
Creating Human Readable Path Constraints from

Symbolic Execution

Tod Amon and Tim Loffredo

Sandia National Laboratories

Email: ttamon@sandia.gov, tjloffr@sandia.gov

Abstract—Advances in constraint solving have led to a pros-
perous time for static analysis. Powerful static analysis techniques
like symbolic execution can now approach the scale of analyzing
real commercial binaries - partly due to the efficient solving of
symbolic constraints, which returns a satisfying variable assig-
ment to those constraints or indicates that no such assignment
is possible. While these advances have made automated machine
analysis more scalable, the symbolic path constraints extracted
from real commercial binaries and from toy problems are often
unreadable for human analysts, who play an irreplaceable role
in real-world binary analysis today. The work presented in this
paper explores the problem of where path-constraints come from
and how we might make symbolic path constraints easier for hu-
man analysts to digest and manipulate. This paper also presents
a novel technique for automatically simplifying constraints based
on conversion from the machine-centric bitvector domain to the
analyst-centric mathematical integer domain.

I. INTRODUCTION

In this paper we describe an impedement standing in

the way of our building automated tools to assist humans

performing binary analysis when using powerful tools like

symbolic execution and SMT solvers: human readability of

path constraints. Constraint solving is a core component of

symbolic execution, and numerous advances in the field of

binary analysis rely on these techniques[2]. Quite a lot of

research effort is taking place to strengthen solvers, improve

their efficiency, and extend the reach of tools upon which

they are based. At Sandia National Laboratories, we are using

symbolic execution and SMT solvers for a variety of missions

in cyber security, such as vulnerability analysis, mitigating

security threats, and strengthening application security.

This paper is informed by multiple efforts that aim to lean

on skilled humans who interact with static analysis tools.

Although we believe that the human analysts that work with

our tools may be computer scientists that have taken courses

in reverse engineering and will have some knowledge of

assembly language, we do not necessarily expect them to

understand all of the intricacies of symbolic execution, SMT

solvers, and internal representations for different instruction

set architectures. We want to enable our users to interact with

tools that use these approaches without having to understand

how to implement them. Additionally, we have found that

there are a number of use-cases where an analyst might

need to examine symbolic path-constraints and understand

them, rather than apply different analysis techniques that can

naturally produce more readable output. We also discuss a

use case based on analyzing byte arrays to find patterns in

symbolic byte sequences.

This paper is organized around key examples, which we

present in the next section. We then follow with a description

of our approach, a discussion of related work, and then a

summary.

II. EXAMPLES

We consider several examples derived from tools we are

building. All of our tools use angr [11] to perform symbolic

execution of an X86 binary created from our source-code. We

use Z3 [7] as our constraint solver.

A. Program Analysis for a Simple Function Example

Consider this simple function being subjected to analysis
using symbolic execution:

int sub1or2(int y) {

int x = y;

x--;

if (x > 5)

x--;

return x;

}

0000000000400526 <sub1or2>:

400526: push rbp

400527: mov rbp,rsp

40052a: mov DWORD PTR [rbp-0x14],edi

40052d: mov eax,DWORD PTR [rbp-0x14]

400530: mov DWORD PTR [rbp-0x4],eax

400533: sub DWORD PTR [rbp-0x4],0x1

400537: cmp DWORD PTR [rbp-0x4],0x5

40053b: jle 400541 <sub1or2+0x1b>

40053d: sub DWORD PTR [rbp-0x4],0x1

400541: mov eax,DWORD PTR [rbp-0x4]

400544: pop rbp

400545: ret

We carefully set up y as a symbolic integer that is structured
as a 32-bit little-endian bit vector:

symbolic_integer = claripy.BVS("y", 32)

symbolic_integer_le = claripy.Concat(

claripy.Extract(7,0,symbolic_integer),

claripy.Extract(15,8,symbolic_integer),

claripy.Extract(23,16,symbolic_integer),

claripy.Extract(31,24,symbolic_integer))

call_state = project.factory.call_state(

0x400526, symbolic_integer_le, ...

