
Reordering Genomic
Sequences for Enhanced
Classification via Compression
Analytics

iv--
0011.4 I dill!

Christina Ting, Jacob Caswell, and Richard Field

PRESENTED BY

Renee Gooding

Fr Q.

Inirig • °-
Mir -P•

Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-15128C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2

=

1

D

111EVERGE TECH - REVIEViS - SCIENCE - CREATORS ENTERTAINMENT VIDEO MORE f y 'SN S Q.

Why a DNA data breach is much worse than a credit
card leak
You can't change your DNA

By Angela Chen l Ochengela l Jun 6, 2018, 3:54pm EDT

f tir E> SHARE

BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY TRANSPORTATION

MEGAN MOLTENI SCIENCE 82 86 2819 87 86 AM

Should Cops Use Family Tree Forensics? Maryland Isn't So Sure
As genetic genealogy gains momentum, one state considers barring police departments from using public DNA databases in
criminal cases.
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DNA Crime-Solving Is Still New, Yet It May Have Gone Too Far
Genetic databases are helping to solve cold crimes. But the arrest of a woman decades after she killed her baby raises
questions of police overreach.
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Privacy is in our DNA

siGni IN REGISTER KIT HELP

Everyone deserves a secure, private place to explore and understand their

genetics. At 23andMe. we put you in control of deciding what information you

want to learn and what information you want to share.

See our privacy statement for more info.

Five key ways we ensure your privacy

Meaningful choice

Privacy by design

Third party sharing

Security

Research

The information presented here is meant to be a general

guide to our privacy and security practices. For specific

details about our practices, see our privacy statement,

terms of service, research consent document, sample

storage consent document and frequently asked

questions.

We're committed to complying with the EU's new data

protection law, referred to asthe GDPR. Visit our GDPR

page to learn about our data protection approach.

Please contact us at privacral.23andMe.com if you have

questions.



4 23andMe's "Privacy Highlights"
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• De-identification/Pseudonymization, encryption, and data segmentation. Registration Information is stripped from

Sensitive Information, including genetic and phenotypic data. This data is then assigned a random ID so the person who

provided the data cannot reasonably be identified. 23andMe uses industry standard security measures to encrypt

sensitive personal data both when it is stored (data-at-rest) and when it is being transmitted (data-in-flight). Additionally,

data are segmented across logical database systems to further prevent re-identifiability.

There exist both real and demonstrated
examples of successful attacks that have
revealed weaknesses in existing privacy

protection methods
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5 Genomic Privacy

Privacy risks may include re-identification, inference of sensitive attributes,
and revelation of familial relationships

Understanding what attributes can be inferred from available information is a
critical part of genomic privacy and security

However, the full implications of sharing genomic information are still largely
unknown due to:

- Advances in the study of genomics

- Advances in genomic inference methods



6 1

Foundations



7 Genomics Foundations

DNA is a molecular sequence composed of
base units called nucleotides

Four nucleotides:
• cytosine (C), guanine (G), adenine (A), or

thymine (T)

Human DNA is made up of 3.2 billion base units;
most are identical across the population

Single nucleotide variations (SNVs) occur at
specific positions in the genome
• Carry privacy-sensitive information
• 0.3% of the genome
• Our analysis will focus on the sequence of SNVs

Base pairs

Adenine Thynilne

Guanine CyLosIne

Sugar phosphaie
backbone

U.S. National Llb Fan/ of Medicine

DNA molecu/e

Version 1

Version 2

Version 3

Version 4
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CT AGGTA
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•

SNV



8 Background on genomic inference methods

• Pairwise correlation, or linkage disequilibrium, between genomic variants

• k-th order Markov chains
• Probability of genomic variant occurring in the genome is conditioned on a contagious
set of preceding k variants

• Standard Machine Learning algorithms
• Rely on predetermined set of features requiring a-priori knowledge of best features

• For genomic data, a standard feature set is the k-mer distribution

These methods rely on expert knowledge and contiguous sequences of k
variants containing the predictive elements

I—Gene-1

Long range dependencies exist in genomic data

DNA

mRNA

Protein

I—Gene-1



9 Genomic inference: our approach

1. Problem set up and data

2. An information-based machine learning model via compression
analytics

3. Reordering genomic information for improved inference

4. Results



10 Population inference using the l 000 genomes project

• Dataset: contains genetic variants
with frequencies of at least I% in the
population
• 2,504 individuals
• 26 population groups

