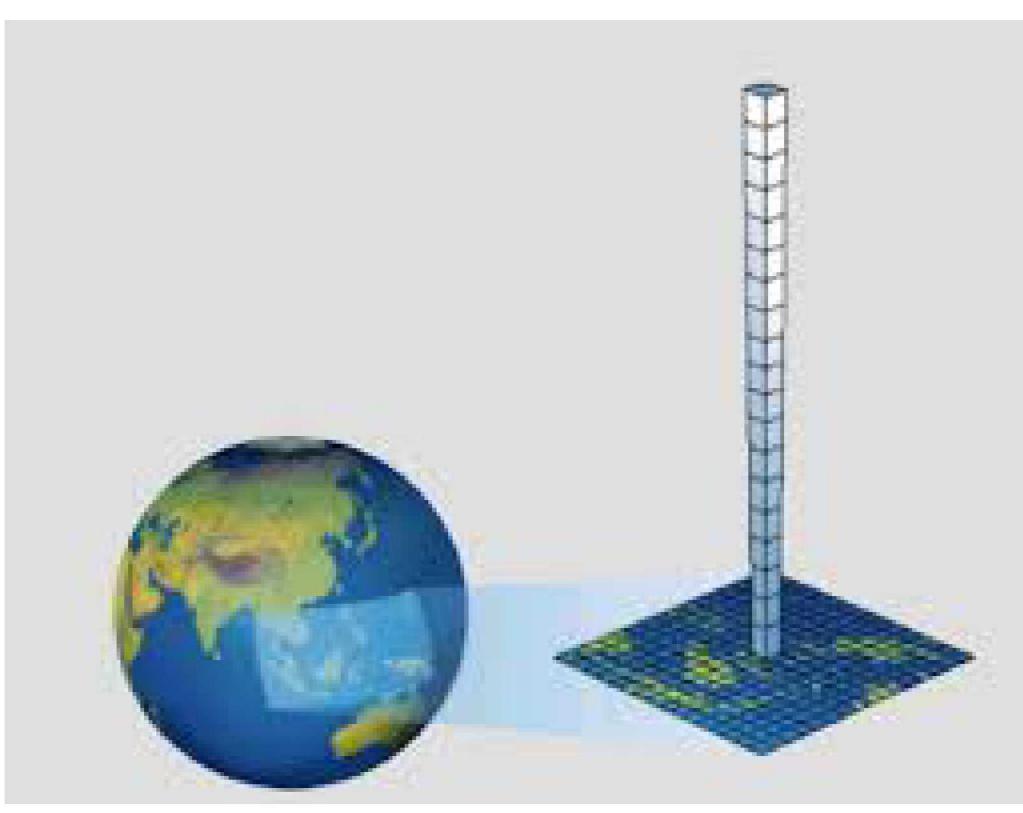
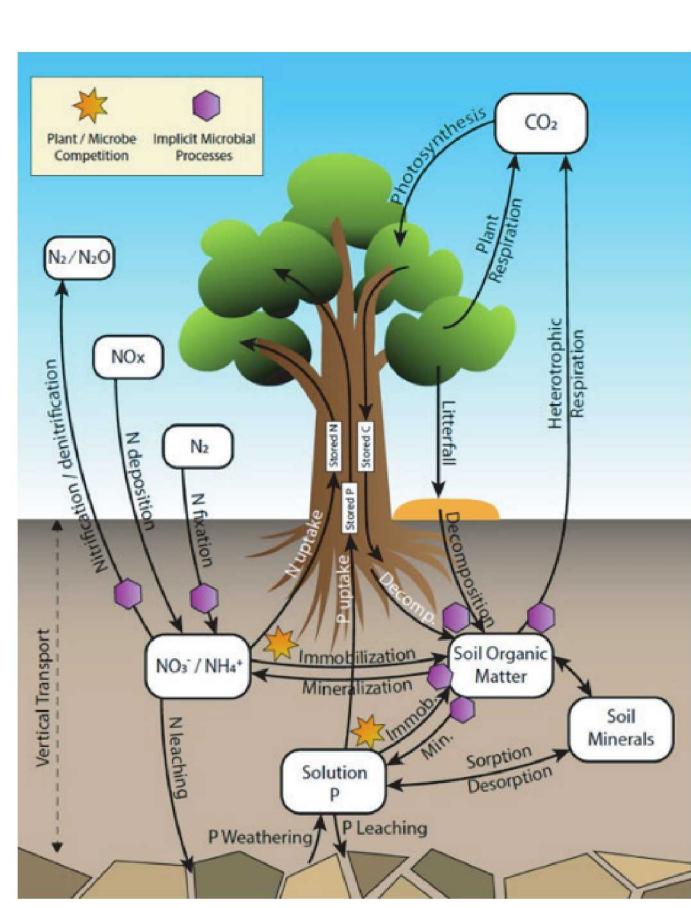


Physics Informed Neural Network Surrogate for E3SM Land Model

Vishagan Ratnaswamy¹, Cosmin Safta¹, Khachik Sargsyan¹, and Daniel Ricciuto²

Sandia National Laboratories¹, Livermore CA
Oak Ridge National Laboratory², Oak Ridge TN