We then perform our symbolic execution, stepping angr a

single instruction at a time. We can ask angr for the values of

SAND2019-15210CThis paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States Government

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525

Submitted to NDSS 2020 Workshop on Binary Analysis Research SAND2019-15210 C - Unclassified Unlimited Release

variables at various points in the execution. For example, after

executing the code at 0x400533 we can ask angr the value of

‘x’ using:

state.memory.load(

state.solver.eval(state.regs.rbp) -4, 4,

endness=archinfo.Endness.LE)

to see that ‘x’ is ‘y-1’:

in Claripy: <BV32 0xffffffff + y>

as Z3 sexpr: (bvadd #xffffffff y)

as Z3 __str__: 4294967295 + y

If we run until function exit (i.e., 0x400544) and examine

the two symbolic states that result from symbolic execution,

we can examine the EAX register to obtain results similar

to those shown above (e.g., showing that the function returns

‘y-1’ or ‘y-2’), and we can examine the path constraints to see

under what conditions these values are returned. For example,

‘y-2’ is returned when:

(let ((a!1 (bvxor ((_ extract 31 31)

(bvadd #xffffffff y))((_ extract 31 31)

(bvsub (bvadd #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000

(bvsub (bvadd #xffffffff y)

#x00000005)) #b1 #b0))

)(let ((a!2 (bvxor (

(_ extract 31 31)(bvsub (bvadd #xffffffff y)

#x00000005)) (bvand ((_ extract 31 31)

(bvadd #xffffffff y)) a!1))))

(and (= #b0 (bvor a!2 a!3)))))

We omit the string representations in Claripy and Z3 for

sake of brevity and show only the sexpr. Note that the path-

constraint uses bit operations, an if-then-else, and several

extracts of the sign bit of bit-vector arithmetic results. As

such, this path constraint is very difficult to read. How long

might it take someone to manually verify that ‘y > 6’ is a

simpler equivalent expression for this path constraint? Could

the authors have even intentionally added a mistake to this

representation of the condition, just to prove that no one would

notice? Using two simplification tactics that are built into

Z3 (simplify, and ctx-solver-simplify), we can create many

different expressions that are equivalent to the expression

above, but none of them are easily understood or noticably

smaller.

For readers interested in knowing where this path constraint

comes from, we give a brief summary. There are no path

constraints until angr symbolically executes the instruction

at 0x40053b. This is accomplished by executing the VEX

statements corresponding to the instruction (which are difficult

to understand without context). Those statements are:

------ IMark(0x40053b, 2, 0)

t1 = GET:I64(offset=144)

t2 = GET:I64(offset=152)

t3 = GET:I64(offset=160)

t4 = GET:I64(offset=168)

t5 = amd64g_calculate_condition(AMD64CondLE,

t1,t2,t3,t4):Ity_I64

t0 = 64to1(t5)

if (t0) {PUT(offset=184)=0x400541; Ijk_Boring}

From this VEX code we can see that the path constraint

originates from the check on t0, which is derived from

t5, which is obtained by calculating the less-than-or-equal

conditions for the jump instruction. This in turn is based on

an evaluation of the register flags arising from a comparison.

Although we omit an in-depth explanation, we can see the core

elements of our path constraint in the last line of the function:

ULong amd64g_calculate_condition (

ULong/*AMD64Condcode*/ cond,

ULong cc_op,

ULong cc_dep1,

ULong cc_dep2,

ULong cc_ndep) {

ULong rflags = amd64g_calculate_rflags_all_WRK(

cc_op, cc_dep1, cc_dep2, cc_ndep);

ULong of,sf,zf,cf,pf;

ULong inv = cond & 1;

...

sf = rflags >> AMD64G_CC_SHIFT_S;

of = rflags >> AMD64G_CC_SHIFT_O;

zf = rflags >> AMD64G_CC_SHIFT_Z;

return 1 & (inv ^ ((sf ^ of) | zf));

Our path-constraint sexpr contains “(bvor a!2 a!3)” and a!3

corresponds to the zero-flag, and a!2 is the xor of the sign-flag

and overflow flag.