• Problem set up:
• Focus on 3 populations (93, 99,

64 individuals)
• Select a subset of 1000 variants

and try to infer the population
attribute
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11 Fundamentals of compression analytics

Consider two sequences of l OK nucleotides:

x = 1AAA ... AAA'

c(x) = 86 Bits

y = 1ATGCC ... CTCG'

c(y) = 86,4 I 8 Bits

A lot of data; almost no information

A lot of data; a lot of information



12 Fundamentals of compression analytics

Now consider comparisons between two sequences:

x and y completely different

X

•
x and y overlap

C(xy) — min{C(x), C(y)} 
NCD(x, Y) = max{C(x), C(y)}



13  Compression analytics: training
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14  Compression analytics: testing
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15  Compression analytics: testing

Si

Testing

Yi = arg min c(si, pj)
j=1,...,r
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16  Slice compression analytics

Slice of width w:
ai(k; w)

1.--41---1111•11N11--4111--111111-11111--•-•--41

k

Yi = arg min ei(o-i; [9)
j=1,...,r



17 Additional challenge: genomic information is long ranged
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18 Reordering schemes to localize genomic information
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19 Reordering schemes to localize genomic information
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R. M. Layer, et al., "Efficient genotype
compression and analysis of large genetic-
variation data sets". Nature Methods (2016)
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Experiment. 2008 (10): P10008



2o  Reordering schemes to localize genomic information
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21  Compression analytics with reordering
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22 impact of reordering on compressibility
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23 impact of reordering on slice compression
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Before reordering (upper), the SC scores show no notable structure and are
not distinguishable from each other.

After reordering (lower), the SC scores are separated into distinguishable
regions of high and low compressibility.



24 Impact of reordering on classification

0.9 -

0.8 -
<fp

03 -

0.6 -

0
1

,

/

0
!

- 6 = 1.11

0:6 0 8.

a

/
e•

ti 
• elio f.

0:6 0.8

AP1

• I—. ib
6 ,

l

1
..•

6 = 1 18

0:6 0.8

AP2

Each measure of classification performance indicates an
improvement after reordering



25 Summary

Method Accuracy A

RF (Native) 0.67
RF (k-mer histogram, k = 1) 0.55
RF (k-mer histogram, k = 10 ) 0.68

Compression (Native) 0.74
Compression (Louvain) 0.81 1.10
Compression (RCM) 0.82 1.11

Compression (Allele Frequency) O. 79 1.06

SC (Native) 0.70
SC (Louvain) O. 75 1.08
SC (RCM) 0.77 1.10
SC (Allele Frequency) O. 73 1.04

• All reordering methods considered improve classification accuracy.

• Information theoretic ML methods based on compression analytics
outperform standard feature-based ML methods.

• Analogy between genomic code and computer code. These methods and
others that deal with long-ranged dependencies will be useful beyond the
application considered here.
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27 Compression analytics
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28 Part I: Compression for classification

A G T

n
T C A T

III

() ()
10 possible combinations for the pair xjk Xjk is encoded by a

single token, V1./,' , where each is one of AA, AC/ CA, .... 11.

We represent a sequence of SNVs for an individual i as,

si —



29 Linkage Disequilibrium

• We assume bi-allelic SNVs where the allele occurring most (least) often is
referred to as the major (minor) allele

• Pr(Xk = 0) and Pr(Xk = 1) denote the major and minor allele frequencies
of SNV k

• Because each SNV is assumed bi-allelic, we have
Pr(Xk = 0, X1 = O) = (1 - pk)(1 - 731) + lu

Pr(Xk = 0, X1 = 1) = (1 - Pk* + lk,1

Pr(Xk = 1, X1 = O) = Pk(1 - P1) + lk,1
PrVk = 1X1 = 1) = PkP1 + lk,1

• The term /kJ is the linkage disequilibrium (LD)
• Quantifies the degree of statistical dependence between SNVS k and I
• lk,1 = 0 if and only if Xk and X/ are independent
• Normalized LD, independent of allele frequency, satisfies —1 < /kJ < 1


