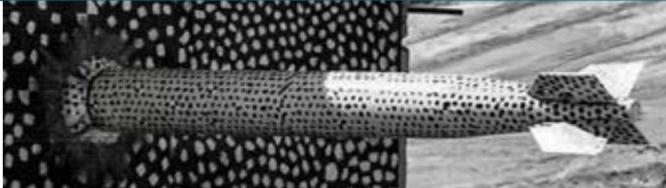


Sandia
National
Laboratories

SAND2019-15137C

Physics-informed machine learning of permeability estimation and reactive transport in porous media



Hongkyu Yoon
Sandia National Laboratories

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

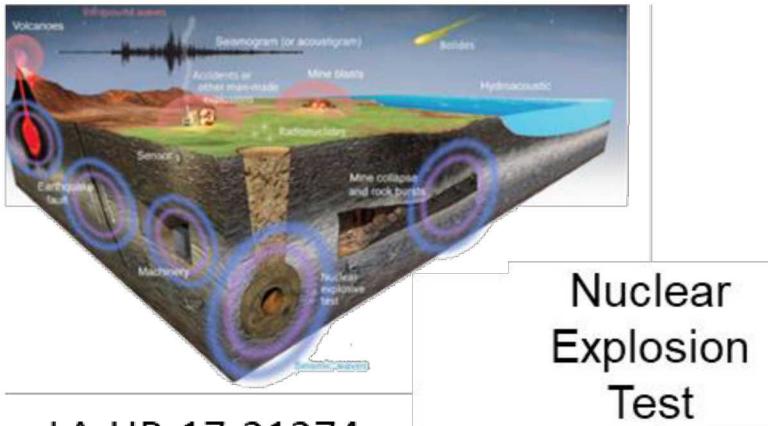
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation: National Security

- **Multiscale flow, transport, and mechanical deformation in fractured/porous media**
 - Key processes to many security systems: monitoring of nuclear explosion test, subsurface energy resources recovery, and nuclear waste disposal
 - Path-dominant and discontinuous features of fractured media pose significant challenges to understanding and control of physical mechanisms underlying complex behavior in fractured and deformable media
 - Complex, multiscale, multiphysics processes
 - Standard simulation tools lack important physics and coupling, and are too expensive and not flexible

Multiscale, Multiphysics, Big/heterogeneous Data

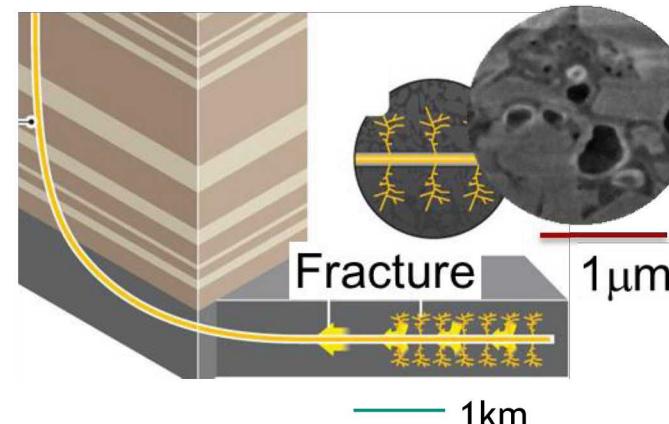
(Sub-)surface Monitoring



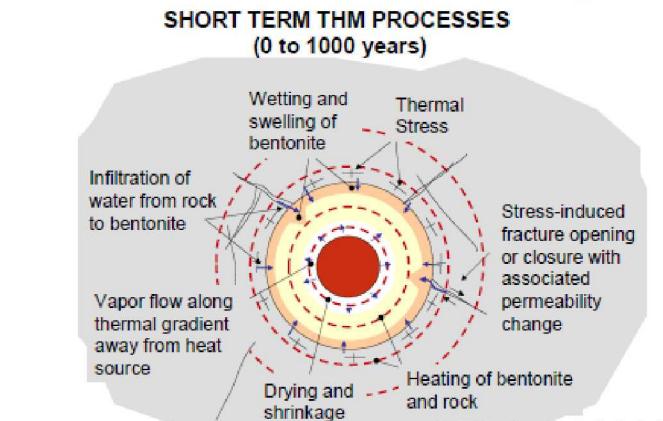
Nuclear
Explosion
Test

LA-UR-17-21274

Subsurface Energy Security



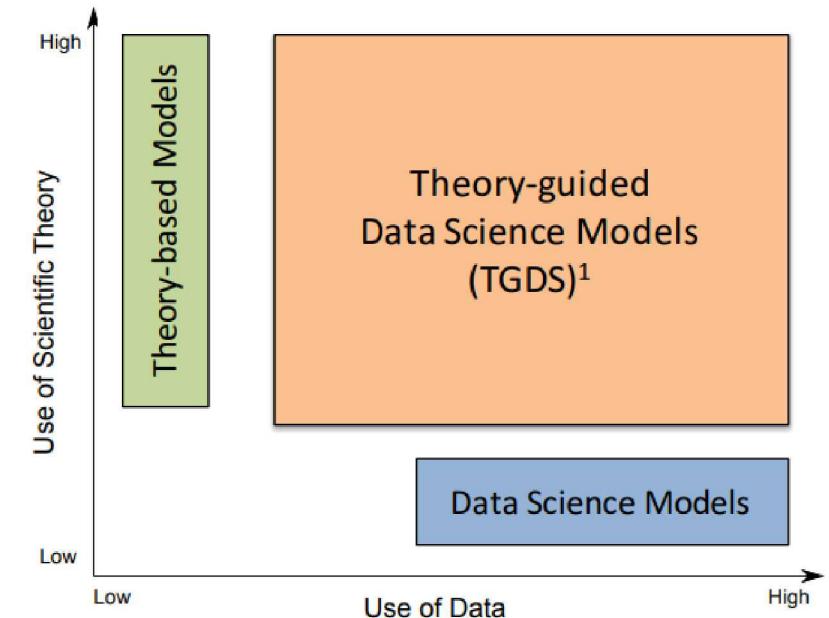
Nuclear Waste Storage



LBNL-2001168

Physics-Informed Machine Learning

- Physics-based ML can overcome the shortcomings of traditional ML methods where data-driven models have faltered beyond the data & physical conditions for training and validation
- Physical constraints, theoretical equations, and relations can be incorporated for data-driven model (e.g., trained model)
- There are many ways to incorporate these principles, but these have not been thoroughly investigated yet
- “This computational technique is transforming science, but physics may yet hold the key to explaining why”
(Buchanan, Nature Physics, 2019)



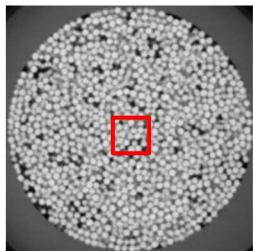
Karpatne et al. “Theory-guided data science: A new paradigm for scientific discovery,” TKDE 2017

