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Abstract—Images are often not the optimal data form to
perform machine learning tasks such as scene classification.
Compressive classification can reduce the size, weight, and
power of a system by selecting the minimum information while
maximizing classification accuracy.

In this work we present designs and simulations of prism
arrays which realize sensing matrices using a monolithic ele-
ment. The sensing matrix is optimized using a neural network
architecture to maximize classification accuracy of the MNIST
dataset while considering the blurring caused by the size of each
prism. Simulated optical hardware performance for a range of
prism sizes are reported.
Index Terms—compressive sensing, machine learning, optics

I. INTRODUCTION

Imaging systems are traditionally designed such that single
points in object space map as closely as possible to single
points in image space. These devices attempt to create an
image of the real-world. High image quality can improve
the ability for human observers to make conclusions about
the data; however, images are often not the most efficient
data form to perform machine learning tasks such as scene
classification.

Compressive classification systems are designed to only
measure the information from the scene that improves clas-
sification accuracy. Each detector samples multiple regions of
the scene, and the sampling can be optimized to minimize
the number of detectors required. This break from the one
to one constraint of imaging enables compressing the data
before it is recorded. It has been shown that high classification
accuracy is achievable by applying the classifier directly to
compressed data [1], [2]. Reducing the number of detectors
reduces the power required by the optical system and the
bandwidth required to process or transmit the data. Removing
the constraints of imaging also reduces the requirements to
minimize aberrations which can reduce the size and of the
optical components.

In our previous work we showed that a compressive sensing
system could be implemented as a monolithic architecture
using an array of prisms and discrete detector elements [3], [4].
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This architectures differs from previous compressive sensing
approaches [5], [6] because the measurements of all the
detectors are made concurrently, but the prism array is the
only optical element which reduces the size weight and power
of the system. The prism array is created from optimized com-
pression matrices where each nonzero element of the matrix is
realized as an individual prism. Each prism directs one input
angle onto a detector with multiple prisms contributing to each
detector as shown in Fig. 1. Each prism is also independent of
the other prism which lends the architecture to a completely
computer generated optical design process which minimizes
the design time from an optical engineer and thereby reduces
the cost.
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Fig. 1. Compressive classification samples multiple scene locations onto each
detector element enabling classification with fewer measurements than would
be required for imaging. A prism array enables the multiple sampling using a
monolithic optical element to reduce the size weight and power of the optical
system. The compressed data is classified instead of reconstruct images to
minimize the required data.

The previous work indicated that the prism array blurred the
sensing matrix. The geometry of the prisms set the acceptance
angle which was larger than a pixel in the scene, and meant
that each detector sampled larger regions of the scene than
the compression matrix it was designed to realize. This work
presents an optimization process that includes the effects of
blurring. An additional layer was added to the optimization
process which convolves the sensing matrix with a blurring
function representing the prism width. This layer allows the
optimization to exploit blurring to decrease the sparsity with-
out increasing the number of prisms in a physically realized

SAND2019-15076C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



version of the sensing matrix. The total number of prisms
required to realize the sensing matrix is reduced by increasing
the size of the prisms and the decrease in the classification
accuracy is minimal

II. PRISM ARRAY

The prism array architecture directly realizes a constrained
sensing matrix as monolithic optical component located a fixed
distance in front of discrete detectors. An example prism array
that would make a measurement of the MNIST data set using
9 detector elements is shown in Fig. 2. A neutral density filter
on each prism weights the contribution from each input angle.
The detectors are separated so incident light off the designed
input angle is not measured. Each prism, however, has a range
of angles on either side of the designed input angle which will
be directed on to the detector.

Fig. 2. An example prism array. Each prism realized one non-zero entry
from the compression matrix. Each cluster of prisms contributes to a separate
detector enabling each detector to sample multiple scene locations.

This range of acceptance angles causes blurring, as shown
in Fig. 3. In traditional optical design situations, blurring is an
often-undesirable feature that is driven down through iterative
optimizations of the optical device. From the perspective of the
sensing matrix, blurring increase sensitivity to angles adjacent
to the designed input angle, but with a decreased weighting.
Therefore, blurring can be thought of as localized relaxation
of strict sparsity constraints on a sensing matrix that can be
physically realized without additional optical hardware. The
angular extent of the blurring is determined by the geometry
of the prism array.
The geometry in this work is set to match previous works [3]

as shown in Fig. 4. Each detector is 100 mm x 100 µm
which is much larger than the pixels of a consumer camera.
These large detectors are possible because the detectors are
discrete. The gap between the detectors is require so that the
light from outside the designed input angle of each prism will
not be recorded. An imaging system would use a field stop
to remove the unwanted light, but the prism array is not an
imaging component. Because it is not an imaging component,
separation between the prism array and the detectors is not set
by a focal length. Instead the prism array is optimized for a set

distance. A large separation decreases the cross talk between
detectors, but also increases the size of the optical system. For
this work the prism array-detector separation is set to 9 mm
which matches previous simulations of the system. The field
of view of 5° also matches previous work and corresponds to
a reasonable field of view for remote sensing applications. The
width of the prism was variable to show effects of blurring.