Surrogate Construction for Land Model



Major challenges

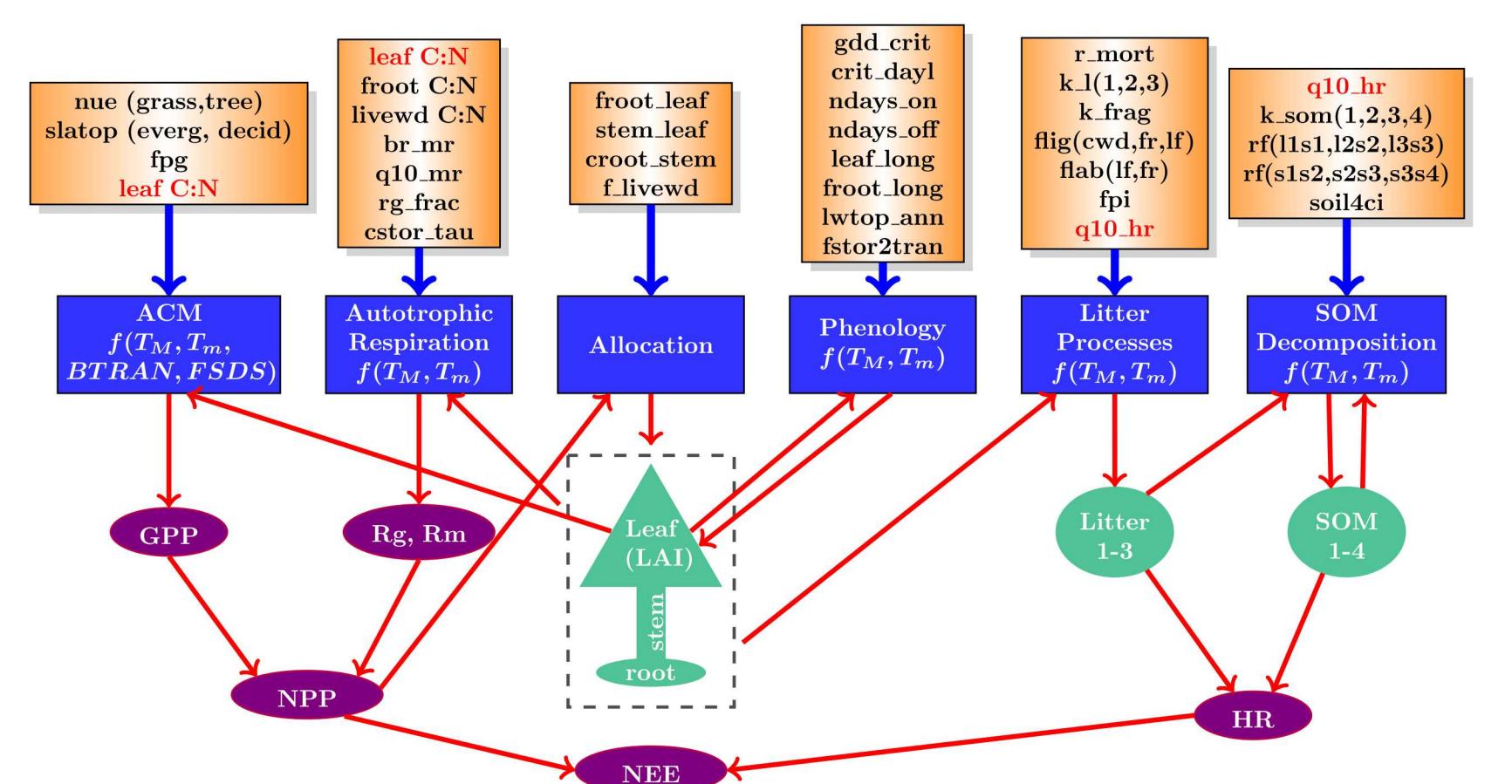
- High-dimensionality: complex climate models typically include a large number of input parameters
- Expense: a single simulation takes hours/core
- Uncertainty quantification studies, such as calibration or sensitivity analysis are infeasible
- Need to pre-built surrogates to replace the model

Key ideas

- Key idea #1: Use Recurrent Neural Networks (RNN), such as Long Short Term Memory (LSTM) to capture temporal dependencies
- Key idea #2: Use physics-informed connections to build tree-based neural-network architecture for more efficient training

Hierarchical Structure of E3SM Land Model

- Land Model is driven by given daily **Forcings** (Precipitation, Min/Max Temp, Radiation) and ~ 50 **Input Parameters** (not known precisely)
- Connections between input parameter, forcings and output Qols are known *a priori* - we want to use this knowledge for a better NN architecture!