B. Read-to-Write Analysis Example

One of our applications for symbolic execution involves

analyzing execution paths from buffer reads to buffer writes

to support network protocol extraction. Our approach to this

problem isolates individual paths (or sets of paths) and at-

tempts to describe how, and under what conditions, what is

written is related to what is read. Our buffers are initialized

using sequences of symbolic byte variables (e.g., ‘sym0’,

‘sym1’, ‘sym2’, ...). For this problem, we do not have source

code (unless we create our own examples), and one of our

goals is to assist an analyst in creating a succinct summary of

the path-constraint, which will often depend on elements of

the read buffer (e.g., the message format). To do this, we can

at times infer types for some elements of the symbolic byte

sequences by looking at known function signatures. We believe

a valuable technique may be to inspect the resultant constraints

(for paths and values) looking for patterns that suggest types.

We present an example that casts II-A as this type of problem:

unsigned char inbuf[4];

unsigned char outbuf[4];

read(0, inbuf, 4);

int *ri = (int*)&inbuf[0];

int x = *ri;

x--;

if (x > 5) {

x--;

}

int *wi = (int*)&outbuf[0];

*wi = x;

write(1, outbuf, 4);

When we examine the output buffer, we obtain a symbolic
constraint, e.g., for ‘outbuf[3]’:

2

Submitted to NDSS 2020 Workshop on Binary Analysis Research SAND2019-15210 C - Unclassified Unlimited Release

(= write_byte_3 ((_ extract 31 24)

(bvadd #xfffffffe

(concat sym3 sym2 sym1 sym0))))

the path constraint as an sexpr is:

(let ((a!1 (bvadd #xffffffff (concat

(concat (concat sym3 sym2) sym1) sym0))))

(let ((a!2 (bvand ((_ extract 31 31) a!1)

(bvxor ((_ extract 31 31) a!1)

((_ extract 31 31) (bvsub a!1 #x00000005))))))

(let ((a!3 (bvor (bvxor ((_ extract 31 31)

(bvsub a!1 #x00000005)) a!2)

(ite (= #x00000000 (bvsub a!1 #x00000005))

#b1 #b0)))) (= #b0 a!3))))

As expected, the symbolic values and constraints are mud-

dled by precise but unreadable bitvector operations. However,

the presence of four symbolic bytes in a concat sequence that

is applied in an arithmetic expression could be viewed as a

strong indicator that we we have discovered an integer value,

and in little-endian order because the sequence is descending

(e.g., from ‘sym3’ to ‘sym0’).

C. Authentication Example:

In this example we see only a portion of the code:

char inbuf[64];

num_bytes = read(0, inbuf, 64);

int authreq = (inbuf[0]==’A’ &&

inbuf[1]==’U’ &&

inbuf[2]==’T’ &&

inbuf[3]== ’H’);

int good_password = (inbuf[4]==’T’ &&

inbuf[5]==’O’ &&

inbuf[6]==’D’ &&

inbuf[7]==0);

if (authreq && !good_password) {

... // send authentication rejection

}

Due to short-circuiting, there are four distinct paths in the

symbolic execution of the binary that lead to an authentication

rejection outcome. Our analysis combines these paths and the

path-constraint becomes (as a Z3 string):

Or(

And(sym0==65, sym1==85, sym2==84, sym3==72,

Not(sym4==84)),

And(sym0==65, sym1==85, sym2==84, sym3==72,

sym4==84, Not(sym5==79)),

And(sym0==65, sym1==85, sym2==84, sym3==72,

sym4==84, sym5==79, Not(sym6==68)),

And(sym0==65, sym1==85, sym2==84, sym3==72,

sym4==84, sym5==79, sym6==68, Not(sym7==0)))

III. OUR APPROACH

Today’s solvers are powerful highly optimized tools that are

very good at answering questions such as “Is this expression

satisfiable?” and, if so, “Provide a model assignment”. Existing

tools leverage these capabilities and put them to good use.

However, these solvers are not well suited to having people

read and interpret their results. Simplification algorithms exist,

but the motivation for these algorithms for the most part is

to improve performance. Our examples allow us to illustrate

many points:

• When working in the bit-vector domain, negative num-

bers are ignored, making string representations of Z3

constraints very difficult to read (i.e., 4294967295 instead

of -1 using Python Z3’s __str__ method as shown in

II-A). For this reason, we have reported most of our

results using sexprs.

