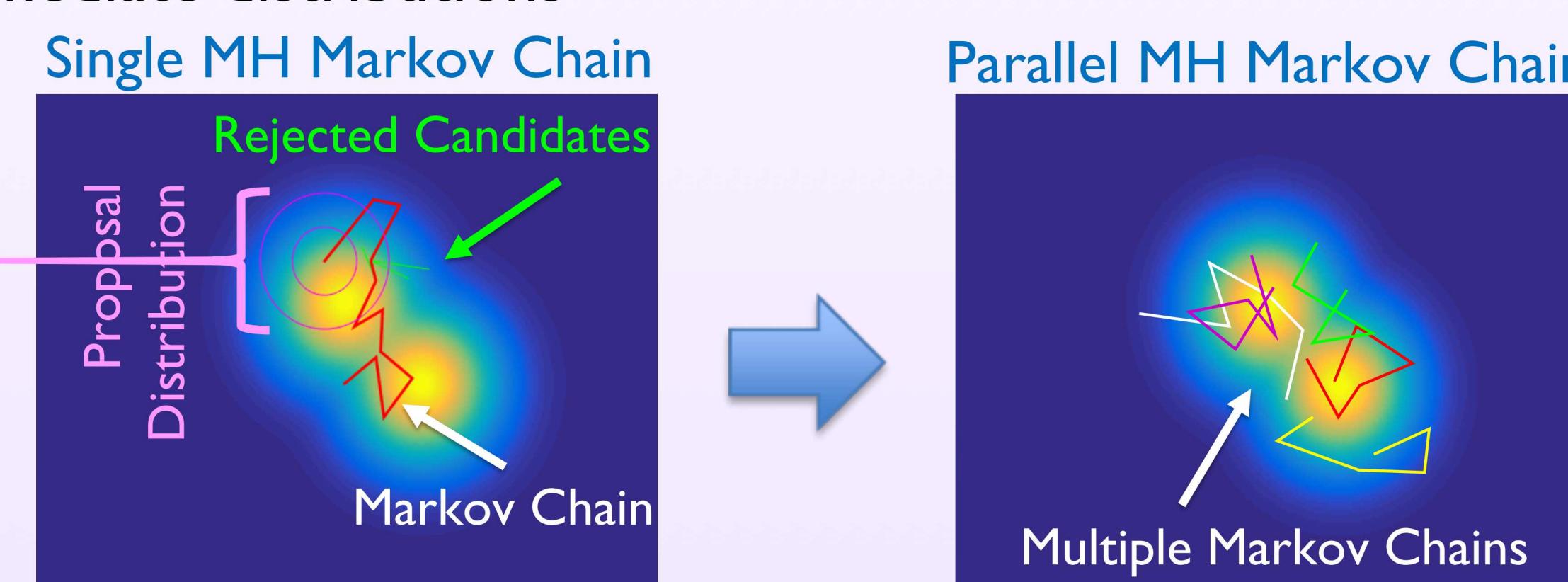
MCMC Solver

Sequential Tempered MCMC^{5,6} (ST-MCMC):