Connectivity of parameters/forcings/outputs

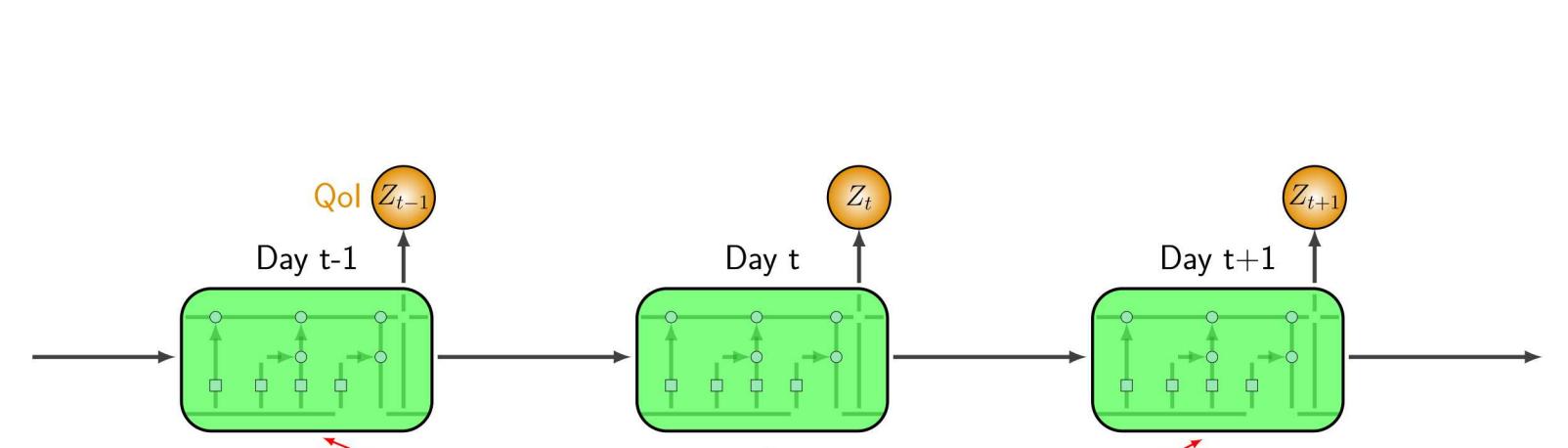
Main features

- Land model $Z(x, t; \lambda)$, where x are forcings, t is time, and λ are parameters
- Vanilla LSTM captures time dynamics well
- We developed multiple-Qol network architecture with special connections between Qols, forcings and parameters, based on code inspection
- Physics-informed Tree LSTM captures known relationships between Qols and leads to more efficient training
- Flexibility to train on daily or monthly Qols
- Physics-informed LSTM drastically improves surrogate accuracy

