This paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States Government

SAND2019-15210C

Creating Human Readable Path Constraints from
Symbolic Execution

Tod Amon and Tim Loffredo
Sandia National Laboratories
Email: ttamon@sandia.gov, tjloffr @sandia.gov

Abstract—Advances in constraint solving have led to a pros-
perous time for static analysis. Powerful static analysis techniques
like symbolic execution can now approach the scale of analyzing
real commercial binaries - partly due to the efficient solving of
symbolic constraints, which returns a satisfying variable assig-
ment to those constraints or indicates that no such assignment
is possible. While these advances have made automated machine
analysis more scalable, the symbolic path constraints extracted
from real commercial binaries and from toy problems are often
unreadable for human analysts, who play an irreplaceable role
in real-world binary analysis today. The work presented in this
paper explores the problem of where path-constraints come from
and how we might make symbolic path constraints easier for hu-
man analysts to digest and manipulate. This paper also presents
a novel technique for automatically simplifying constraints based
on conversion from the machine-centric bitvector domain to the
analyst-centric mathematical integer domain.

I. INTRODUCTION

In this paper we describe an impedement standing in
the way of our building automated tools to assist humans
performing binary analysis when using powerful tools like
symbolic execution and SMT solvers: human readability of
path constraints. Constraint solving is a core component of
symbolic execution, and numerous advances in the field of
binary analysis rely on these techniques[2]. Quite a lot of
research effort is taking place to strengthen solvers, improve
their efficiency, and extend the reach of tools upon which
they are based. At Sandia National Laboratories, we are using
symbolic execution and SMT solvers for a variety of missions
in cyber security, such as vulnerability analysis, mitigating
security threats, and strengthening application security.

This paper is informed by multiple efforts that aim to lean
on skilled humans who interact with static analysis tools.
Although we believe that the human analysts that work with
our tools may be computer scientists that have taken courses
in reverse engineering and will have some knowledge of
assembly language, we do not necessarily expect them to
understand all of the intricacies of symbolic execution, SMT
solvers, and internal representations for different instruction
set architectures. We want to enable our users to interact with
tools that use these approaches without having to understand
how to implement them. Additionally, we have found that
there are a number of use-cases where an analyst might
need to examine symbolic path-constraints and understand
them, rather than apply different analysis techniques that can
naturally produce more readable output. We also discuss a

use case based on analyzing byte arrays to find patterns in
symbolic byte sequences.

This paper is organized around key examples, which we
present in the next section. We then follow with a description
of our approach, a discussion of related work, and then a
summary.

II. EXAMPLES

We consider several examples derived from tools we are
building. All of our tools use angr [11] to perform symbolic
execution of an X86 binary created from our source-code. We
use Z3 [7] as our constraint solver.

A. Program Analysis for a Simple Function Example

Consider this simple function being subjected to analysis
using symbolic execution:

int sublor2 (int vy) {
int x = y;
x——;
if (x > 5)
x—=;
return x;

}

0000000000400526 <sublor2>:

400526: push rbp

400527: mov rbp, rsp

40052a: mov DWORD PTR [rbp-0x14],edi
40052d: mov eax, DWORD PTR [rbp-0x14]
400530: mov DWORD PTR [rbp-0x4],eax
400533: sub DWORD PTR [rbp-0x4],0x1
400537: cmp DWORD PTR [rbp-0x4],0x5
40053b: Jjle 400541 <sublor2+0xlb>
40053d: sub DWORD PTR [rbp-0x4],0x1
400541: mov eax, DWORD PTR [rbp-0x4]
400544: pop rbp

400545: ret

We carefully set up y as a symbolic integer that is structured
as a 32-bit little-endian bit vector:

symbolic_integer = claripy.BVS("y", 32)

symbolic_integer_le = claripy.Concat (
claripy.Extract (7,0, symbolic_integer),
claripy.Extract (15,8, symbolic_integer),
claripy.Extract (23,16, symbolic_integer)
claripy.Extract (31,24, symbolic_integer)

call_state = project.factory.call_state(
0x400526, symbolic_integer_le,

)