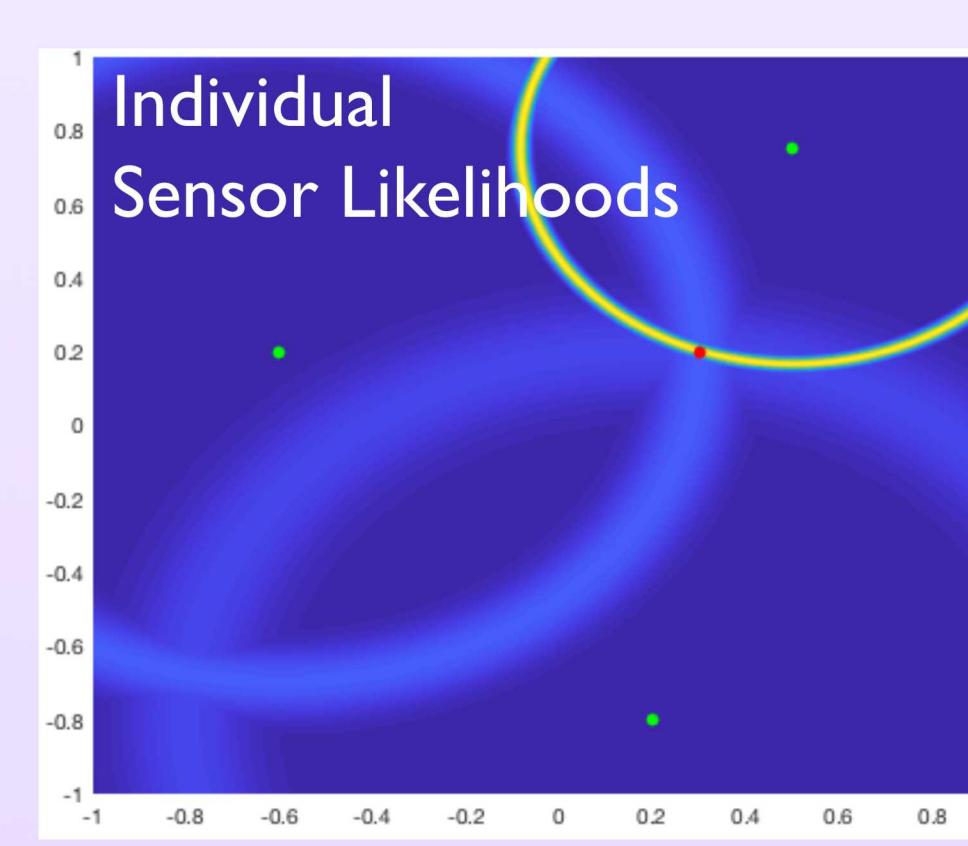
- Update prior to posterior through intermediate distributions to aid exploration through an annealing factor β to gradually introduce data, sensors, or adjust model fidelity



- A population of parallel MCMC chains quickly explore and sample the intermediate distributions



