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Why a DNA data breach is much worse than a credit
card leak

You can’t change your DNA
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Should Cops Use Family Tree Forensics? Maryland Isn’t So Sure

As genetic genealogy gains momentum, one state considers barring police departments from using public DNA databases in
criminal cases.
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DNA Crime-Solving Is Still New, Yet It May Have Gone Too Far

Genetic databases are helping to solve cold crimes. But the arrest of a woman decades after she killed her baby raises
questions of police overreach.
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Privacy is in our DNA

Everyone deserves a secure, private place to explore and understand their
genetics. At 23andMe, we put you in control of deciding what information you
want to learn and what information you want to share.

See our privacy statement for more info.

Five key ways we ensure your privacy

e Meaningful choice The information presented here is meant to be a general
guide to our privacy and security practices. For specific

) . details about our practices, see our privacy statement,
o Privacy by design :
terms of service, research consent document, sample
storage consent document and frequently asked
° Third party sharing questions.
; We're committed to complying with the EU's new data
Security . )
protection law, referred to as the GDPR. Visit our GDPR

page to learn about our data protection approach.

Please contact us at privacy@23andMe.com if you have
questions.
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¢ De-identification/Pseudonymization, encryption, and data segmentation. Registration Information is stripped from
Sensitive Information, including genetic and phenotypic data. This data is then assigned a random ID so the person who
provided the data cannot reasonably be identified. 23andMe uses industry standard security measures to encrypt
sensitive personal data both when it is stored (data-at-rest) and when it is being transmitted (data-in-flight). Additionally,
data are segmented across logical database systems to further prevent re-identifiability.

There exist both real and demonstrated
examples of successful attacks that have
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revealed weaknesses in existing privacy
protection methods
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Genomic Privacy

Privacy risks may include re-identification, inference of sensitive attributes,
and revelation of familial relationships

Understanding what attributes can be inferred from available information is a
critical part of genomic privacy and security

However, the full implications of sharing genomic information are still largely
unknown due to:

- Advances in the study of genomics
- Advances in genomic inference methods
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71 Genomics Foundations

DNA is a molecular sequence composed of
base units called nucleotides

Four nucleotides:
* cytosine (C), guanine (G), adenine (A), or
thymine (T)

Human DNA is made up of 3.2 billion base units;
most are identical across the population

Single nucleotide variations (SNVs) occur at
specific positions in the genome

* Carry privacy-sensitive information

* 0.3% of the genome

* Our analysis will focus on the sequence of SNVs
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Background on genomic inference methods

* Pairwise correlation, or linkage disequilibrium, between genomic variants

e k-th order Markov chains

* Probability of genomic variant occurring in the genome is conditioned on a contagious
set of preceding k variants

* Standard Machine Learning algorithms
* Rely on predetermined set of features requiring a-priori knowledge of best features
* For genomic data, a standard feature set is the k-mer distribution

These methods rely on expert knowledge and contiguous sequences of k

variants containing the predictive elements DNA

—Gene— — Gene—
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mRNA

Long range dependencies exist in genomic data m m
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9 I Genomic inference: our approach

1. Problem set up and data

2. An information-based machine learning model via compression
analytics

3. Reordering genomic information for improved inference
4. Results




10 I Population inference using thel| 000 genomes project
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11 I Fundamentals of compression analytics

Consider two sequences of 10K nucleotides:
X = ‘AAA .. AAA'
c(x) = 86 Bits

y = ‘ATGCC .. CTCG’
c(y) = 86,418 Bits

A lot of data; almost no information

A lot of data; a lot of information




12 I Fundamentals of compression analytics

Now consider comparisons between two sequences:

X Yy X

x and y completely different x and y overlap

C(ry) — min{C(z),C(y)}
max{C(z), C(y)}

NCD(z,y) =
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Compression analytics: training
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14 1 Compression analytics: testing
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Compression analytics: testing
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t6 I Slice compression analytics
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17 I Additional challenge: genomic information is long ranged
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18 | Reordering schemes to localize genomic information
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19 1 Reordering schemes to localize genomic information
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20 I Reordering schemes to localize genomic information
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21 I Compression analytics with reordering
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2 I Impact of reordering on compressibility
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23 I Impact of reordering on slice compression
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Before reordering (upper), the SC scores show no notable structure and are
not distinguishable from each other.

After reordering (lower), the SC scores are separated into distinguishable
regions of high and low compressibility.




24 I Impact of reordering on classification
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Each measure of classification performance indicates an
improvement after reordering




25 1 Summary

Method Accuracy A
RF (Native) 0.67 —
RF (k-mer histogram, k£ = 1) 0.55 -
RF (k-mer histogram, k = 10) 0.68 -
Compression (Native) 0.74 -
Compression (Louvain) 0.81 1.10
Compression (RCM) 0.82 1.11
Compression (Allele Frequency) 0.79 1.06
SC (Native) 0.70 -
SC (Louvain) 0.75 1.08
SC (RCM) 0.77 1.10
SC (Allele Frequency) 0.73 1.04

» All reordering methods considered improve classification accuracy.

* Information theoretic ML methods based on compression analytics
outperform standard feature-based ML methods.

* Analogy between genomic code and computer code. These methods and
others that deal with long-ranged dependencies will be useful beyond the
application considered here.
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27 1 Compression analytics
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28 | Part |: Compression for classification
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10 possible combinations for the pair 3‘51;3’175? is encoded by a

single token, Xi.k, where each is one of AA, AC/CA, ..., TT.

We represent a sequence of SNVs for an individual i as,

Si = Xi,1Xi,2° " Xi,m




29 I Linkage Disequilibrium

* We assume bi-allelic SNVs where the allele occurring most (least) often is
referred to as the major (minor) allele

 Pr(X; =0) and Pr(X; = 1) denote the major and minor allele frequencies
of SNV k

« Because each SNV is assumed bi-allelic, we have
PriX, =0,X,=0)=0—p)(A —p)) + i,
PriX, =0,X,=1) =0 —pps + I
PriX, =1,X;,=0) =pp(1 —p)) + i,

Pr(Xy = 1X; = 1) = pip; + Ui I

* The term [y, is the linkage disequilibrium (LD)
» Quantifies the degree of statistical dependence between SNVS k and (
« [, = 0if and only if X, and X; are independent
« Normalized LD, independent of allele frequency, satisfies —1 <[, <1