We then perform our symbolic execution, stepping angr a
single instruction at a time. We can ask angr for the values of

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525

Submitted to NDSS 2020 Workshop on Binary Analysis Research

SAND2019-15210 C - Unclassified Unlimited Release

variables at various points in the execution. For example, after
executing the code at 0x400533 we can ask angr the value of
‘x’ using:

state.memory.load (

state.solver.eval (state.regs.rbp)
endness=archinfo.Endness.LE)

-4, 4,

to see that ‘x’ is ‘y-1":

in Claripy: <BV32 Oxffffffff + y>
as Z3 sexpr: (bvadd #xffffffff vy)
as Z3 __str__: 4294967295 + y

If we run until function exit (i.e., 0x400544) and examine
the two symbolic states that result from symbolic execution,
we can examine the EAX register to obtain results similar
to those shown above (e.g., showing that the function returns
‘y-1" or ‘y-2’), and we can examine the path constraints to see
under what conditions these values are returned. For example,
‘y-2’ is returned when:

(let ((a'!'l (bvxor ((_ extract 31 31)
(bvadd #xffffffff y)) ((_ extract 31 31)

(bvsub (bvadd #xffffffff y) #x00000005))))
(a!3 (ite (= #x00000000
(bvsub (bvadd #xffffffff vy)
#x00000005)) #bl #b0))
) (let ((a!2 (bvxor (
(_ extract 31 31) (bvsub (bvadd #xffffffff y)
#x00000005)) (bvand ((_ extract 31 31)

(bvadd #xffffffff y))
(and (= #bO0

all))))
(bvor a'!'2 a!3)))))

We omit the string representations in Claripy and Z3 for
sake of brevity and show only the sexpr. Note that the path-
constraint uses bit operations, an if-then-else, and several
extracts of the sign bit of bit-vector arithmetic results. As
such, this path constraint is very difficult to read. How long
might it take someone to manually verify that ‘y > 6’ is a
simpler equivalent expression for this path constraint? Could
the authors have even intentionally added a mistake to this
representation of the condition, just to prove that no one would
notice? Using two simplification tactics that are built into
Z3 (simplify, and ctx-solver-simplify), we can create many
different expressions that are equivalent to the expression
above, but none of them are easily understood or noticably
smaller.

For readers interested in knowing where this path constraint
comes from, we give a brief summary. There are no path
constraints until angr symbolically executes the instruction
at 0x40053b. This is accomplished by executing the VEX
statements corresponding to the instruction (which are difficult
to understand without context). Those statements are:

777777 IMark (0x40053b, 2, 0)

tl = GET:I64 (offset=144)

t2 = GET:164 (offset=152)

t3 = GET:164 (offset=160)

t4d = GET:164 (offset=168)

t5 = amd64g_calculate_condition (AMD64CondLE,
tl,t2,t3,t4):Ity_I64

t0 = 64tol (th)

if (t0) {PUT (offset=184)=0x400541; Ijk_Boring}

From this VEX code we can see that the path constraint
originates from the check on tO, which is derived from
t5, which is obtained by calculating the less-than-or-equal
conditions for the jump instruction. This in turn is based on
an evaluation of the register flags arising from a comparison.
Although we omit an in-depth explanation, we can see the core
elements of our path constraint in the last line of the function:

ULong amd64g_calculate_condition (
ULong/*AMD64Condcode*/ cond,
ULong cc_op,

ULong cc_depl,

ULong cc_dep2,

ULong cc_ndep) {
ULong rflags =

cc_op, cc_depl, cc_dep2,
ULong of,sf,zf,cf,pf;
ULong inv = cond & 1;

cc_ndep) ;

sf = rflags
of = rflags
zf = rflags
return 1 & (inv

>> AMD64G_CC_SHIFT_S;
>> AMD64G_CC_SHIFT_O;
>> AMD64G_CC_SHIFT_7Z;
» ((sf ~ of) | zf));

Our path-constraint sexpr contains “(bvor a!2 a!3)” and a!3
corresponds to the zero-flag, and a!2 is the xor of the sign-flag
and overflow flag.