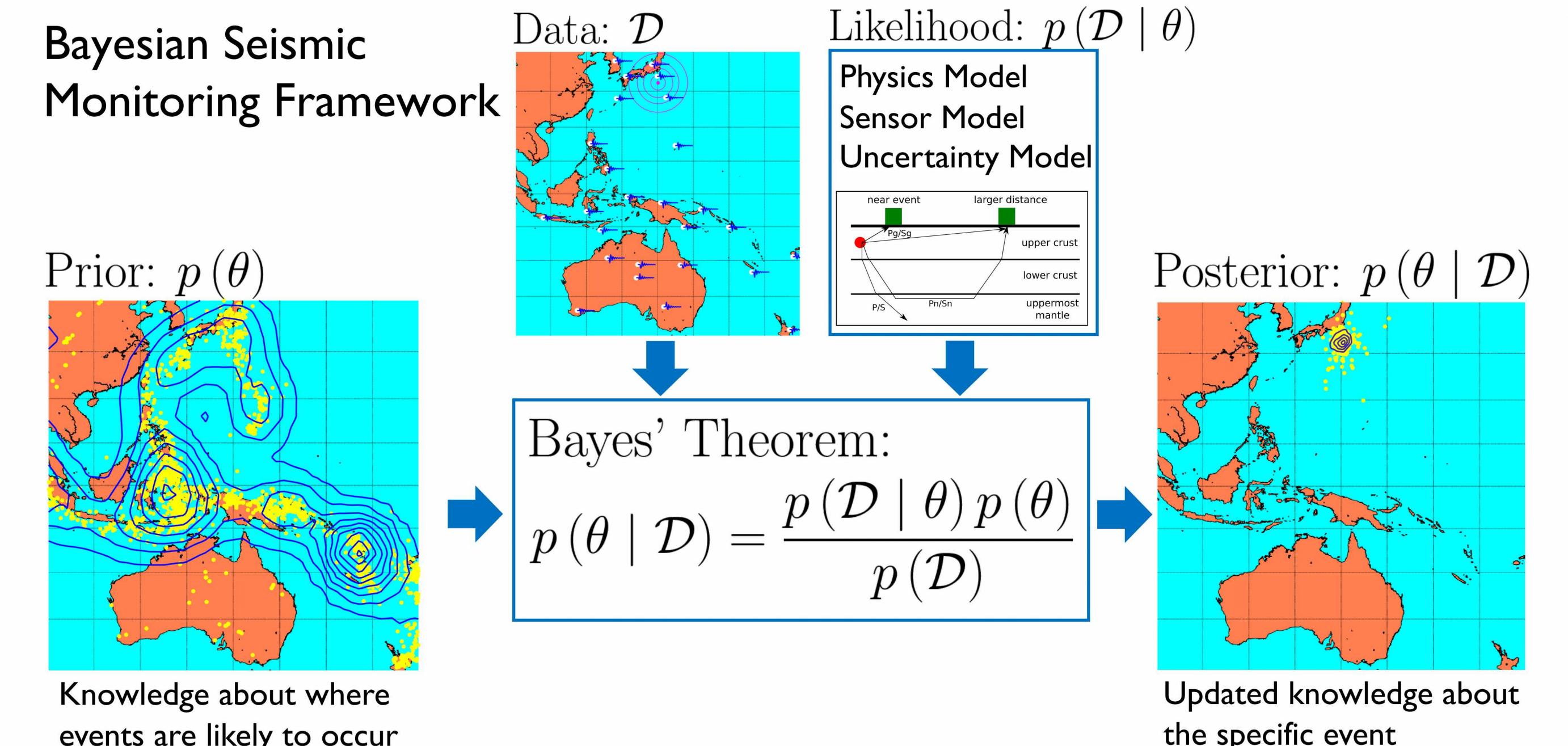
- ST-MCMC adapts online based on statistics from the intermediate samples with little user tuning e.g. adaptively weight sensors to avoid difficult to sample intermediate distributions
- Pseudo-Marginal MCMC⁷ can be used to marginalize over sources of uncertainty using an unbiased likelihood estimate



Bayesian Seismic Monitoring

Problem Set up:

- Infer the event parameters: Longitude, Latitude, Depth, Magnitude, Time
- Observations: Seismometer waveforms at various locations
- Uncertainty to integrate: Travel time uncertainty, earth structure heterogeneity, event focal mechanism, background noise process



Challenge:

- Detecting and locating very weak seismic signals requires sensor fusion and utilizing more information signal waveforms
- Uncertainty quantification is essential since there is limited knowledge about the complexities of models, sensors, and data
- Historic data or simulations will need to be used to understand these complexities and synthesize them into tractable models

Potential Impact:

- Provide event information with well calibrated confidences for decisions
- Provide a framework to fuse multi fidelity and phenomenology data
- Enable experimental design methods to quantify a network's ability to detect events and test improvements to the processing system

Existing Methods:

- Detection-Based (e.g. BayesLoc¹, NET-VISA²): The event likelihood is based on comparing the predicted seismic wave arrival time to the observed arrival time. This uses a simple travel time model but has difficulty with weak signals when it is hard to detect the arrival.
- Signal-Based (e.g. SIG-VISA³): The event likelihood is based on comparing the predicted waveform to the observed waveform. This requires a complex predictive waveform model but can identify weak signals.

