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2 Motivation: National Security

• Multiscale flow, transport, and mechanical deformation in fractured/porous media

• Key processes to many security systems: monitoring of nuclear explosion test, subsurface energy resources
recovery, and nuclear waste disposal

• Path-dominant and discontinuous features of fractured media pose significant challenges to understanding
and control of physical mechanisms underlying complex behavior in fractured and deformable media

• Complex, multiscale, multiphysics processes

• Standard simulation tools lack important physics and coupling, and are too expensive and not flexible
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3 Physics-Informed Machine Learning

• Physics-based ML can overcome the shortcomings of
traditional ML methods where data-driven models have
faltered beyond the data & physical conditions for training
and validation

• Physical constraints, theoretical equations, and relations
can be incorporated for data-driven model (e.g., trained
model)

• There are many ways to incorporate these principles, but
these have not been thoroughly investigated yet

• "This computational technique is transforming science,
but physics may yet hold the key to explaining why"
(Buchanan, Nature Physics, 2019)
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4 Pore Network Systems

Glass bead pack (1") Sandstone (1")

Binary
images

‘. •Si't
' •

Chalk (10 microns) Shale (-1 micron)

. t
. 

7"

ej '#

,

PN from Image generated PN from
microCT image with GAN microCT image

Image generated PN from FIB-SEM image
with DCGAN

Related posters: H41G-1754, H511-1595



5 I Images to Pore Network System

1. Image generation (Sphere packing or machine learning methods)

2. Pore network characterization (porosity, surface area, permeability using
Open source Porespy/OpenPNM or commercial PerGEOS)

3. Normalization of data

2D Sphere
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6 Convolutional Neural Network
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• Convolution + Pooling layers act as Feature Extractors from the input image

• Fully Connected layer acts as a classifier
http: / /cs231n.qithub.io/convolutional-networks/ 

https: / /ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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7 I Physics-Informed ML for permeability prediction
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8 I CNN architecture with physical information

Convolutional Neural Network (Case: CNN1)
(Case: CNN1-modified)
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9 I Impact of physical data
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compared to image only case



10 I Impact of physical data
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• Two physical quantities improve the prediction

better than cases with porosity or SA only
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CNN1 + Porosity only
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11 I Impact of combining method of physical data
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• The method to incorporate physical quantities significantly impact the prediction



12 I Impact of CNN + MLP Architecture
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• Combining CNN + MLP also impacts the prediction



1 3 I Physics-Informed Deep Convolutional Generative Adversarial
Networks (DCGANs)

Physics-informed network generation
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14 I Summary

Incorporation of physical features and data can enhance ML prediction
O Permeability prediction with physical data performed better than the case with image only
O Deep Convolutional Generative Advesarial Networks was able to produce reliable network systems to improve
physical representation and model prediction

Machine learning architecture and combination of different architectures
influence the prediction of data-driven models:

o Need to improve our understanding of which features are extracted with different architectures
o Data information extracted from each ML architecture may contain different degree of information, hence it
needs to be evaluated more thoroughly

o Hyperparameter optimization will be performed and will apply the methodology for different pore network
systems and 3D data