**BASIC RESEARCH NEEDS FOR
Scientific Machine Learning**
Core Technologies for Artificial Intelligence

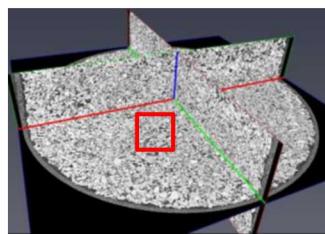
DOE BRN report 2018

Pore Network Systems

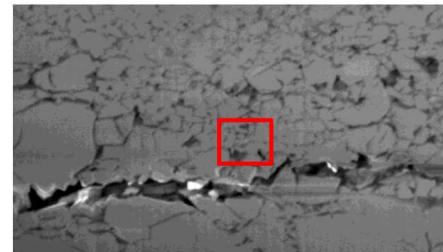
Glass bead pack (1")



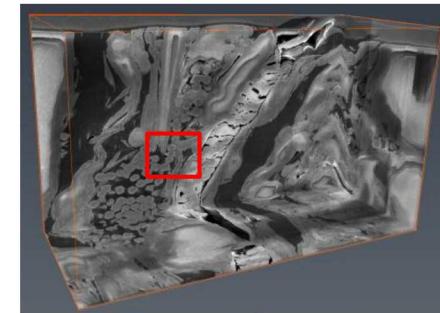
Sandstone (1")



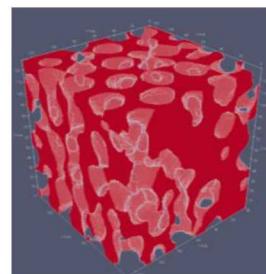
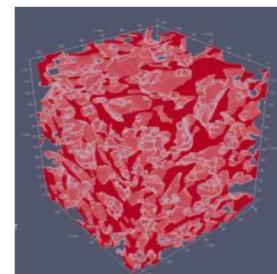
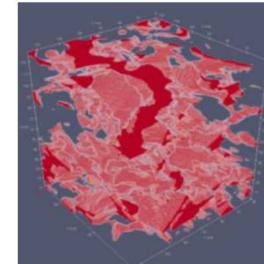
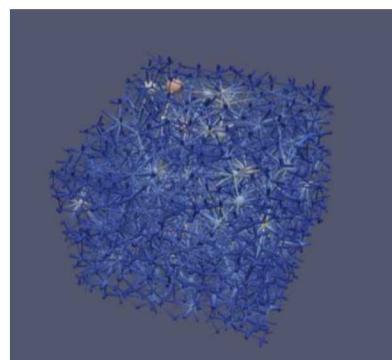
Chalk (10 microns)



Shale (~1 micron)



Binary images



PN from
microCT image

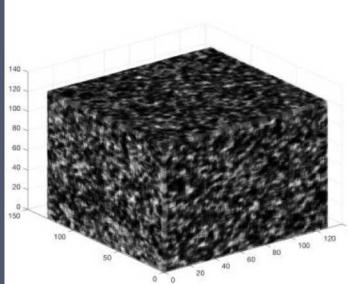
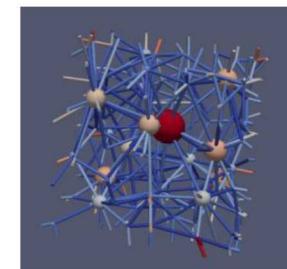
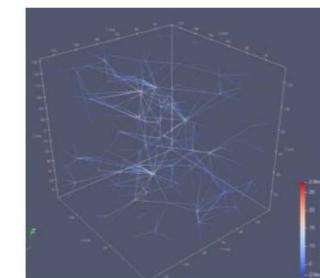


Image generated
with GAN



PN from
microCT image

Image generated
with DCGAN

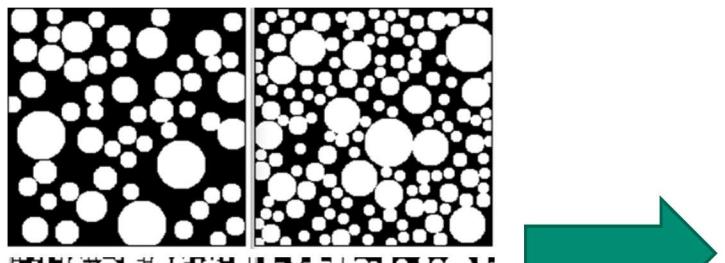


PN from FIB-SEM image

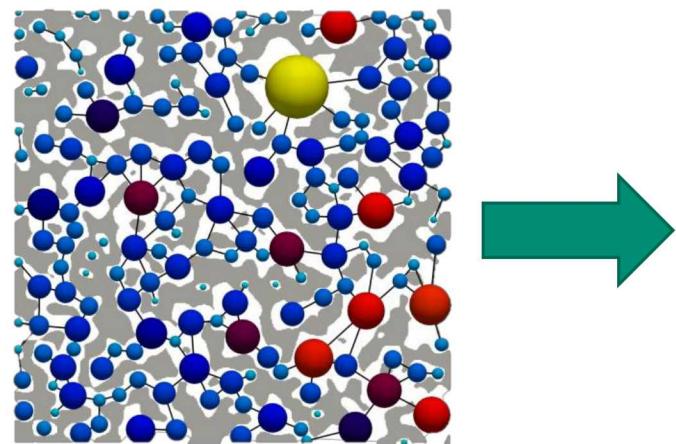
Related posters: H41G-1754, H51I-1595

Images to Pore Network System

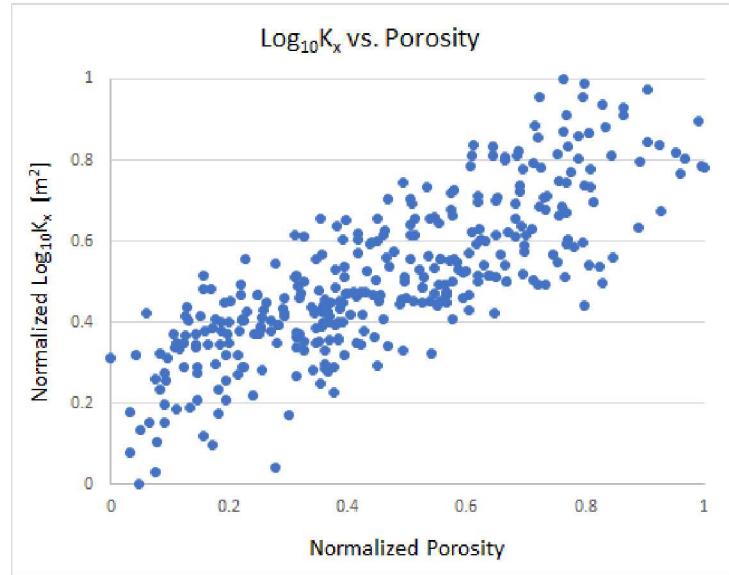
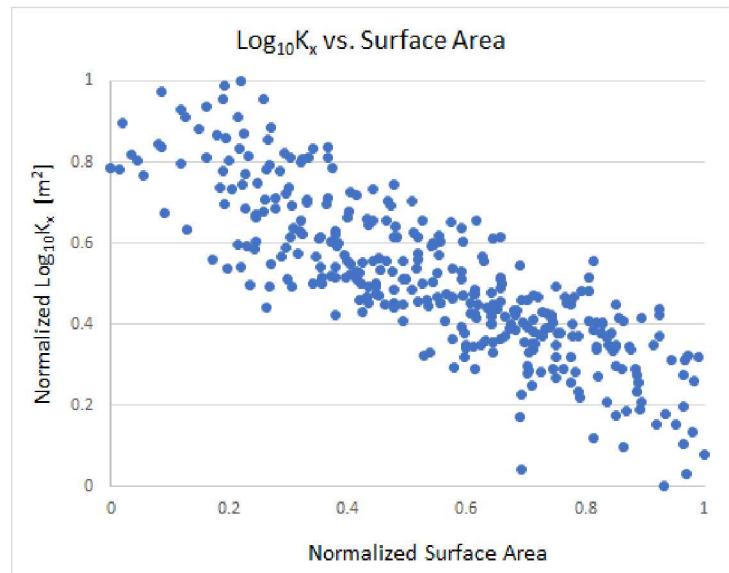
1. Image generation (Sphere packing or machine learning methods)
2. Pore network characterization (porosity, surface area, permeability using Open source Porespy/OpenPNM or commercial PerGEOS)
3. Normalization of data