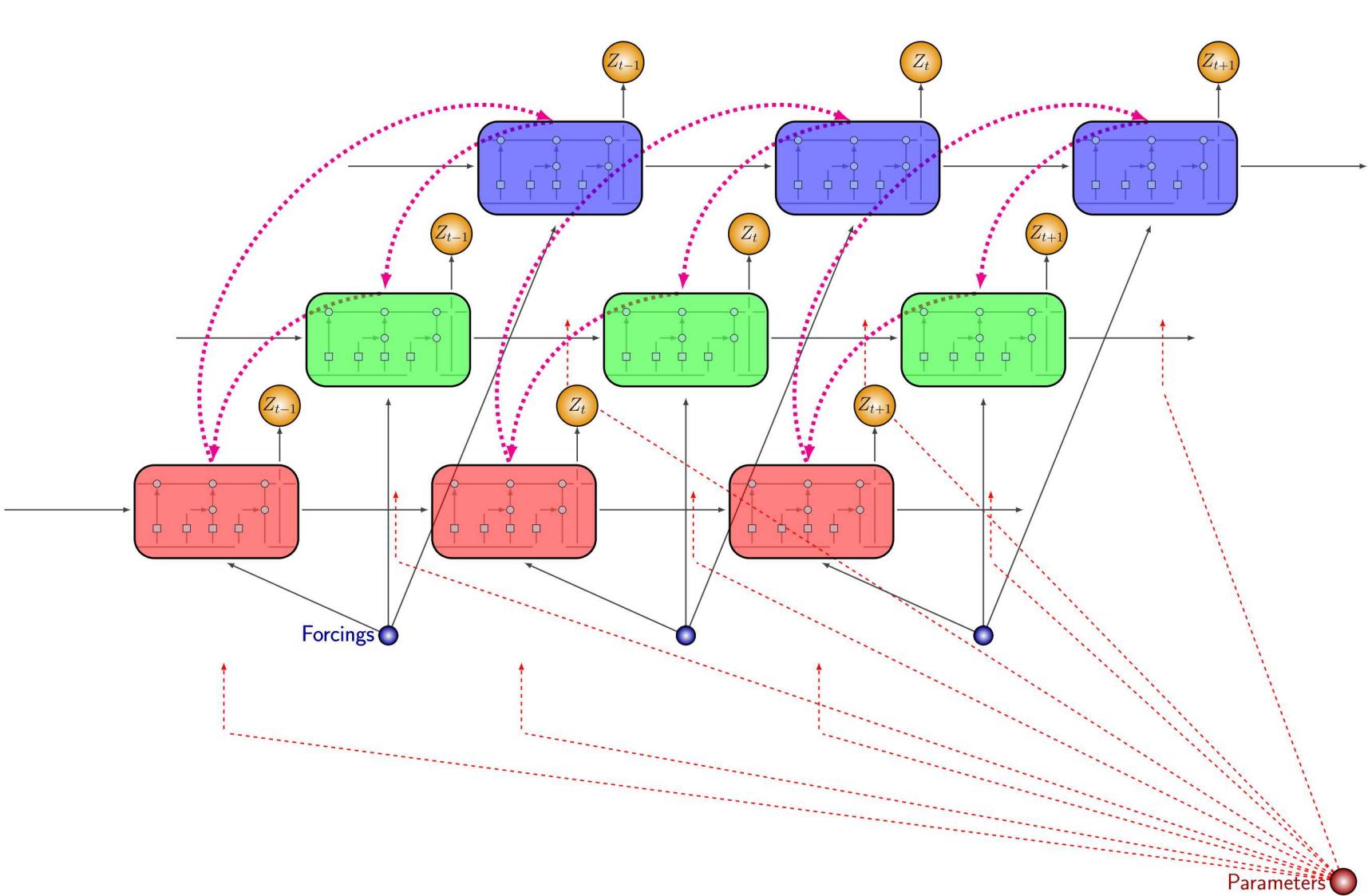
Training details

- Trained on simulations at 12 FLUXNET Sites
- Dropout Regularization
- 500 training samples, 500 validation samples
- Hyperparameter optimization on learning rate, number of neurons (~ 150), hidden layers (2 or 3)