• Even very simple statements in the integer domain, when

expressed as bit vectors, become nearly impossible for

humans to read. The presence of concat, extract, if-then-

else, and complex tests on the sign bit, and other more

complex logical constructs, result in statements that are

not readable. This is true even for expressions like ‘y >

6’ .

Of course binary analysis of real programs will only compli-

cate matters further, and a very reasonable conclusion would

simply be that one should never attempt to make sense of

bit-vector expressions. As such, humans may interrogate the

solver, but not examine what the solver knows. We reject this

perspective for a number of reasons:

• For small academic “toy” problems, researchers them-

selves (i.e., as opposed to other analyst users) need the

ability to read constraints.

• When working to build tools that put humans in the loop,

we believe strongly that simple problems should have

simple answers, even if complex problems do not.

• The expressions held by the solvers are sometimes the

precise answers being sought.

• It seems strange for a community dedicated to making

sense of a binary (i.e., the byproduct of human engi-

neering that one could argue was never intended for

consumption by anything other than hardware) to argue

that one should not attempt to make sense of a solver’s

constraints.

• These are hard problems, and solutions will inevitably

rely on multiple approaches and, in many cases, on

finding agreement across multiple techniques. Thus, anal-

ysis of the constraints themselves is an alternative and

potentially fruitful activity.

Thus we believe:

• Humans should have the ability to say to the computer

“Spend some time (e.g., as much as 30 minutes) looking

at this constraint and see if you can explain it more

clearly”

• Working in the bit-vector domain is precise, but humans

need to be able to tie the bit-vector statement back to

other domains, even if the statement in the other domain

is not precise.

• Humans also need to be able to ask solvers to compare

domains for equality and/or to test domains for equality.

For some of the problems we are interested in, we have type

information, for example when we knew that RBP was a frame

pointer that could be used to access a 32-bit little-endian value

in II-A. For our work in network protocol abstraction, we hope

3

Submitted to NDSS 2020 Workshop on Binary Analysis Research SAND2019-15210 C - Unclassified Unlimited Release

to provide a high level abstraction of the network protocol;

and, for this, type information is essential but will have to be

inferred because we do not have source code.

A. Rough Prototype for Domain Translation

We have built a rough prototype for domain transla-

tion using the Python Z3 library that essentially performs

type-influenced pattern matching on Z3 internal expressions.

The prototype was built as a proof of concept and con-

sists of a few thousand lines of python code. Variables

are annotated with type information, e.g., as defined in

https://bitstring.readthedocs.io/en/latest/packing.html. We an-

ticipate at some point rewriting this library in Z3 C++ or

writing the library as a fully independent tool that takes and

produces SMT-LIB 2 expressions. Fundamentally, the rewriter

has a simple goal: replace bit-vector constructs with higher

level constructs, e.g., given a bit-vector constraint with type

information:

(and (= ((_ extract 31 24) |y_intle:32|) #xfe)

(= ((_ extract 23 16) |y_intle:32|) #xff)

(= ((_ extract 15 8) |y_intle:32|) #xff)

(= ((_ extract 7 0) |y_intle:32|) #xff))

We can convert from the bit-vector domain to the integer

domain (in this case ‘y = -2’). We do this by recognizing

concats of extracts and searching for patterns where a con-

version is sensical, even if it is not precise. For example,

we have patterns that understand that concatenation with 0 is

multiplying by two, that checking a sign bit and comparing it

to an if-then-else on a condition yielding 0 or 1 is a statement

about the condition and an inequality, etc. Our prototype is

by no means complete, but it has proven capable of handling

many examples that arise in our problem domains. To some

extent, we have invested time in understanding complex bit-

vector expressions with the hope that this can save others from

having to do so.

We report results from our tool for some of the problems

described earlier.