Our Approach:

- Formulate an inference problem based upon predicting waveform features instead of the waveforms themselves since this is more tractable
- Simulate waveforms⁴ to build a statistical model of waveform features with uncertainty to accelerate inversion
- Use Sequential Tempered MCMC to sample posterior event parameters

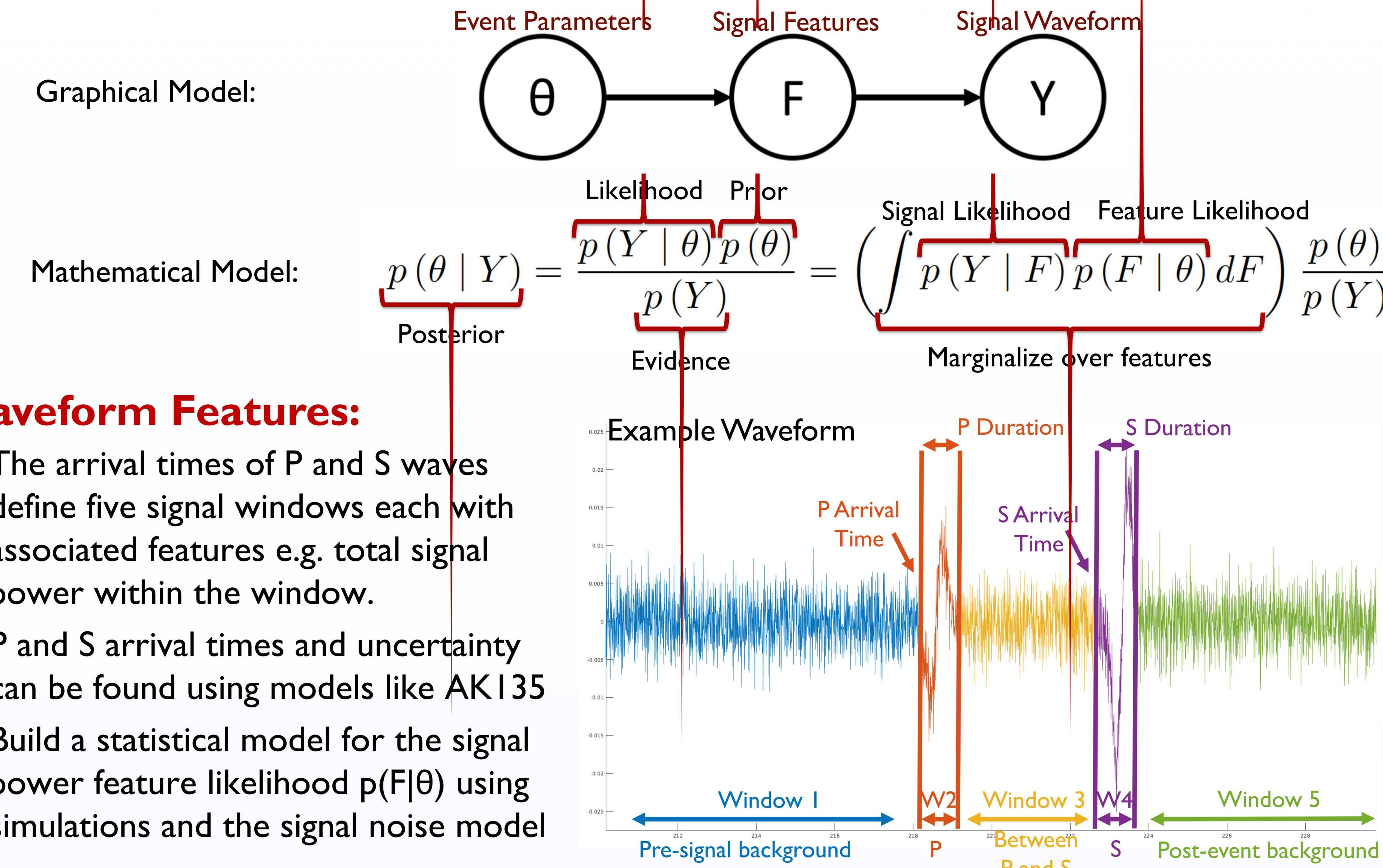
References

- Myers, S. C., Gardar Johannesson, and Robert J. Mellors. "BayesLoc: A robust location program for multiple seismic events given an imperfect earth model and error-corrupted seismic data" (2011)
- Arora, Nirmal S., Stuart Russell, and Erik Sudderth. "NET-VISA: Network processing vertically integrated seismic analysis" (2013)
- Moore, David A., and Stuart J. Russell. "Signal-based Bayesian seismic monitoring" (2017)
- Li, Dunzhu, et al. "Global synthetic seismograms using a 2-D finite-difference method." (2014)