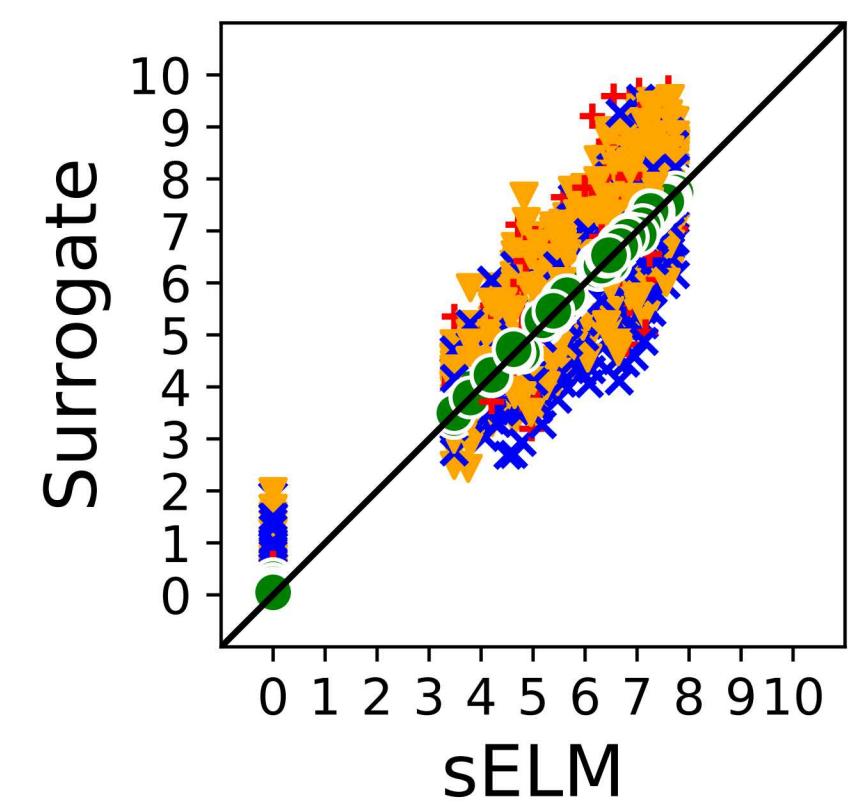
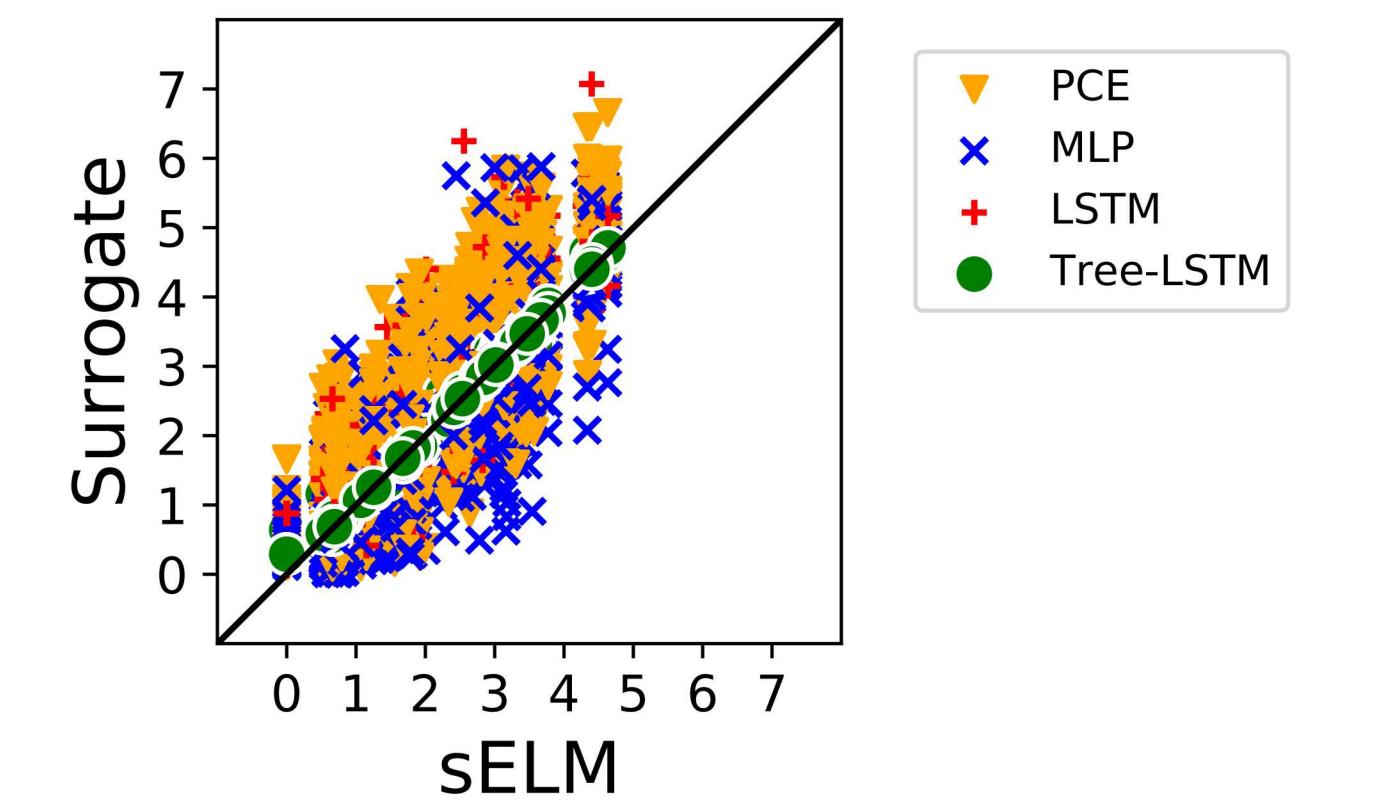
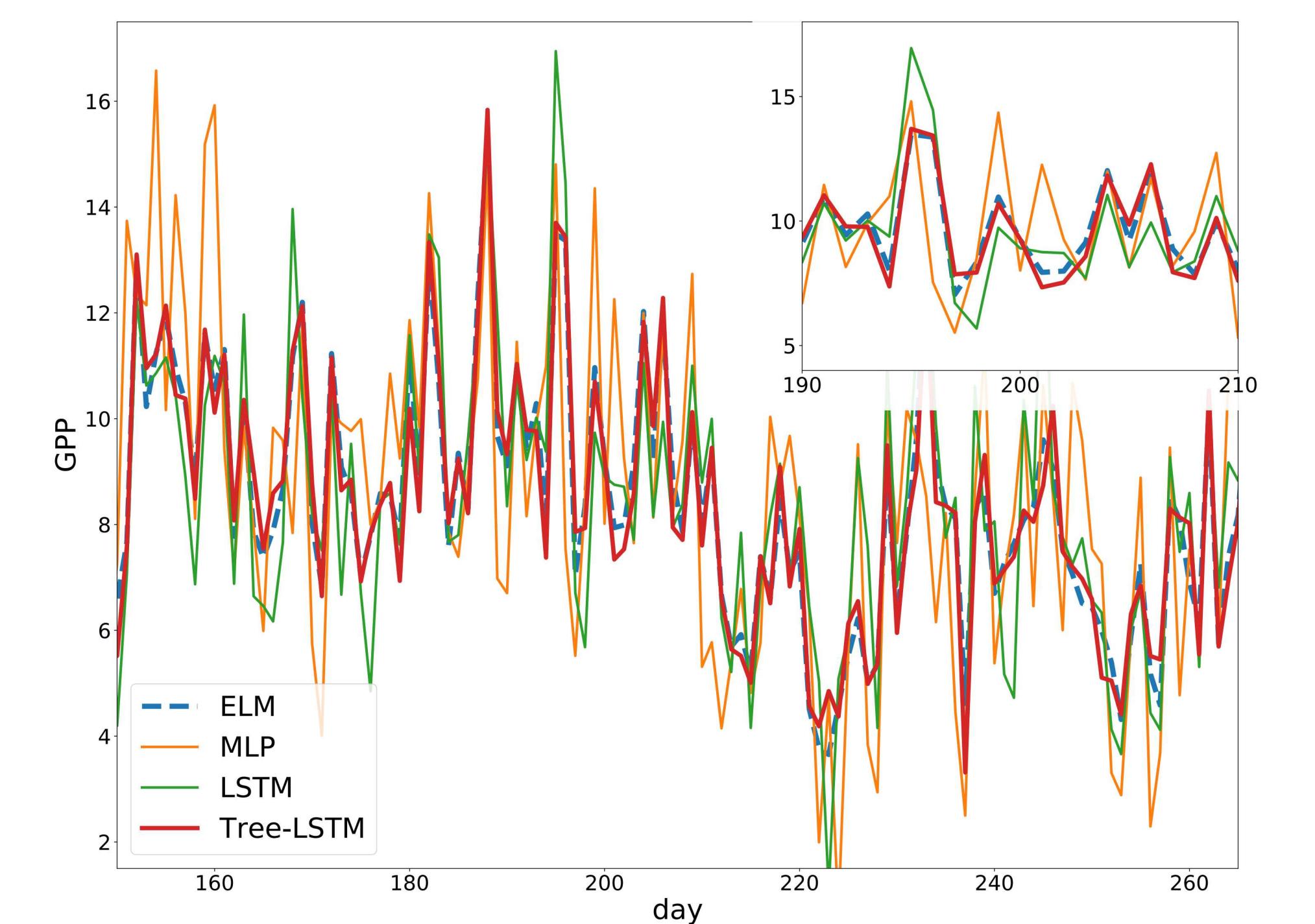
Physics Informed Machine Learning Methodology