B. Read-to-Write Analysis Example

One of our applications for symbolic execution involves
analyzing execution paths from buffer reads to buffer writes
to support network protocol extraction. Our approach to this
problem isolates individual paths (or sets of paths) and at-
tempts to describe how, and under what conditions, what is
written is related to what is read. Our buffers are initialized
using sequences of symbolic byte variables (e.g., ‘sym0’,
‘syml’, ‘sym2’, ..."). For this problem, we do not have source
code (unless we create our own examples), and one of our
goals is to assist an analyst in creating a succinct summary of
the path-constraint, which will often depend on elements of
the read buffer (e.g., the message format). To do this, we can
at times infer types for some elements of the symbolic byte
sequences by looking at known function signatures. We believe
a valuable technique may be to inspect the resultant constraints
(for paths and values) looking for patterns that suggest types.
We present an example that casts II-A as this type of problem:

unsigned char inbuf[4];
unsigned char outbuf[4];

read (0, inbuf, 4);
int x*ri = (int«*)&inbuf[0];
int x = *ri;
X==y
if (x > 5) {
X==y
}
int *wi = (intx)&outbuf[0];
*wi = x;
write (1, outbuf, 4);

When we examine the output buffer, we obtain a symbolic
constraint, e.g., for ‘outbuf[3]’:

amd64g_calculate_rflags_all_WRK/(

Submitted to NDSS 2020 Workshop on Binary Analysis Research

SAND2019-15210 C - Unclassified Unlimited Release

(= write_byte_3 ((_ extract 31 24)
(bvadd #xfffffffe
(concat sym3 sym2 syml symO))))

the path constraint as an sexpr is:

let ((a!l (bvadd #xffffffff (concat
concat (concat sym3 sym2) syml) symO))))

let ((a!2 (bvand ((_ extract 31 31) a!l)
bvxor ((_ extract 31 31) a'!l)

(_ extract 31 31) (bvsub a!l #x00000005))))))
let ((a!3 (bvor (bvxor ((_ extract 31 31)
bvsub a!l #x00000005)) a!2)

ite (= #x00000000 (bvsub a!l #x00000005))

#o1 #b0)))) (= #b0 al!3))))

(
(
(
(
(
(
(
(

As expected, the symbolic values and constraints are mud-
dled by precise but unreadable bitvector operations. However,
the presence of four symbolic bytes in a concat sequence that
is applied in an arithmetic expression could be viewed as a
strong indicator that we we have discovered an integer value,
and in little-endian order because the sequence is descending
(e.g., from ‘sym3’ to ‘sym0’).

C. Authentication Example:
In this example we see only a portion of the code:

char inbuf[64];

num_bytes = read(0, inbuf, 64);

int authreq = (inbuf[0]=='A' &&
inbuf[1l]=="U" &&
inbuf[2]=="T' &&
inbuf[3]== "H');

int good_password = (inbuf[4]=="T" &&

inbuf [5]=="0" &&

inbuf[6]=='D’ &&

inbuf[7]==0);
if (authreq && !good_password) {
// send authentication rejection

}

Due to short-circuiting, there are four distinct paths in the
symbolic execution of the binary that lead to an authentication
rejection outcome. Our analysis combines these paths and the
path-constraint becomes (as a Z3 string):

Or (

And (sym0==65, syml==85, sym2==84, sym3==72,
Not (sym4==84)),

And (sym0==65, syml==85, sym2==84, sym3==72,
sym4==84, Not (sym5==79)),

And (sym0==65, syml==85, sym2==84, sym3==72,
symé4==84, sym5==79, Not (sym6==68)),

And (sym0==65, syml==85, sym2==84, sym3==72,
sym4==84, sym5==79, sym6==68, Not (sym7==0)))