B. Results for II-A and II-B

Using our tool that performs pattern matching (e.g., it under-

stands that comparing the sign-bit for 0 or 1 in the bit-vector

domain is expressed as an inequality in the integer domain),

we obtain an integer domain expression corresponding to the

bit-vector domain expression shown in II-A:

Not(Or(Or(And(-6 + y < 0, Or(y >= 1,

And(Not(1 <= y), Not(6 <= y)),

And(y >= 1, 6 <= y))), And(-6 + y >= 0,

Not(Or(y >= 1, And(Not(1 <= y), Not(6 <= y)),

And(y >= 1, 6 <= y))))), y == 6))

Which can be simplified using Z3 tactics (e.g., repeat and ctx-
solver-simplify), yielding:

And(6 <= y, Not(y == 6))

This result is Z3’s preferred answer because it avoids strict

inequalities, viewing them as a detriment to performance.

We are able to obtain this result for example II-A and for

many variants of the bit-vector path constraint we constructed

by changing the order in which we repeatedly apply the Z3

simplify and ctx-solver-simplify tactics. Combining this with

our analysis of the contents of EAX, we achieve a totally

correct statement: “when y > 6 the output is y-2.” For the

other path, “when y ≤ 6 the output is y-1” is correct in the

integer domain, but it is not totally sound due to the possibility

of underflow. Our perspective is that analysts will want this

answer to get a general sense of the constraint, as well as

a more detailed and simplified bit-vector answer if they are

investigating bit-vector effects and potential vulnerabilities that

might arise as a result.

For example II-B, a structural analysis of the path-constraint

detects a concat sequence from ‘sym3’ to ‘sym0’; when we see

this expression used in an arithmetic expression, we record

a strong hypothesis that it represents a 32-bit little-endian

integer. We then replace individual symbolic bytes with an

extract of a new 32-bit symbolic variable that we create, and

see if our other analysis tools can find a possible domain

translation. For this example we report:

And(6 <= sym_[0-3]-?_intle:32,

Not(sym_[0-3]-?_intle:32 == 6))

One thing we can do with some success is use the solver

to see if our conversion from one domain to another is sound.

Given a variable relationship and a value relationship, we ask

the solver to see if it can satisfy the variable relationship while

breaking the value relationship. Consider an example:

i_y = z3.Int(’y’)

bv_y = z3.BitVec(’ybe32’,32)

variablesP = (z3.BV2Int(bv_y) == i_y)

i_value = i_y + 1

bv_value = bv_y + z3.BitVecVal(1,32)

valuesP = (z3.BV2Int(bv_value) == i_value)

The solver will report that “variablesP and not valuesP” is

solvable, with one model being i_y =4294967295, bv_y =

#xffffffff.

Domain equivalence may not in general hold, but we often

have constraints upon our variables (e.g., ‘y > 6’ or ‘y <=

6’), and these constraints can be applied when checking for

domain equivalence. Thus, for our path-constraint example in

II-A, for any ‘y’ input satisfying ‘y > 6’, we know that ‘y-2’ is

the result. Unfortunately, checking these equivalences is very

computationally expensive. Thus, we provide the ability to

check using values, e.g., the user supplies a value to see if it

can be used to prove that the expressions in different domains

are not precisely equivalent.

C. Constraint simplification using SIS

In order to simplify complex boolean expressions, we intend

to take advantage of logic synthesis tools. Here we show

how a logic synthesis tool designed to minimize numbers

of literals and map solutions to preferred gate libraries can

be used to construct solutions that are more human readable.

This approach may also prove useful when looking for specific

patterns when attempting to map from one domain to another.

4

Submitted to NDSS 2020 Workshop on Binary Analysis Research SAND2019-15210 C - Unclassified Unlimited Release

In the next section we describe a technique that utilizes logic

synthesis tools and don’t cares to simplify expressions like

the one in III-B to get better results than those obtained using

ctx-solver-simplify.

We used the logic synthesis tool SIS [10]. Using algorithms

that attempt to minimize the number of literals in a solution, as

well as algorithms that map solutions to specific component

libraries, we can have SIS automatically generate solutions

that we believe have been optimized for human readability.