2D Sphere
packing



Pore Network
Construction Step 3



Convolutional Neural Network

Input

$\begin{bmatrix} 3 & 0 & 1 & 2 & 7 & 0 & 4 \\ 1 & 5 & 3 & 0 & 3 & 1 & 1 \\ 2 & 3 & 0 & 0 & 0 & 3 & 3 \\ 0 & 1 & 1 & 1 & 1 & 0 & 8 \\ 4 & 2 & 1 & 1 & 1 & 2 & 8 \\ 2 & 4 & 5 & 2 & 3 & 0 & 9 \end{bmatrix}$

$*$

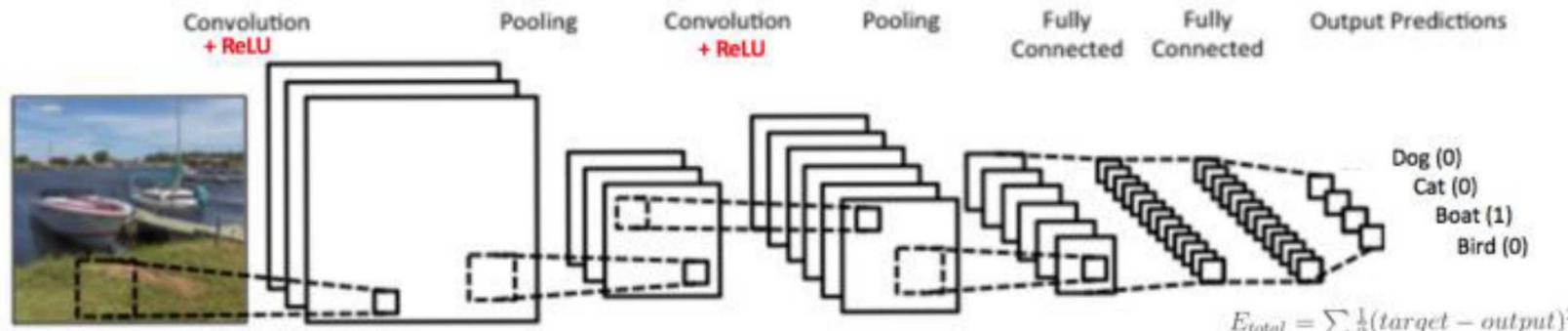
Filter (Kernel)

$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$

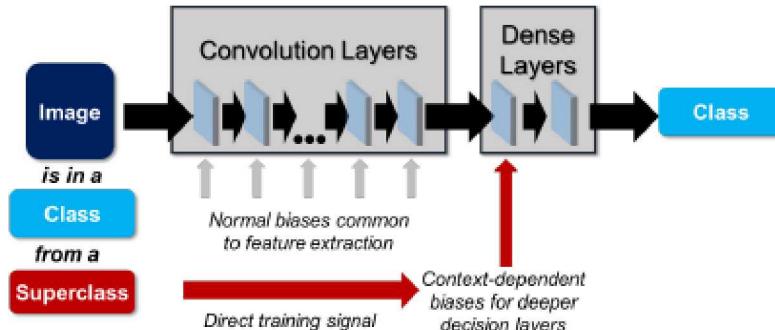
$=$

Feature map

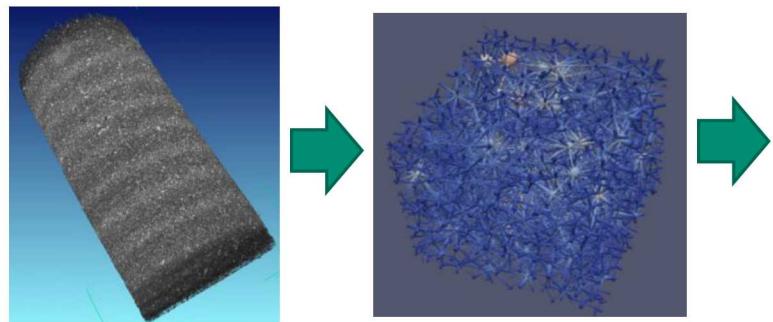
$\begin{bmatrix} -5 & -4 & 0 & 8 \\ -10 & -2 & 2 & 3 \\ 0 & -2 & -4 & -7 \\ -3 & -2 & -3 & -16 \end{bmatrix}$



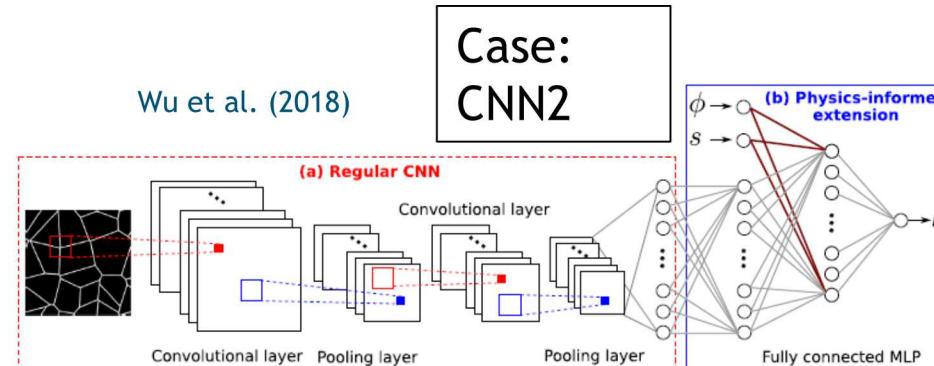
- Convolution + Pooling layers act as Feature Extractors from the input image
- Fully Connected layer acts as a classifier



Aimone et al., 2018

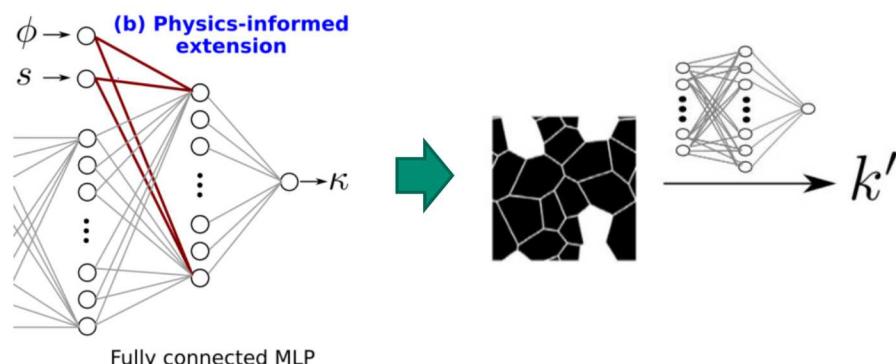


1. Micro-CT image to OpenPNM



Wu et al. (2018)