III. OUR APPROACH

Today’s solvers are powerful highly optimized tools that are
very good at answering questions such as “Is this expression
satisfiable?” and, if so, “Provide a model assignment”. Existing
tools leverage these capabilities and put them to good use.
However, these solvers are not well suited to having people
read and interpret their results. Simplification algorithms exist,
but the motivation for these algorithms for the most part is

to improve performance. Our examples allow us to illustrate
many points:

« When working in the bit-vector domain, negative num-
bers are ignored, making string representations of Z3
constraints very difficult to read (i.e., 4294967295 instead
of -1 using Python Z3’s __str__ method as shown in
II-A). For this reason, we have reported most of our
results using sexprs.

« Even very simple statements in the integer domain, when
expressed as bit vectors, become nearly impossible for
humans to read. The presence of concat, extract, if-then-
else, and complex tests on the sign bit, and other more
complex logical constructs, result in statements that are
not readable. This is true even for expressions like ‘y >
6 .

Of course binary analysis of real programs will only compli-
cate matters further, and a very reasonable conclusion would
simply be that one should never attempt to make sense of
bit-vector expressions. As such, humans may interrogate the
solver, but not examine what the solver knows. We reject this
perspective for a number of reasons:

o For small academic “toy” problems, researchers them-
selves (i.e., as opposed to other analyst users) need the
ability to read constraints.

« When working to build tools that put humans in the loop,
we believe strongly that simple problems should have
simple answers, even if complex problems do not.

o The expressions held by the solvers are sometimes the
precise answers being sought.

o It seems strange for a community dedicated to making
sense of a binary (i.e., the byproduct of human engi-
neering that one could argue was never intended for
consumption by anything other than hardware) to argue
that one should not attempt to make sense of a solver’s
constraints.

o These are hard problems, and solutions will inevitably
rely on multiple approaches and, in many cases, on
finding agreement across multiple techniques. Thus, anal-
ysis of the constraints themselves is an alternative and
potentially fruitful activity.

Thus we believe:

o Humans should have the ability to say to the computer
“Spend some time (e.g., as much as 30 minutes) looking
at this constraint and see if you can explain it more
clearly”

o Working in the bit-vector domain is precise, but humans
need to be able to tie the bit-vector statement back to
other domains, even if the statement in the other domain
is not precise.

o Humans also need to be able to ask solvers to compare
domains for equality and/or to test domains for equality.

For some of the problems we are interested in, we have type
information, for example when we knew that RBP was a frame
pointer that could be used to access a 32-bit little-endian value
in II-A. For our work in network protocol abstraction, we hope

Submitted to NDSS 2020 Workshop on Binary Analysis Research

SAND2019-15210 C - Unclassified Unlimited Release

to provide a high level abstraction of the network protocol;
and, for this, type information is essential but will have to be
inferred because we do not have source code.

A. Rough Prototype for Domain Translation

We have built a rough prototype for domain transla-
tion using the Python Z3 library that essentially performs
type-influenced pattern matching on Z3 internal expressions.
The prototype was built as a proof of concept and con-
sists of a few thousand lines of python code. Variables
are annotated with type information, e.g., as defined in
https://bitstring.readthedocs.io/en/latest/packing.html. We an-
ticipate at some point rewriting this library in Z3 C++ or
writing the library as a fully independent tool that takes and
produces SMT-LIB 2 expressions. Fundamentally, the rewriter
has a simple goal: replace bit-vector constructs with higher
level constructs, e.g., given a bit-vector constraint with type
information:

(and (= ((_ extract 31 24) |y_intle:32]|) #xfe)
(= ((_ extract 23 16) |y_intle:32]|) #xff)
(= ((_ extract 15 8) |y_intle:32|) #xff)
(= ((_ extract 7 0) |y_intle:32]|) #xff))

We can convert from the bit-vector domain to the integer
domain (in this case ‘y = -2’). We do this by recognizing
concats of extracts and searching for patterns where a con-
version is sensical, even if it is not precise. For example,
we have patterns that understand that concatenation with 0 is
multiplying by two, that checking a sign bit and comparing it
to an if-then-else on a condition yielding O or 1 is a statement
about the condition and an inequality, etc. Our prototype is
by no means complete, but it has proven capable of handling
many examples that arise in our problem domains. To some
extent, we have invested time in understanding complex bit-
vector expressions with the hope that this can save others from
having to do so.