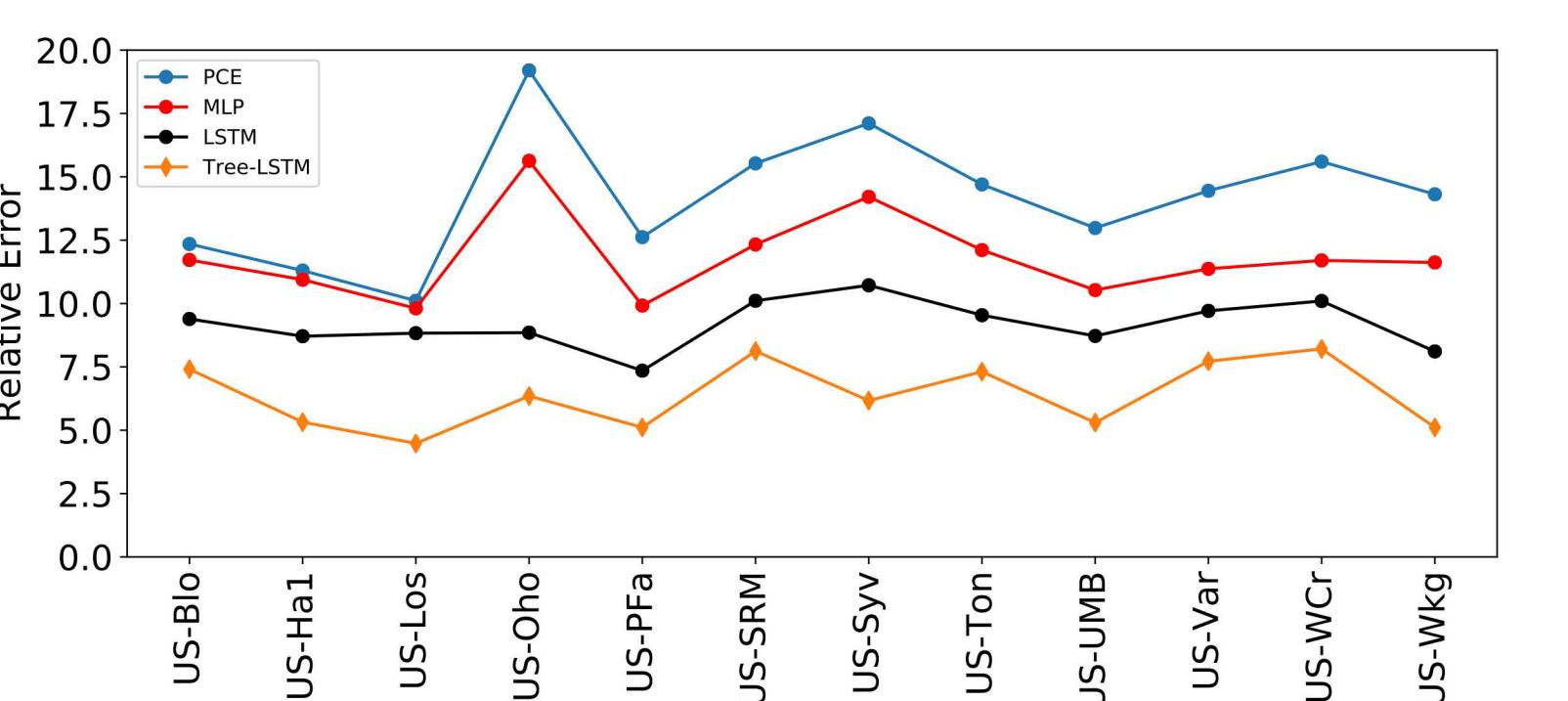
Vanilla LSTM network



Tree-LSTM network builds in custom connections between Qols, forcings and parameters