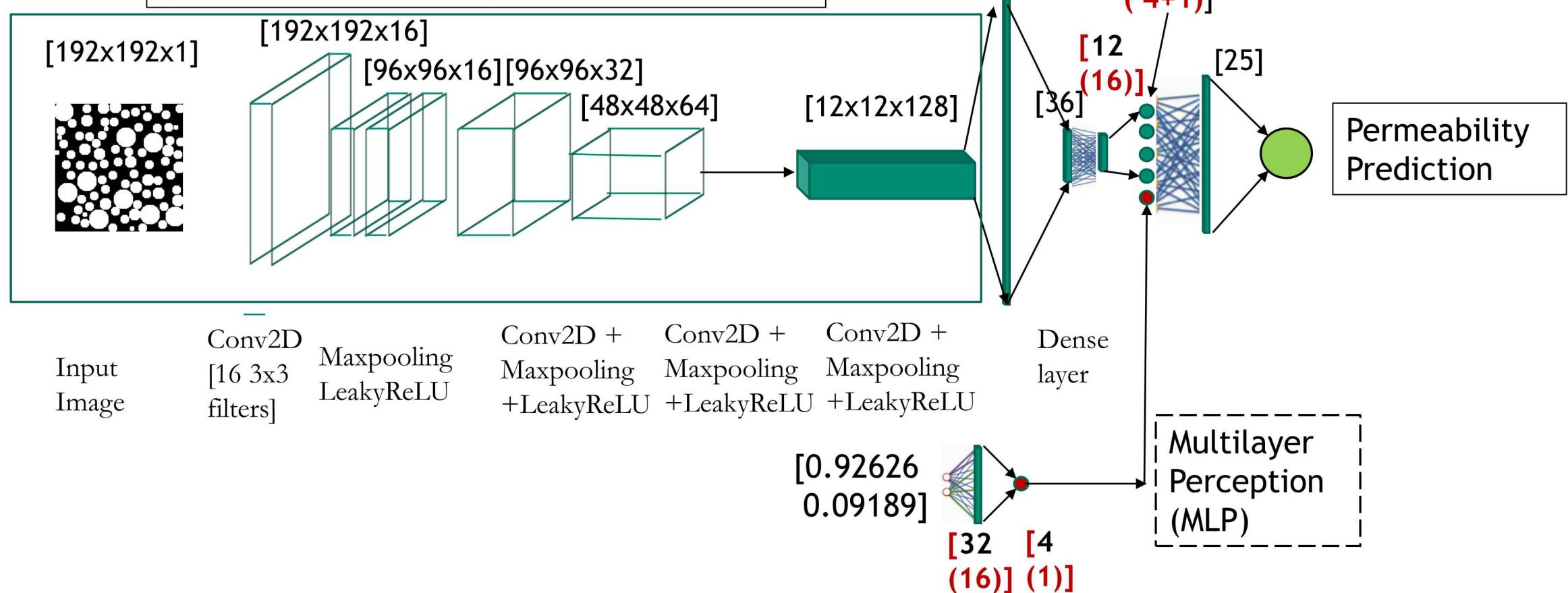
Case: CNN2



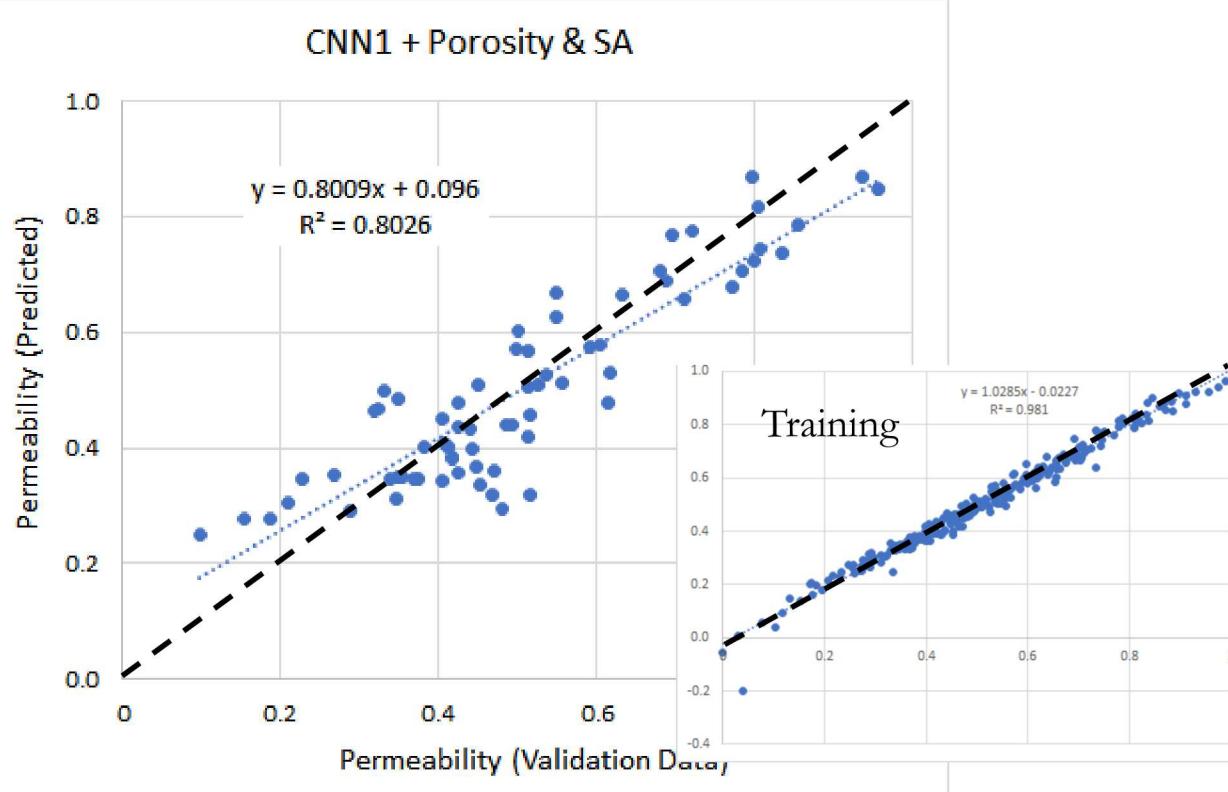
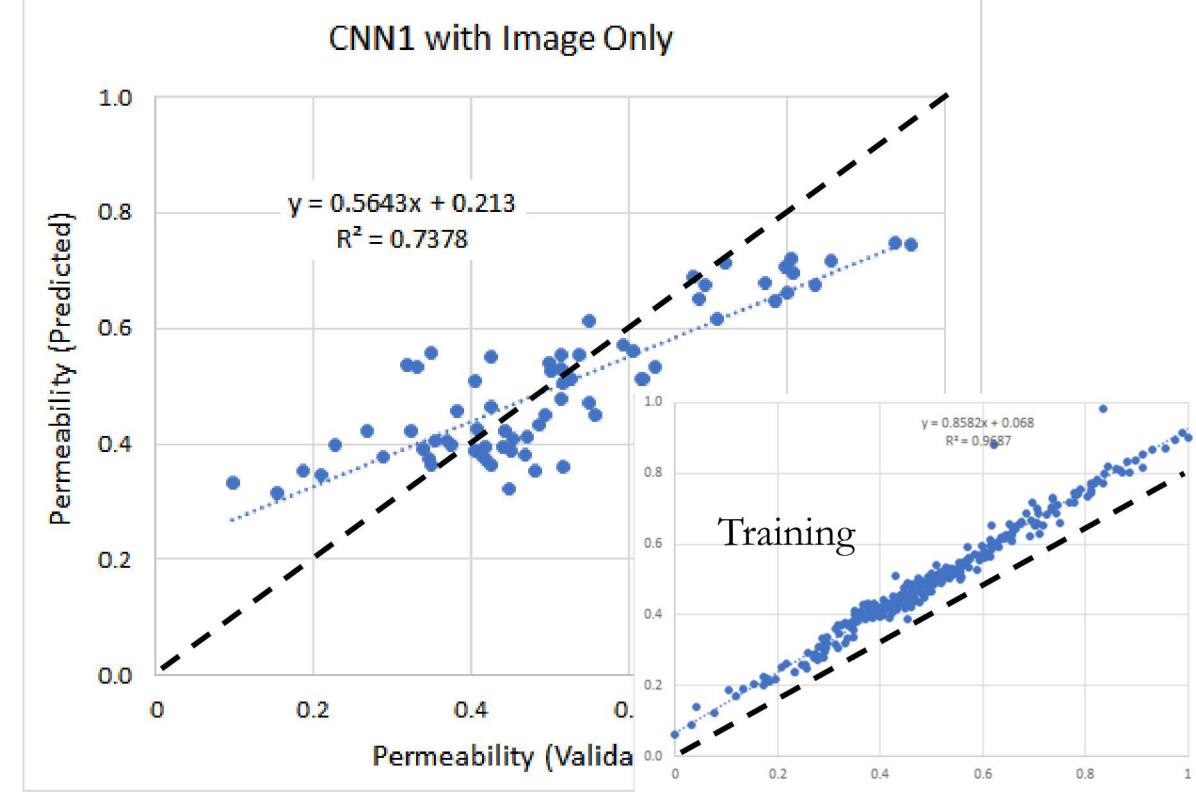
3. Physics-informed Convolutional Neural Network