We report results from our tool for some of the problems
described earlier.

B. Results for II-A and 1I-B

Using our tool that performs pattern matching (e.g., it under-
stands that comparing the sign-bit for O or 1 in the bit-vector
domain is expressed as an inequality in the integer domain),
we obtain an integer domain expression corresponding to the
bit-vector domain expression shown in II-A:

Not (Or (Or (And (-6
And (Not (1 <= vy), Not (6 <= vy)),
And(y >= 1, 6 <=1vy))), And(-6 + y >
Not (Or(y >= 1, And(Not (1l <= vy),
And(y >= 1, 6 <= y))))), y == 6))

+y <0, Or(y >= 1,

Which can be simplified using Z3 tactics (e.g., repeat and ctx-
solver-simplify), yielding:

And (6 <=y, Not(y == 6))

This result is Z3’s preferred answer because it avoids strict
inequalities, viewing them as a detriment to performance.
We are able to obtain this result for example II-A and for

many variants of the bit-vector path constraint we constructed
by changing the order in which we repeatedly apply the Z3
simplify and ctx-solver-simplify tactics. Combining this with
our analysis of the contents of EAX, we achieve a totally
correct statement: “when y > 6 the output is y-2.” For the
other path, “when y < 6 the output is y-1” is correct in the
integer domain, but it is not totally sound due to the possibility
of underflow. Our perspective is that analysts will want this
answer to get a general sense of the constraint, as well as
a more detailed and simplified bit-vector answer if they are
investigating bit-vector effects and potential vulnerabilities that
might arise as a result.

For example II-B, a structural analysis of the path-constraint
detects a concat sequence from ‘sym3’ to ‘sym0Q’; when we see
this expression used in an arithmetic expression, we record
a strong hypothesis that it represents a 32-bit little-endian
integer. We then replace individual symbolic bytes with an
extract of a new 32-bit symbolic variable that we create, and
see if our other analysis tools can find a possible domain
translation. For this example we report:

And (6 <= sym_[0-3]-?_intle:32,
Not (sym_[0-3]-?_intle:32 == 6))

One thing we can do with some success is use the solver
to see if our conversion from one domain to another is sound.
Given a variable relationship and a value relationship, we ask
the solver to see if it can satisfy the variable relationship while
breaking the value relationship. Consider an example:

iy = z3.Int('y")

bv_y = z3.BitVec (’'ybe32’,32)

variablesP = (z3.BV2Int (bv_y) == i_y)
i_value = i_y + 1

bv_value = bv_y + z3.BitVecVval (1l,32)
valuesP = (z3.BV2Int (bv_value) == 1i_value)

The solver will report that “variablesP and not valuesP” is
solvable, with one model being i_y =4294967295, bv_y =
#x T,

Domain equivalence may not in general hold, but we often
have constraints upon our variables (e.g., ‘y > 6’ or ‘y <=
6’), and these constraints can be applied when checking for
domain equivalence. Thus, for our path-constraint example in
II-A, for any ‘y’ input satisfying ‘y > 6, we know that ‘y-2’ is
the result. Unfortunately, checking these equivalences is very
computationally expensive. Thus, we provide the ability to
check using values, e.g., the user supplies a value to see if it
can be used to prove that the expressions in different domains
are not precisely equivalent.

C. Constraint simplification using SIS

In order to simplify complex boolean expressions, we intend
to take advantage of logic synthesis tools. Here we show
how a logic synthesis tool designed to minimize numbers
of literals and map solutions to preferred gate libraries can
be used to construct solutions that are more human readable.
This approach may also prove useful when looking for specific
patterns when attempting to map from one domain to another.