Daily series comparison



Relative errors for FLUXNET site surrogates

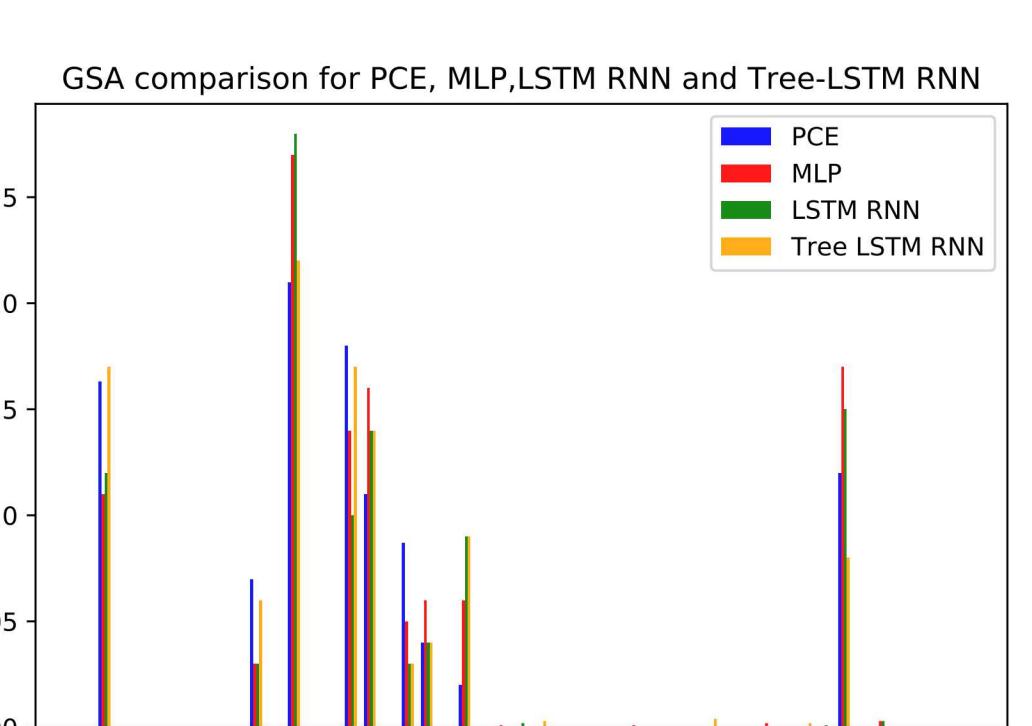
Summary

- Resolving temporal dynamics with LSTM
- Neural network architecture, informed by physics, provides much more accurate surrogates
- Physics-based architecture outperforms conventional LSTM, multilayer perceptron and polynomial chaos
- GSA consistent with prior findings

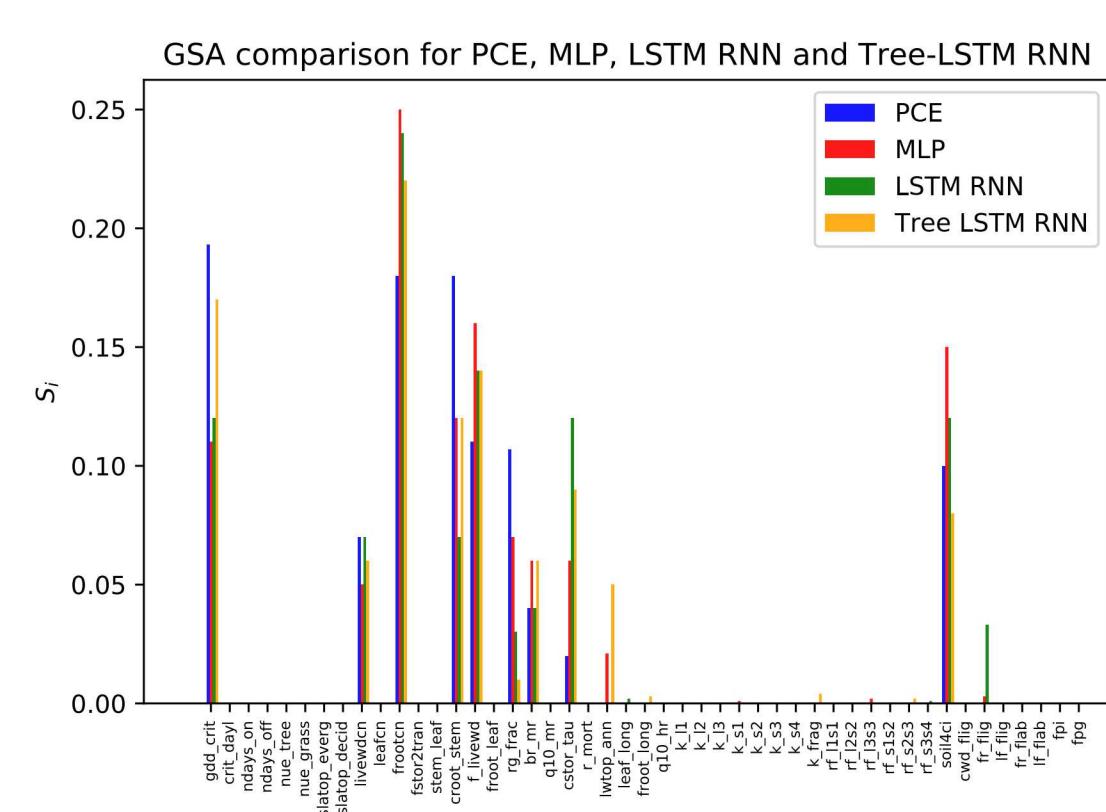
Current and future work

- Extend to regional surrogate construction
- Use tree-LSTM surrogates for model parameter calibration and design optimization