CNN architecture with physical information

Convolutional Neural Network (Case: CNN1)
(Case: CNN1-modified)

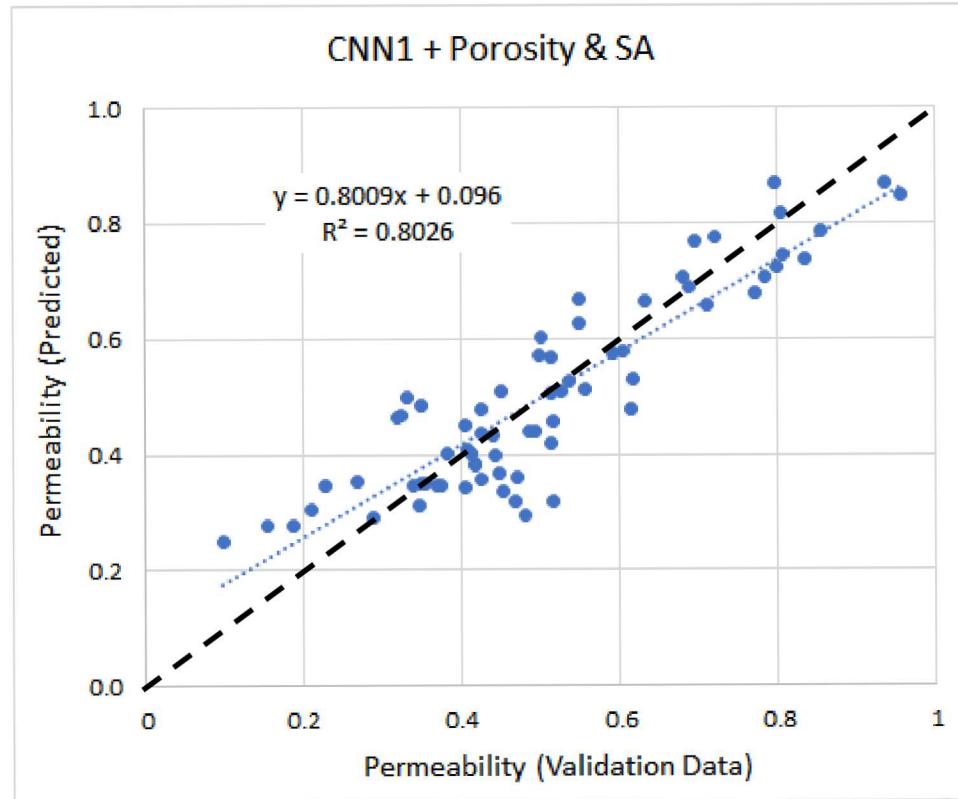
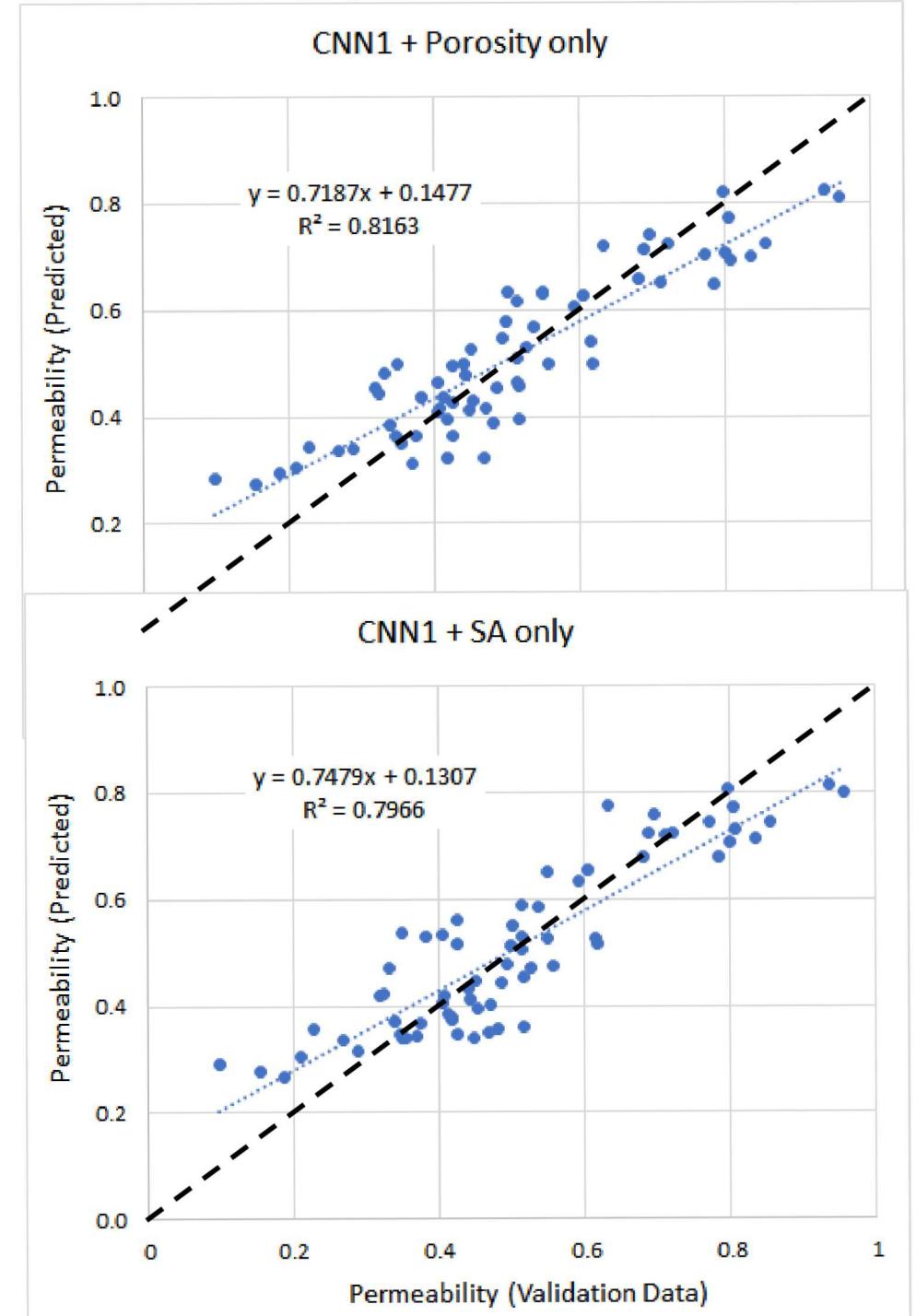