It is interesting that the replacement tool for SIS, ABC [4],

may not be as ideally suited, e.g., it has less focus on

“Advanced combinational logic synthesis (extraction of shared

logic, don’t-care based optimization, Boolean decomposition,

etc)” per http://vlsicad.eecs.umich.edu/BK/Slots/cache/www-

cad.eecs.berkeley.edu/~alanmi/abc/. In order to have SIS op-

erate on example II-C we simply created 8 labels for the

assertions that a symbolic byte has a specific (ASCII) value.

We then asked SIS to simplify the .eqn file:

#a is a label for ’sym0==65’ (A),

#b is a label for ’sym1==85’ (U),

#c is a label for ’sym2==84’ (T),

#d is a label for ’sym3==72’ (H),

#e is a label for ’sym4==84’ (T),

#f is a label for ’sym5==79’ (O),

#g is a label for ’sym6==68’ (D),

#h is a label for ’sym7==0’

INORDER = a b c d e f g h;

OUTORDER = f1;

f1 = (a b c d e’) + (a b c d e f’) +

(a b c d e f g’) + (a b c d e f g h’);

We ran a simple SIS script that did a “full_simplify”, a

“decomp -g” followed by a “map” operation on a gate library

we constructed that biased the solution to not use any OR

gates. SIS was able to find a solution involving only AND

and NOT:

[152] = e f g h

[220] = [152]’

{f1} = [220] a b c d

As a Z3 expression, the solution is:

And(sym0==65, sym1==85, sym2==84, sym3==72,

Not(And(sym4==84,sym5==79,sym6==68,sym7==0)))

This representation seems amenable to string conversion (e.g.,

“sym[0:3]==”AUTH” and sym[4;7] != “TOD\0”), and we hope

that in many circumstances when analyzing protocols the

domain will result in constraints where the symbolic byte

variables that represent the protocol message are checked for

equality or inequality to a string (possibly null terminated).

IV. PREVIOUS WORK

The SMT logics we are most interested in include closed

quantifier-free formulas over the theory of fixed-size bitvectors

(QF-BV) and quantifier-free integer arithmetic (QF-NIA). We

refer readers to [3], and specifically the description of logics (

http://smtlib.cs.uiowa.edu/logics.shtml). Most of our work is

based on Z3 [7]. Simplification routines are present in most

SMT libraries, however, “the scalability of many static anal-

ysis techniques requires controlling the size of the generated

formulas throughout the analysis” [8], and thus support for

simplification is provided in order for the solver to be more

performant. Some solvers mention human readability, e.g.,

KLEE [5] has a few options to make SMT-LIB 2 statements

easier to read (e.g., ‘-smtlib-human-readable’) but no existing

tools provide support for deep analysis aimed at simplifying

constraints for human readability. We have come across online

posts that discuss the notion of converting between domains

(e.g., from QF_ABV to AUFNIRA) but are aware of no tools

that attempt to perform these types of conversions. The selec-

tive symbolic execution tool S2E is supported by a bitfield-

theory expression simplifier that performs limited types of

conversion using both bottom-up and top-down analysis of

the expression trees and “is an example of applying domain-

specific logic to reduce constraint solving time” [6].

Twenty years ago when working with symbolic timing

constraints, one of the authors discovered a technique well

suited to our stated goal of asking the computer to spend

significant resources trying to simplify a constraint for hu-

man readability[1]. The technique can be applied to boolean

expressions and is best understood through a simple example.

Consider the simplified Z3 expression from III-B : ‘y ≥ 6

and not y = 6’. We can rewrite this expression as a Boolean

expression: (a + b) b´ where a is label for ‘y > 6’ and b

is a label for ‘y = 6’. Furthermore, we can supplement our

knowledge by noticing that the product ab is a “don’t care”,

i.e., it is not possible for ‘y > 6’ and ‘y = 6’ to both be true. As

such, we are free to include this term in our solution if we so

choose. We can then formulate the constraint simplification

problem as choosing the best implementation for the truth

table:
a b F

0 0 0

0 1 0

1 0 1

1 1 X

Which, in this case, is just a, i.e., our expression can be

simplified to just ‘y > 6’. The formal underpinnings of this ap-

proach are described in [9]. At present, we are in the process of

re-implementing this code for use in simplifying complex Z3

boolean expressions. This technique is an example of a general

purpose approach to simplifying complex solver constraints

that involve boolean operations. It can be computationally

expensive (we use the solver to discover “don’t cares”) but

is an example of the type of analysis we believe should be

generally available to individuals trying create human readable

path constraints.