III. SIMULATIONS

A. Blurring Kernel

In previous work we created three dimensional models for
the prism arrays and simulated each detector sensitivity as
a function of input angle. Rays from a source were trace
were traced for each of the 28 x 28 possible input angle.
The total flux on each detector was recorded for each input
angle to build up a system response matrix for the prism array.
This matrix was used to compress images and simulate the
performance of the optical system.

Non-sequential ray tracing provides an accurate simulation
of the optical system but is slow and computationally intensive
which makes it infeasible for use in the a neural network
optimization process that requires many iterations. Blurring
is the primary deviation away from the ideal sensing matrix
caused by the prism array, so an analytic model for the blurring
is required to include the properties of the prism array in
the sensing matrix optimization. The detector sensitivity for
a given angle is determined by the the overlap between the
beam from a prism and the detector.

As a first order approximation the blurring was calculated
for a prism directly above the detector as shown in Fig. 3 (a).
The acceptance angle of the prisms can be modeled as a
convolution between the effective angular size of the detector
and beam as determined by the width of the prism. Both the
prism and detector are rectangular shapes, and the convolution
between two rectangular function results in a trapezoidal
function as shown in Fig. 3 (b). The burring kernel goes
to zero at the angle where the edge of the beam from the
prism completely misses the detector as shown by the red
beam in Fig. 3 (a). The flat part of the trapezoid starts at
the angle where the smaller of the detector or the prism
beam is completely encompassed inside the other shape. The
overlapping area is independent of angle when the beam is
entirely encompassed inside the detector (when the detector is
larger than the prism), or the beam overfills the detector (when
the prism is larger than the detector).

A two dimensional blurring kernel was computed for each
prism size. The prism size, prism-array-detector separation,
and the detector size was used to compute the angles for each
part of the blurring kernel The profile is a piece wise defined
function, so to avoid sampling errors, the blurring kernel was
computed at ten times the resolution of the MNIST images and
integrated to downsample. The blurring kernel created a close
approximation of the blurring simulated using non-sequential
ray tracing as shown in Fig. 5
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Fig. 3. (a) The separation between the prism array and the detector along with the width of the prism relative to the width of the detector sets which input
angles are measured. Ideally each prism would only accept the angle that is subtended by a pixel in the scene. (b) The angular sensitivity can be modeled
by how much of the beam from the prism is on the detector for each input angle. (c) If the sensing matrix is optimized assuming point sampling then the
prisms accepting larger input angles will blur the system response matrix.
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Fig. 4. The width of the prisms, the separation between the prism array and
the detector, and the size of the detector affected the blurring of the sensing
matrix. For this work, the separation between the detector and the prism
array was fixed as was the size of the detector. The 28 x 28 pixel MNIST
images were set to subtend a 5° half field of view.

B. Neural Network Optimization

The prism array realized a compression matrix; however, the
prism array cannot realize a general compression matrix. To
allow the compression operation to be realized with optical
hardware, it must be a linear operation. Thus, we create a
transformation function C such that

cn r 784 3 3( H÷ B(A) Tx c Rn, A c R784xn, (1)

where x is the flattened image being transformed, n is the
dimensionality of the compressed space (the number of de-
tectors), and the function B(A) is the blurring operator for
the compression matrix A. To optimize this transformation for
digit classification, we must optimize A jointly with another
differentiable model whose output is the digit class. We have
chosen a feed-forward neural network for this, allowing the
whole process to be modeled in TensorFlow [7] as a differen-
tiable feed-forward neural network consisting of three fully-
connected layers. The first layer is the regularized and blurred
compression transformation. The final layer classified the data
into digit classes form 0 to 9 using a Softmax classifier.
To impose our soft sparsity constraints on the compression

transformation, we apply L 1 regularization to A in Equation
1 and constrain the entries of A such that Aii > 0. L 1
regularization is well-known to encourage sparsity in linear
models and neural networks [8], [9]. While this increases the
sparsity in A, the optimization phase exposes the undesirable
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Fig. 5. Sensing matrices blurred with the blurring kernel showed close
agreement to the system response matrices simulated using non-sequential
ray tracing.

property that the weights Aii can become indefinitely small
while the subsequent layer compensates by multiplying its
weights by the same factor. The end result is A containing
many small but non-zero weights. To dissuade this undesirable
behavior, we add a small amount of Gaussian noise to the
compressed representation,

: R784 9 x Boyx 6 c Rn, A c R784xn,

.Ar (0, aqn), a = 0.02,
(2)

where I„ is the n x n identity matrix and .Ar(µ, E) is the
Gaussian distribution. Thus, if the weights in A become too
small, the noise becomes the dominant factor in C',.„ and little
information is passed to the rest of the network. As an added
benefit, the noise acts as regularization that can be turned off
at test time [10]412].