9 Impact of physical data



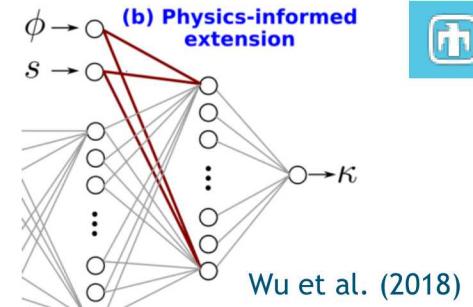
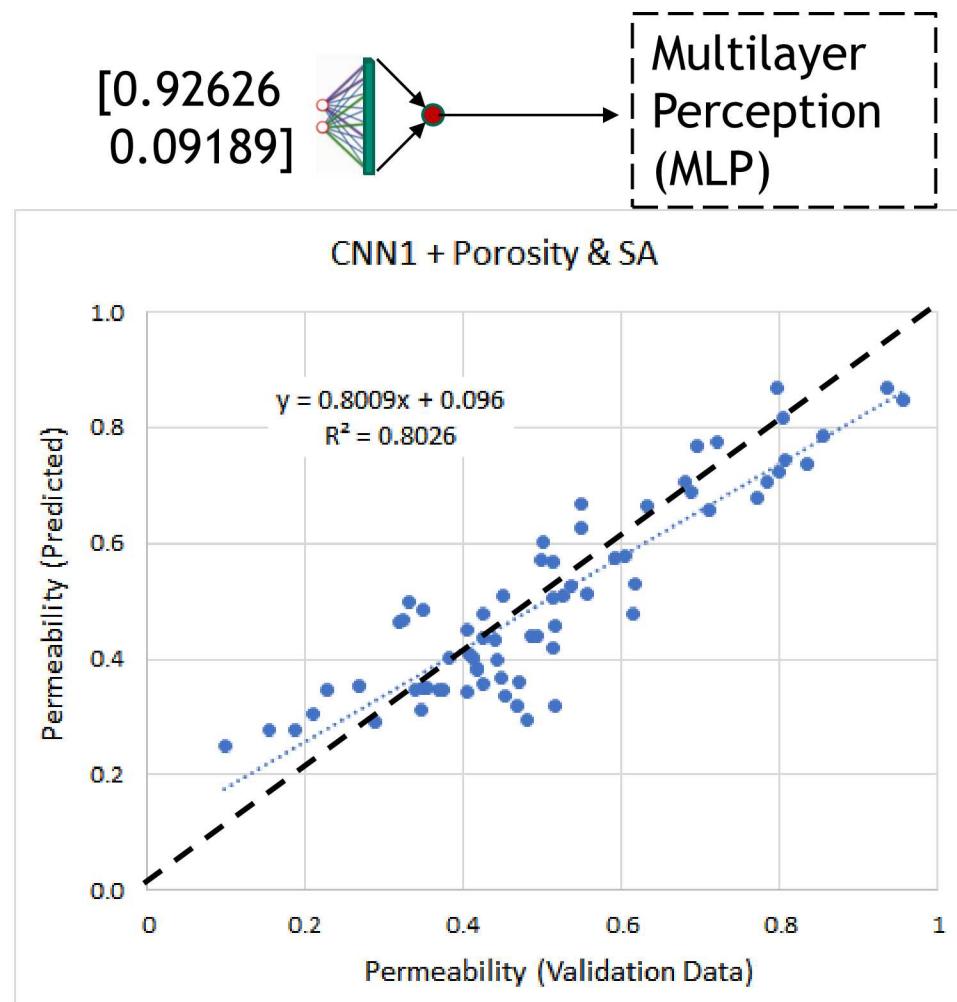
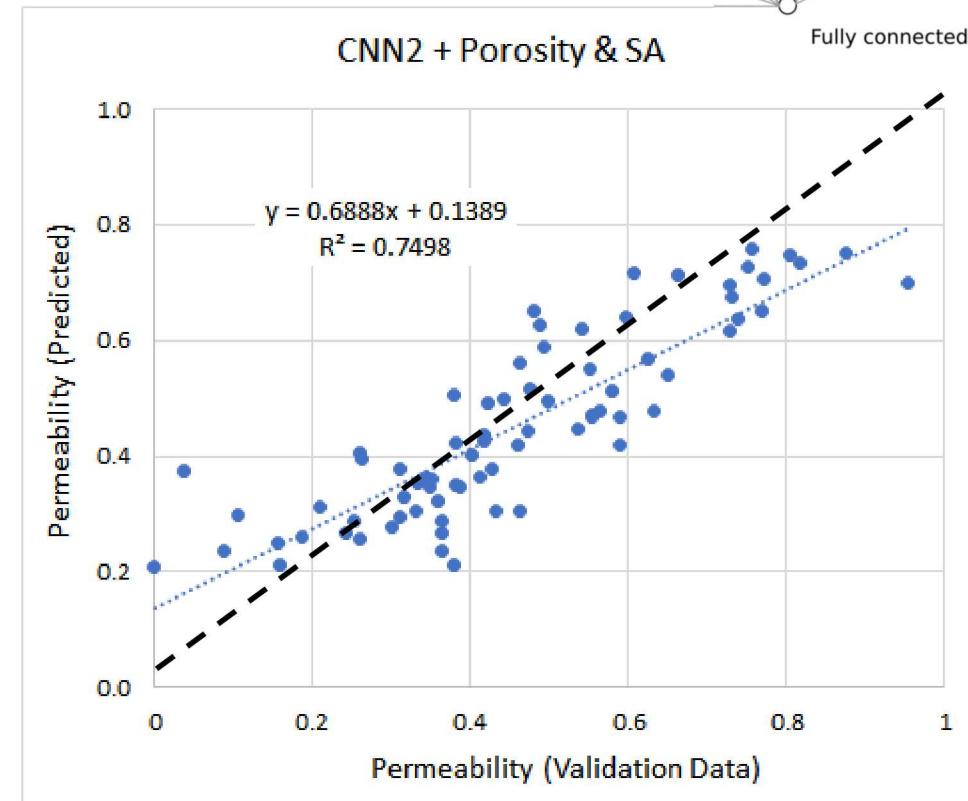
- 345 images [276 for training and 69 for testing]
- Porosity and surface area numeric values per each image
- Addition of physical quantities (porosity and surface area) improves permeability prediction compared to image only case