V. SUMMARY

In this paper we presented several examples to demonstrate

our belief that tools to create human readable path-constraints

would be very valuable contributions to the static analysis

community. We also presented evidence suggesting that such

tools can be created. We can do better than having every

5

Submitted to NDSS 2020 Workshop on Binary Analysis Research SAND2019-15210 C - Unclassified Unlimited Release

individual project contemplate the implementation of “domain-

specific” simplification strategies (while possible, we have

found it difficult to find individual projects that have under-

taken such an effort). Instead, we believe that many general

purpose techniques (such as those we described in sections

III-A and IV) can be developed for broad use, and that, for

many problems in static binary analysis, it will be possible to

create human readable path constraints that can be used for

many different mission problems.

We believe that when simple solutions are available, it is im-

perative that tools present simple answers. We do not advocate

that humans become experts at interpreting complex solver

constraints – rather we want to make available algorithms that

humans can choose to use to analyze constraints to expose

simple facts when they have been accumulated (e.g., using

tools like symbolic execution). When answers are complex,

we anticipate humans not wanting closed-form solutions, but

rather the ability to query a complex solution in order to

facilitate additional analysis.

There are many future research directions suggested by

our initial investigations into creating human readable path-

constraints. A formal definition of “human readability” and

the development of metrics would allow us to score path-

constraint expressions and penalize ones that are deemed less

readable. The score could be based on the elements of the

expression (e.g., a penalty for use of ‘bvxor’), the depth and

complexity of the expression, etc. Instead of working with the

patterns that arise from symbolic execution of the constraints,

we could work further upstream and alter the constraints that

are created within angr when symbolically executing a VEX

instruction, e.g., as shown in the origin of the path constraint

in example II-A. It may be that by injecting constraints that are

easier for humans to read for a given instruction, we can create

more readable path constraints and trade off some efficiency

to achieve this goal. It is also quite likely that by examining

the constraints that are added we can enrich our understanding

of the patterns we need to recognize. It is also possible that

focusing on the readability of the bit vector path-constraints

would be another viable approach for most of our tools and

allow us to stay in the bit-vector domain.

REFERENCES

[1] T. Amon, G. Borriello, and Jiwen Liu. Making complex timing
relationships readable: Presburger formula simplification using don’t
cares. In Proceedings 1998 Design and Automation Conference. 35th

DAC. (Cat. No.98CH36175), pages 586–590, June 1998.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3), 2018.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[4] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Proceedings of the 22Nd International

Conference on Computer Aided Verification, CAV’10, pages 24–40,
Berlin, Heidelberg, 2010. Springer-Verlag.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation, OSDI’08, pages 209–224, Berke-
ley, CA, USA, 2008. USENIX Association.

[6] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The
s2e platform: Design, implementation, and applications. ACM Trans.

Comput. Syst., 30(1):2:1–2:49, February 2012.
[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In

Proceedings of the Theory and Practice of Software, 14th International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[8] Isil Dillig, Thomas Dillig, and Alex Aiken. Small formulas for large
programs: On-line constraint simplification in scalable static analysis.
In Radhia Cousot and Matthieu Martel, editors, Static Analysis, pages
236–252, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[9] Hoon Hong. Simple solution formula construction in cylindrical al-
gebraic decomposition based quantifier elimination. In Papers from

the International Symposium on Symbolic and Algebraic Computation,
ISSAC ’92, pages 177–188, New York, NY, USA, 1992. ACM.

[10] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P.R. Stephan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Sis: A system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

[11] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. Sok: (state of) the art of war:
Offensive techniques in binary analysis. In Security and Privacy (SP),

2016 IEEE Symposium on, pages 138–157. IEEE, 2016.

6

