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. Software available at
introduction https://github.com/rgp62/gmls-nets (Tensorflow) and
https://github.com/atzberg/gmls-nets (PyTorch)

e Scientific machine learning requires handling data that is unstructured, small, and
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ow to estimate a functional from scattered data:

Case Conv-2L | Hybrid-2L | GMLS-2L
MNIST | 98.52% 98.41% 96.87%

T2 u]

Density Estimation

i
2 PR
Fe=i
1 r.*l" u_':!ﬁ"*.!, | - :i
i g [
LB i | I
| '!_i !ﬁ
) -
| . 1 |
o r!i
I |
] =1
=

Data-driven model extraction
 Want to extract fast PDE models from high
fidelity molecular simulations
* Run a single molecular simulation of
Brownian motion, histogram and filter
particle positions to extract training data for
evolution of density over a few timesteps
* From one time window, obtain massive
number of observations of how density
evolves - gl = !’ “ it -E:I;r:;::rzisr;"n
e Test by comparing short term operator e -
against long term dynamics
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e Solve local leas

Engineering QOI from incomplete simulation data
 Generate training data by running unstructured

finite volume code and computing drag from s o Mainingdaia | -
simulated velocity and pressure field at cell o
centers R |
* Train GMLS-Net using only velocity fields as input § '\‘\
and drag as output, with no knowledge of g ‘\

viscosity or Reynolds number ol M .
* Excellent agreement, despite fact that only partial : s ¥
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* |n engineering practice, similar correlations may
be obtained by dimensional analysis and
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Scattered Data Inputs GM LS-Nets
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* Future directions: physics-informed NNs, manifold learning
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