Impact of physical data



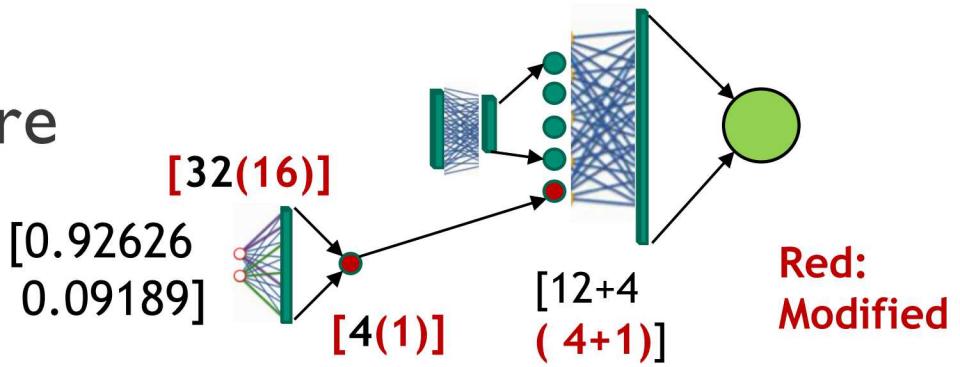
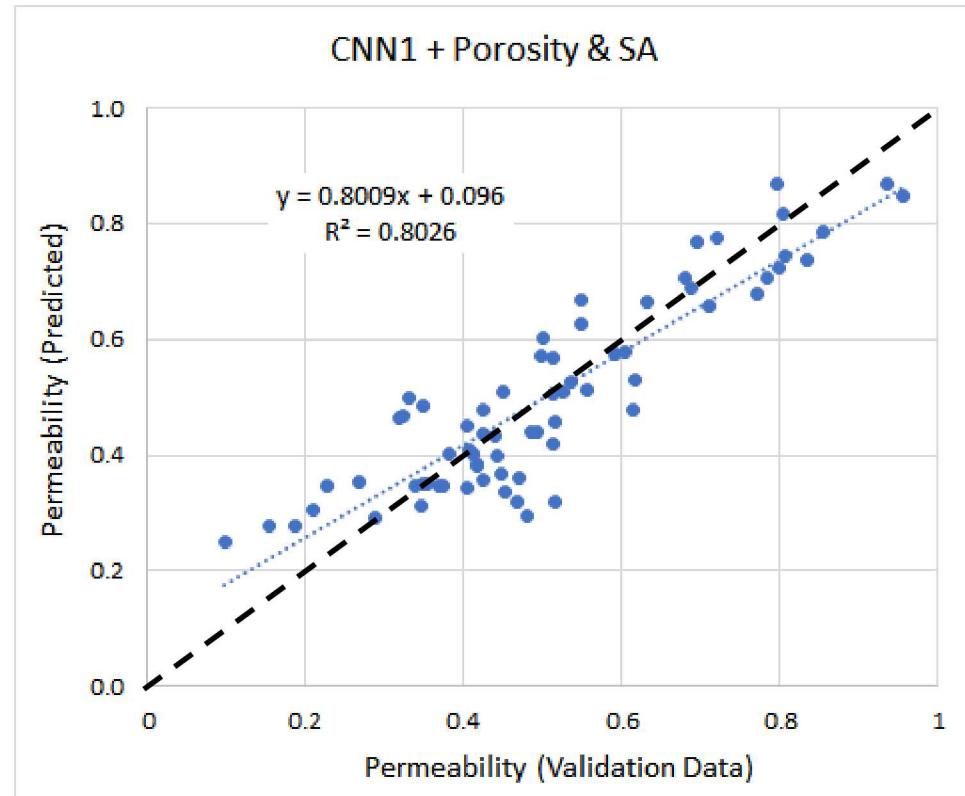
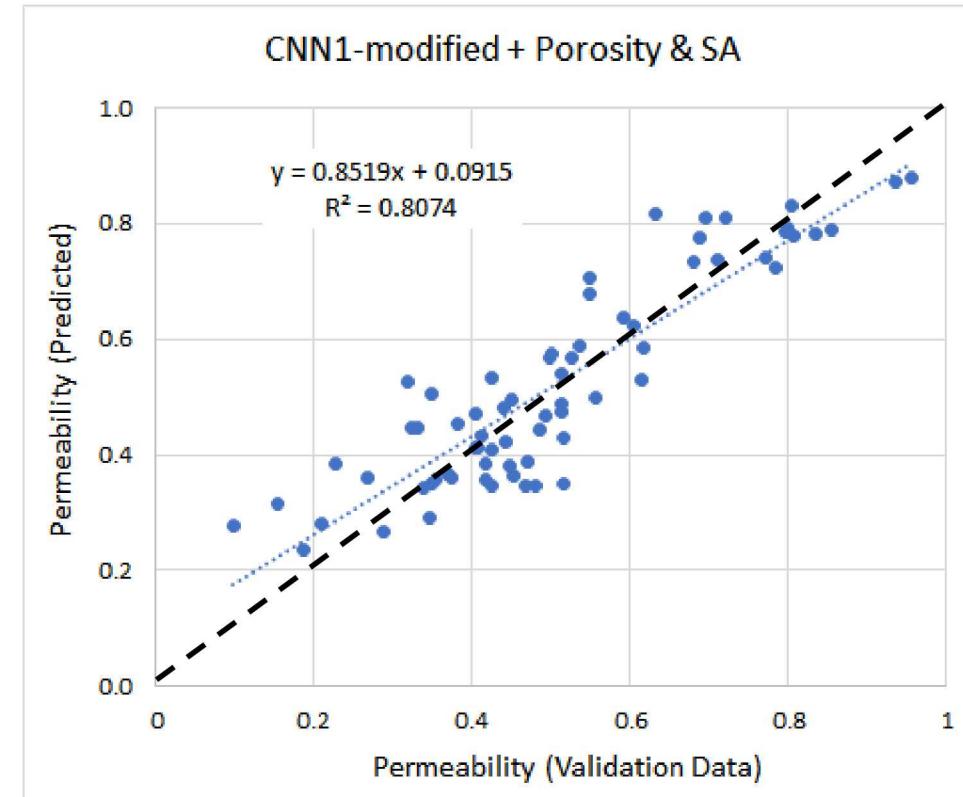
- Two physical quantities improve the prediction better than cases with porosity or SA only