To further encourage sparsity, once our model has con-
verged, we approximate the compression transformation with
a LASSO regression [9]. Depending on the regularization
constant chosen, this further reduces the number of non-zero
weights by a factor of 4-10x while generally achieving an
R2 > 0.95 relative to the original transformation. After this
step, we fine-tune the rest of the model while freezing the
sparse compression transformation.
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Fig. 6. (a) A sensing matrix describes the sensitivity of each detector to locations in the scene. The brighter a region the more contribution to that detector.
This diagram is showing an example with nine detectors. k is the detector number. (b) Non-sequential ray tracing was used to simulate the sensitivity of each
detector for a prism array 30 1.1.m prisms. The small prisms resulted in minimal blurring. (c) The same prism array but with larger prisms is more blurred
because the Larger prisms accept larger input angles.

Iv. RESULTS

The neural network optimization was used to create sensing
matrices to classify the MNIST dataset using between 2 and
9 detectors. Each matrix was optimized both to maximize
classification accuracy and for sparsity. The LASSO tuning
parameter that sets the sparsity pressure was set to 0.01 to
balance between the loss of classification accuracy from fewer
measurements and the increased number of prisms from a
less sparse sensing matrix. The optimization was run 17 times
for each number of detectors to get a mean and variance for
classification accuracy and number of nonzero entries in the
compression matrix. Each neural network was trained on the
60,000 training images in the MNIST dataset. The number of
nonzero entries was of particular interest because the prism
array realizes each entry as a separate prism; therefore, sparse
sensing matrices are smaller and less complex.

Fig. 6 shows example nine detector sensing matrices for a
range of prisms sizes. Many of the same regions are sampled
in the sensing matrices optimized for different size prisms.
For example, the top right detector for the 30 Rin prisms
(Fig. 6 (a)) and the center detector for the 130 p.m prisms
(Fig. 6 (b)) both sample the center and an arc along the lower
region of the MNIST images. The prism array with 130 pin
prisms requires fewer prisms to realize the same sampling
because each of the larger prisms sample a larger angular
extent of the scene. Although, if the prism size becomes
too large, the sampling regions significantly change because
the blurring is larger than the regions that sensing matrix is
optimizing to sample as demonstrate by the 200 µm prisms
shown in Fig. 6 (c).
The performance of the system is determined by how well

it can classify the MNIST dataset. A Softmax classifier was
used to classify the 10,000 test images of the MNIST dataset
compressed by each of the 17 sensing matrices created for
each number of detectors from 2 to 9. The mean and standard
deviation of the classification accuracy was recorded for each
of the sensing matrices sets at each number of detectors and is
shown in Fig. 7 (a). Three prism sizes are shown demonstrating

that the the neural network optimization could achieve similar
classification accuracies across a wide range of prism sizes. Ac
cross all prism sizes and number of detectors, the performance
of the optimized sensing matrices far exceeds the classification
accuracy of the the same test images compressed using random
Gaussian sampling.

The difference between the prism sizes become clear when
comparing the number of prisms required to achieve the
classification accuracy. Fig. 7 (b) shows the mean and standard
deviation for the number of prisms required to implement each
sensing matrix. The number of prisms required increases less
than linearly as the number of detectors increases because
each detector samples less of the scene. The larger prisms
greatly reduce the number of prisms required to achieve the
high classification accuracy.
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Fig. 7. (a) The classification of the the MNIST images from data compressed
with the optimized sensing matrices had higher classification accuracy than
images compressed with random Gaussian sampling. The decrease in classi-
fication accuracy due to increasing prism size was a small effect. The error
bars are the standard deviation from 17 sensing matrices. (b) The number
of non-zero entries in the sensing matrix sets the number of prisms required
to realize the optical component. The larger prism required fewer prism to
achieve similar classification accuracy. The random Gaussian sampling was
not optimized for sparsity, so it has 784 * (Number of detectors) non-zero
elements.



V. CONCLUSION

In this work we demonstrated a compressive sensing archi-
tecture using a prism array optimized based on the geometrical
properties of the optical component. The prism array realized
a compression matrix with a single optical element before
discrete detectors. One challenge of the prism array architec-
ture is that the size of the prisms sets the acceptance angle.
Prisms effectively blur the sensing matrix. Reducing the size of
the prisms reduces the blurring, but also decreases throughput
of the optical system. Instead, the blurring was leveraged to
decrease the number of prisms required to implement the
sensing matrix.
The effects of this blurring were included in the neural

network optimization of the sensing matrix by convolving the
sensing matrix with a blurring kernel. An analytical model for
the blurring kernel was created an verified against the results
from non-sequential ray tracing. The number of prism was
greatly reduced by increasing the size of the prisms and the
decrease in classification accuracy was minimal.
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