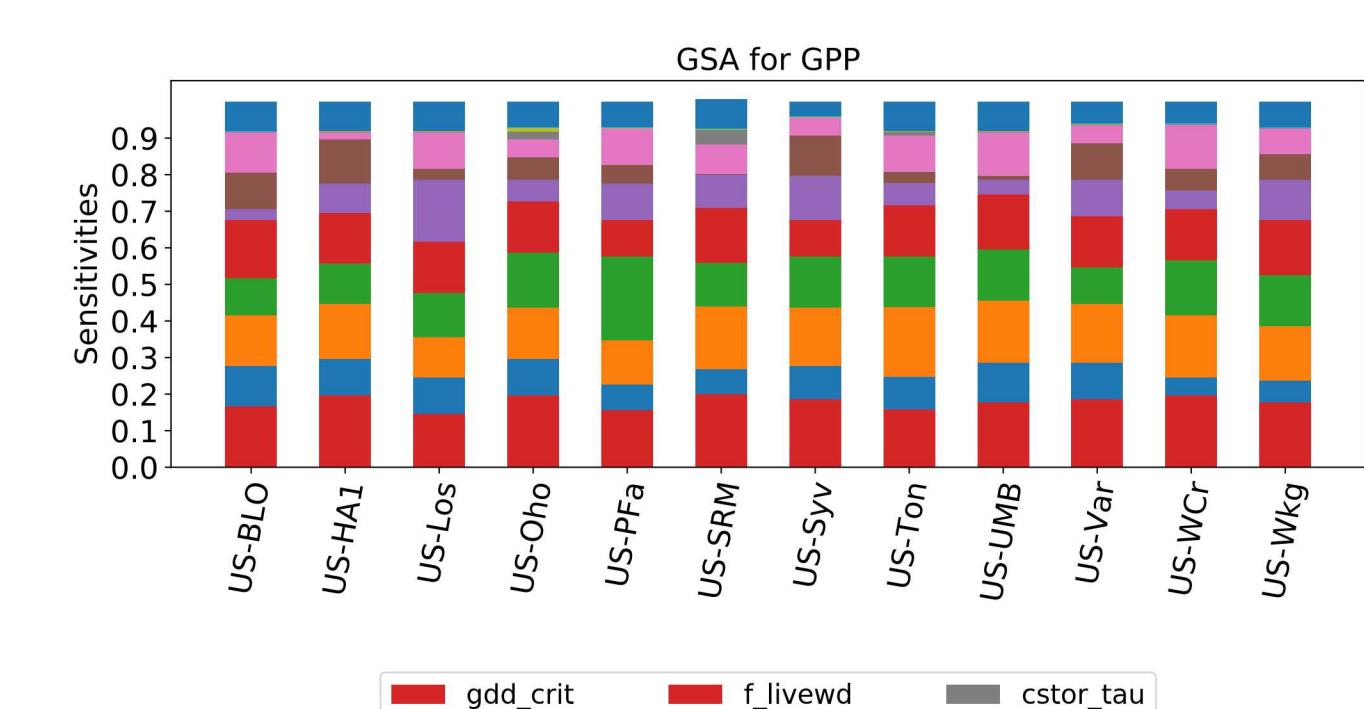
Global Sensitivity Analysis (GSA)



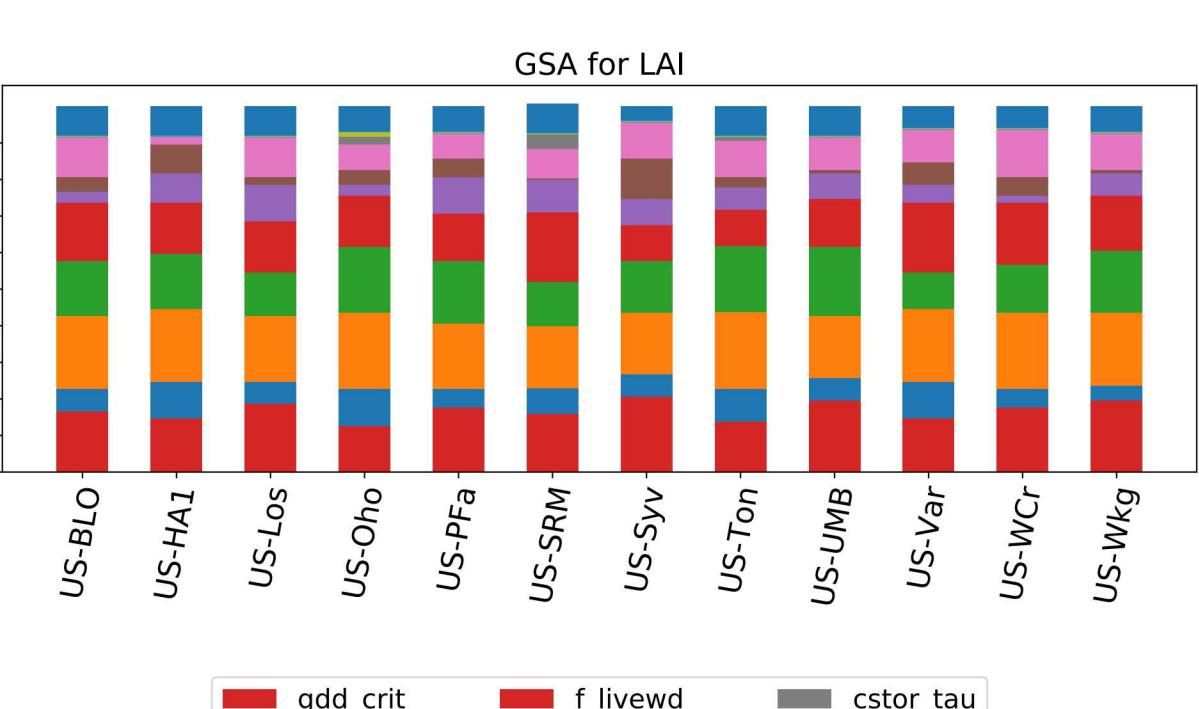
GSA for GPP
US-Harvard single site surrogate



GSA for LAI
US-Harvard regional surrogate



GSA for GPP for all 12 sites



GSA for LAI for all 12 sites

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725.