Impact of combining method of physical data



- The method to incorporate physical quantities significantly impact the prediction

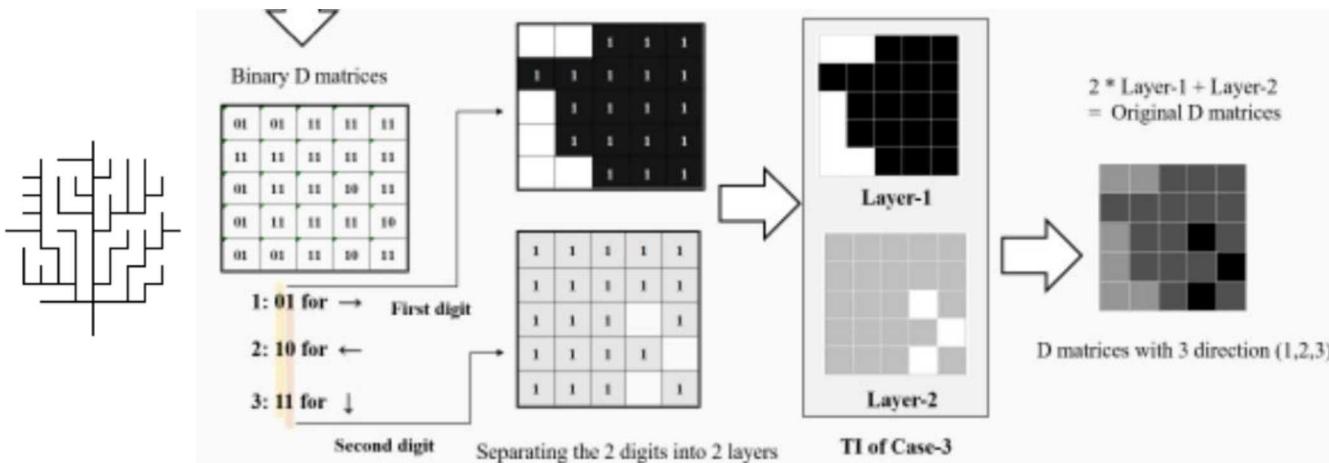
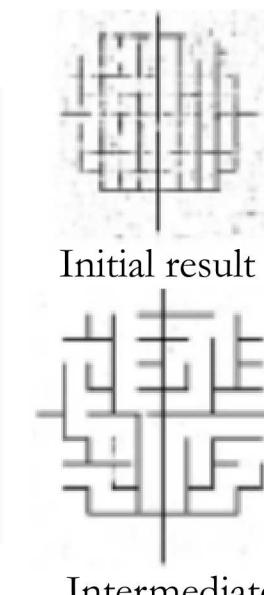
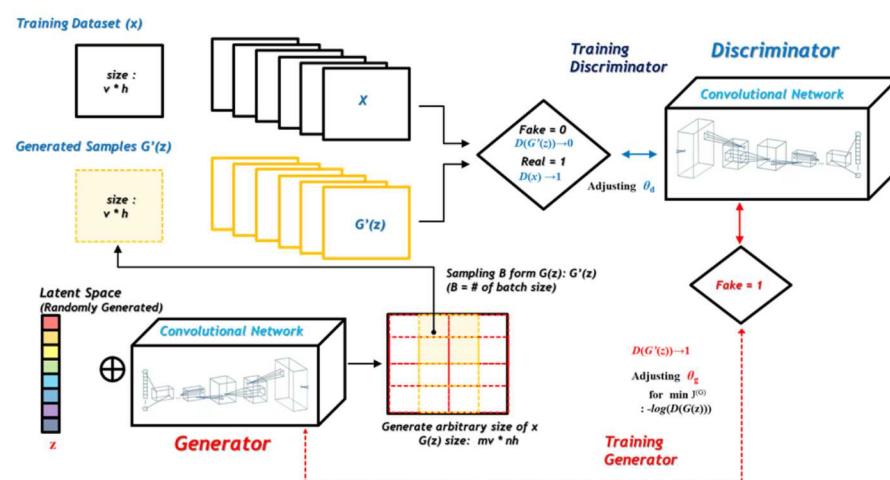
Impact of CNN + MLP Architecture



- Combining CNN + MLP also impacts the prediction

Physics-Informed Deep Convolutional Generative Adversarial Networks (DCGANs)

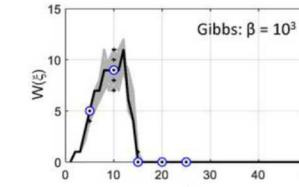
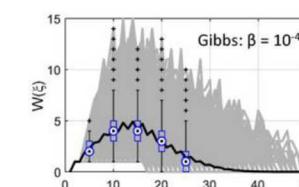
Physics-informed network generation



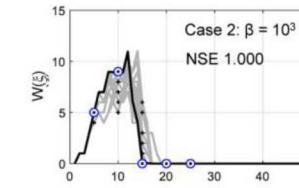
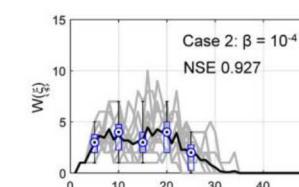
DCGAN

Hydrograph Analysis

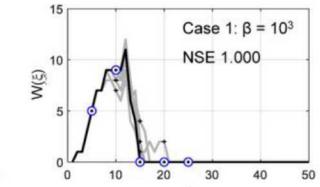
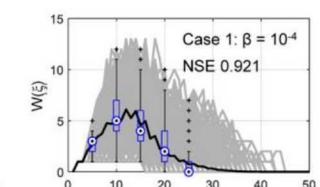
Gibbs Model



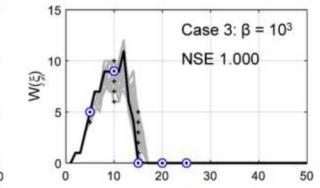
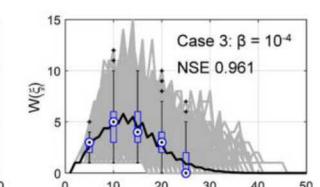
Training with D matrix (11x11)



Training with images (120x120)



Training with D matrix & Direction (11x11x2 or 3)



Incorporation of physical features and data can enhance ML prediction

- Permeability prediction with physical data performed better than the case with image only
- Deep Convolutional Generative Adversarial Networks was able to produce reliable network systems to improve physical representation and model prediction

Machine learning architecture and combination of different architectures influence the prediction of data-driven models:

- Need to improve our understanding of which features are extracted with different architectures
- Data information extracted from each ML architecture may contain different degree of information, hence it needs to be evaluated more thoroughly
- Hyperparameter optimization will be performed and will apply the methodology for different pore network systems and 3D data