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GMLS-Nets: Operator learning architecture
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Parameterize action of
operator on basis with

either a linear layer or deep
MLPs

Stackable layers exploiting
weight-sharing, may be used
same as ConvNets but on

scientific data

Software available at
https://github.com/rgp62/gmls-nets (Tensorflow) and

https://github.com/atzberg/gmls-nets (PyTorch)

1 model = tf.fteras.Sequential()

2 model.add(tf.keras.layers.Reshape((n**2,1),input shape-(n,n)))

3

4 model.add(gnets.MFConvLayer(xl,x2,fP,gnets.

5 weightfuncs.sixth,epsl,chansl,activation=ielul))

6 model.add(tf.keras.layers.BatchNormalization(-1))

7

8 model.add(gnets.MFPoolLayer(x2,x3,eps2,tf.reduce max))

9

10 model.add(tf.keras.layers.Flatten())

11 model.add(tf.keras.layers.Dense(100, activation='elul))

12 model.add(tf.keras.layers.Dense(10, activation=lsoftmax'))
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Applications

MNIST: ConvNet Comparison
• On regular grid, comparable performance

to ConvNets on classification problems
• Channels similarly extract features

Data-driven model extraction
• Want to extract fast PDE models from high

fidelity molecular simulations
• Run a single molecular simulation of

Brownian motion, histogram and filter
particle positions to extract training data for
evolution of density over a few timesteps

• From one time window, obtain massive
number of observations of how density

evolves
• Test by comparing short term operator

against long term dynamics

Engineering Q0I from incomplete simulation data
• Generate training data by running unstructured

finite volume code and computing drag from
simulated velocity and pressure field at cell

centers
• Train GMLS-Net using only velocity fields as input

and drag as output, with no knowledge of
viscosity or Reynolds number

• Excellent agreement, despite fact that only partial
data given

• In engineering practice, similar correlations may
be obtained by dimensional analysis and

correlating length of recirculation zone with
Reyholds number and drag coeffit-i

• GMLS-Nets find similar connection between flow
structure and drag without intervention

• Applicable to e.g. process velocimetry data
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Case Conv-2L Hybrid-2L GMLS-2L
MNIST 98.52% 98.41% 96.87%
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• GMLS-Nets extend capabilities of ConvNets to scattered data
representative of SciML

• By exploiting regularity, excellent agreement
for science and engineering applications

• Future directions: physics-informed NNs, manifold learning
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