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Motivation: National Security

= Multiscale flow, transport, and mechanical deformation in fractured/porous media

= Key processes to many security systems: monitoring of nuclear explosion test, subsurface energy resources
recovery, and nuclear waste disposal

= Path-dominant and discontinuous features of fractured media pose significant challenges to understanding
and control of physical mechanisms underlying complex behavior in fractured and deformable media
= Complex, multiscale, multiphysics processes

= Standard simulation tools lack important physics and coupling, and are too expensive and not flexible
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3 | Physics-Informed Machine Learning

e Physics-based ML can overcome the shortcomings of
traditional ML methods where data-driven models have
faltered beyond the data & physical conditions for training
and validation

e Physical constraints, theoretical equations, and relations
can be incorporated for data-driven model (e.g., trained
model)

e There are many ways to incorporate these principles, but
these have not been thoroughly investigated yet

e “This computational technique is transforming science,
but physics may yet hold the key to explaining why”
(Buchanan, Nature Physics, 2019)
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4 ‘ Pore Network Systems
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5 | Images to Pore Network System

1. Image generation (Sphere packing or machine learning methods)

2. Pore network characterization (porosity, surface area, permeability using
Open source Porespy/OpenPNM or commetcial PerGEOS)

3.  Normalization of data

2D Sphere Pore Network Step 3
packing Construction
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6 | Convolutional Neural Network p @

Filter (Kernel)

Input

Feature map

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+ RelU + RelU Connected Connected
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| T, (target

e Convolution + Pooling layers act as Feature Extractors from the input image
 Fully Connected layer acts as a classifier

http://cs231n.github.io/convolutional-networks/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/




7 ‘ Physics-Informed ML for permeability prediction

Case:
Wu et al. (2018) CNN2
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CNN architecture with physical information )

FC +
Linear
Activation
Convolutional Neural Network (Case: CNN1) Fully [12+4
(Case: CNN1-modified) Connected (4+1)]
[192x192x16] /‘
1921921 ] 7| 19696x16][96x96x32) [12)]/ =
. [48x48x64] [12x12x128] 6]( S
4 Permeability
_ ‘ Prediction
2 - “
p—a
Conv2D , Conv2D + Conv2D +  Conv2D + Dense
Toxpt 116 353 Maxpooling Maxpooling Maxpooling Maxpooling layer
Image filters] LeakyReLU +LeakyRelLU +LeakyRelL.U +LeakyRelU | _______ _ _

| : |
Multilayer
| |
031620 oot
R R (T
(16)] (1)]

Yoon et al. (2020, AAAI workshop)



9 ‘ Impact of physical data
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e 345 images [276 for training and 69 for testing]
e Porosity and surface area numeric values per each image
e Addition of physical quantities (porosity and surface area) improves permeability prediction

compared to image only case
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| CNN1 + Porosity only
0 I Impact of physical data e
’,
o y = 0.7187x + 0.1477 o’ L%
- R?=0.8163 . P o
5 g L ¥
j: %o or Y @
CNN1 + Porosity & SA o 06 2o, 2
z o g, Lo o
10 , = " o 8
7 g 0.4 3 “'-f“.. L ]
_ e , o = o,«.‘"v -
y = 0.8009x + 0.096 L e z o 7/ [
= R* = 0.8026 s 7 a o o8 .
B 7€ 02 .
S L L /v-",-' . P #
£ o6 L L s
o = o ’
= o o aFe ® . CNN1 + SA only
= p. ...,./ . *
E 0.4 e e .0 /s
£ . 0/‘%3: o //
o N ¢ - _ s
i Cos y = 0.7479x + 0.1307 Pralpe
0.2 =7 T R*= 0.7966 Al P W
’ G op e
= T e o 2
’ £ 06 9L
00 ~ g v 3 (T /
0 0.2 0.4 06 0.8 1 & ¢ o0, :t{ .
Permeability (Validation Data) % - : &t’:f .
E — » .‘,'d‘ e *
a b o.'/ ’
» Two physical quantities improve the prediction 02 ";/
better than cases with porosity or SA only #°
00 7
0 0.2 0.4 0.6 0.8 1

Permeability (Validation Data)



‘ Impact of combining method of physical data
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e The method to incorporate physical quantities significantly impact the prediction



2 ‘ Impact of CNN + MLP Architecture
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13 ‘ Physics-Informed Deep Convolutional Generative Adversarial

Networks (DCGANSs)

Physics-informed network generation
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14 | Summary

Incorporation of physical features and data can enhance ML prediction
° Permeability prediction with physical data performed better than the case with image only

> Deep Convolutional Generative Advesarial Networks was able to produce reliable network systems to improve
physical representation and model prediction

Machine learning architecture and combination of different architectures
influence the prediction of data-driven models:

> Need to improve our understanding of which features are extracted with different architectures

° Data information extracted from each ML architecture may contain different degree of information, hence it
needs to be evaluated more thoroughly

° Hyperparameter optimization will be performed and will apply the methodology for different pore network
systems and 3D data