Feature-Based Inference

Inference Model:

- Feature-based inference requires building statistical models for the likelihood of a signal given certain features and the likelihood of those features given an hypothesized event

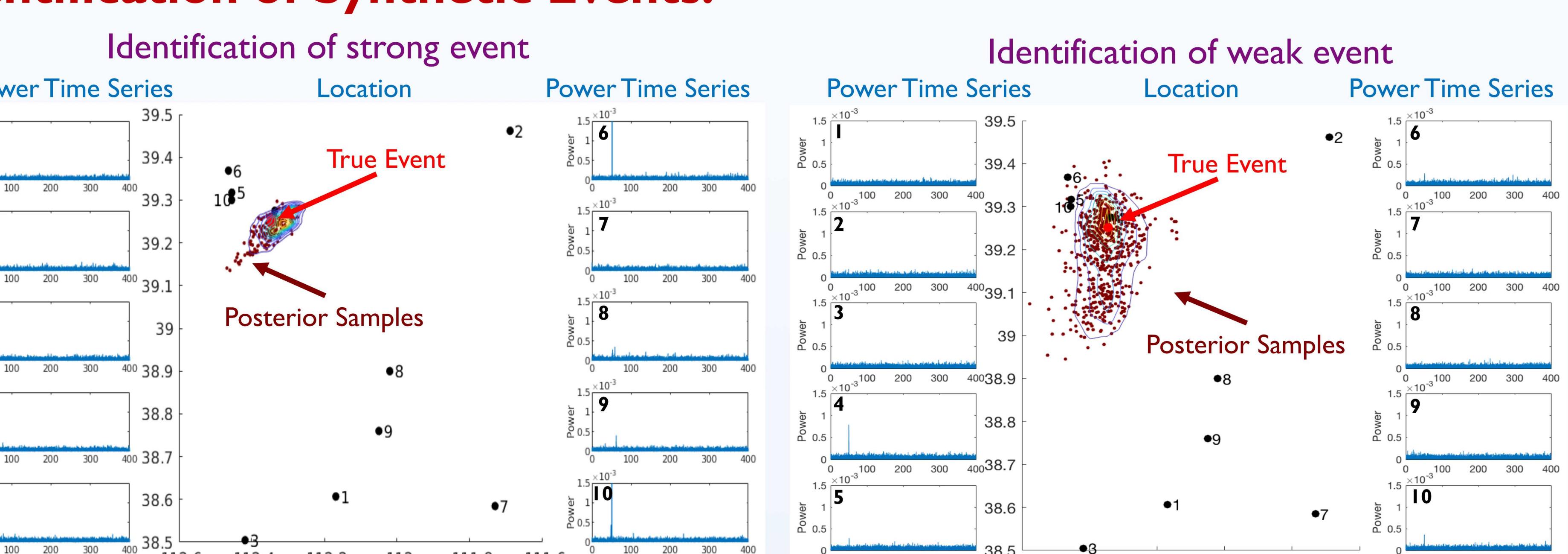


Waveform Features:

- The arrival times of P and S waves define five signal windows each with associated features e.g. total signal power within the window.
- P and S arrival times and uncertainty can be found using models like AK135
- Build a statistical model for the signal power feature likelihood $p(F | \theta)$ using simulations and the signal noise model

Results

Identification of Synthetic Events:



Conclusion:

- Feature-based inference provides a promising approach to signal-based full waveform monitoring that reduces the complexity of the statistical problem
- Advanced MCMC techniques can be employed to reduce the computational burden of the Bayesian inference problem and allow for the explicit integration of uncertainty
- Future work will focus on developing a richer set of features to better isolate information from the seismic event and integrating more complex uncertainty models