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Major challenges

High-dimensionality: complex climate models
typically include a large number of input parameters

Expense: a single simulation takes hours/core

Uncertainty quantification studies, such as
calibration or sensitivity analysis are infeasible

Need to pre built surrogates to replace the model

Key ideG

Key idea #1: Use Recurrent Neural Networks
(RNN), such as Long Short Term Memory (LSTM)
to capture temporal dependencies

Key idea #2: Use physics-informed connections to
build tree-based neural-network architecture for
more efficient training

Hierarchical Structure of
E3SM Land Model

Land Model is driven by given daily Forcings
(Precipitation, Min/Max Temp, Radiation) and
r) 50 Input Parameters (not known precisely)

Connections between input parameter, forcings and
output Qols are known a priori - we want to use
this knowledge for a better NN architecture!
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Physics Informed Machine Learning Methodology

Main features

Land model Z(x,t, A) , where x are forcings,
t is time, and are parameters

Vanilla LSTM captures time dynamics well

We developed multiple-Qol network architecture
with special connections between Qols, forcings
and parameters, based on code inspection

Physics-informed Tree LSTM captures known
relationships between Qols and leads to more
efficient training

Flexibility to train on daily or monthly Qols

Physics-informed LSTM drastically improves
surrogate accuracy

Training details

Trained on simulations at 12 FLUXNET Sites

Dropout Regularization

500 training samples, 500 validation samples

Hyperparameter optimization on learning rate,
number of neurons (r 150),
hidden layers (2 or 3)
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Tree-LSTM network builds in custom connections

between Qols, forcings and parameters

Global Sensitivity Analysis (GSA,

Monte-Carlo based variance
decomposition or Sobol
sensitivity computation using
NN surrogate, using 3000
samples

More conventional polynomial
chaos surrogate is less accurate
but provides sensitivities for free

Sensitivities are consistent
across sites

Dimensionality reduction:
8 parameters out of 47 with
nearly all variance contribution

Regional surrogates and
single-site surrogates produce
qualitatively similar sensitivities

In agreement with the
hierarchical nature of
the ELM model

GSA comparison for PCE, MLP,LSTM RNN and Tree-LSTM RNN

0.25

0.20 -

LA- 0.15 -

0.10 -

0.05 -

0.00  Timm I ei

PCE

MLP

LSTM RNN

Tree LSTM RNN

t 5 p, E:9 5 = 5 = 10 EDIT, t c rs, nq Tr cm cr, cn.o .o -6_ 471

fcg 
E

E25 4 4 r,14
Hm w 3 w ors, 1.>4,1 1260 I -, , 112 inn

,0 i la, o „„-
= = " .9 1%3 - t; 2

arameter

GSA for GPP

US-Harvard single site surrogate
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GSA comparison for PCE, MLP, LSTM RNN and Tree-LSTM RNN
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Summary

Resolving temporal dynamics with LSTM

Neural network architecture, informed by physics,
provides much more accurate surrogates

Physics-based architecture outperforms
conventional LSTM, multilayer perceptron and
polynomial chaos

GSA consistent with prior findings

Lurrent and future work

Extend to regional surrogate construction

Use tree-LSTM surrogates for model parameter
calibration and design optimization
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