Submitted to NDSS 2020 Workshop on Binary Analysis Research

SAND2019-15210 C - Unclassified Unlimited Release

In the next section we describe a technique that utilizes logic
synthesis tools and don’t cares to simplify expressions like
the one in III-B to get better results than those obtained using
ctx-solver-simplify.

We used the logic synthesis tool SIS [10]. Using algorithms
that attempt to minimize the number of literals in a solution, as
well as algorithms that map solutions to specific component
libraries, we can have SIS automatically generate solutions
that we believe have been optimized for human readability.
It is interesting that the replacement tool for SIS, ABC [4],
may not be as ideally suited, e.g., it has less focus on
“Advanced combinational logic synthesis (extraction of shared
logic, don’t-care based optimization, Boolean decomposition,
etc)” per http://vlsicad.eecs.umich.edu/BK/Slots/cache/www-
cad.eecs.berkeley.edu/~alanmi/abc/. In order to have SIS op-
erate on example II-C we simply created 8 labels for the
assertions that a symbolic byte has a specific (ASCII) value.
We then asked SIS to simplify the .eqn file:

#a is a label for ’'sym0==65" (A),
#b is a label for ’'syml==85’ (U),
#c is a label for ’'sym2==84" (T),
#d is a label for ’'sym3==72' (H),
#e is a label for ’'sym4==84' (T),
#f is a label for ’'sym5==79’ (0),
#g is a label for ’'sym6==68" (D),
#h is a label for ’'sym7==0’
INORDER = a b ¢ d e £ g h;
OUTORDER = f1;

fl = (abcde’) + (abcdef") +

(a bcdefg’) + (abcdefgh);

We ran a simple SIS script that did a “full_simplify”, a
“decomp -g” followed by a “map” operation on a gate library
we constructed that biased the solution to not use any OR
gates. SIS was able to find a solution involving only AND
and NOT:

As a Z3 expression, the solution is:

And (sym0==65, syml==85, sym2==84, sym3==72,
Not (And (sym4==84, sym5==79, sym6==68, sym7==0)))

This representation seems amenable to string conversion (e.g.,
“sym[0:3]=="AUTH” and sym[4;7] != “TOD\0”"), and we hope
that in many circumstances when analyzing protocols the
domain will result in constraints where the symbolic byte
variables that represent the protocol message are checked for
equality or inequality to a string (possibly null terminated).

IV. PREVIOUS WORK

The SMT logics we are most interested in include closed
quantifier-free formulas over the theory of fixed-size bitvectors
(QF-BV) and quantifier-free integer arithmetic (QF-NIA). We
refer readers to [3], and specifically the description of logics (
http://smtlib.cs.uiowa.edu/logics.shtml). Most of our work is
based on Z3 [7]. Simplification routines are present in most

SMT libraries, however, “the scalability of many static anal-
ysis techniques requires controlling the size of the generated
formulas throughout the analysis” [8], and thus support for
simplification is provided in order for the solver to be more
performant. Some solvers mention human readability, e.g.,
KLEE [5] has a few options to make SMT-LIB 2 statements
easier to read (e.g., ‘-smtlib-human-readable’) but no existing
tools provide support for deep analysis aimed at simplifying
constraints for human readability. We have come across online
posts that discuss the notion of converting between domains
(e.g., from QF_ABYV to AUFNIRA) but are aware of no tools
that attempt to perform these types of conversions. The selec-
tive symbolic execution tool S2E is supported by a bitfield-
theory expression simplifier that performs limited types of
conversion using both bottom-up and top-down analysis of
the expression trees and “is an example of applying domain-
specific logic to reduce constraint solving time” [6].

Twenty years ago when working with symbolic timing
constraints, one of the authors discovered a technique well
suited to our stated goal of asking the computer to spend
significant resources trying to simplify a constraint for hu-
man readability[1]. The technique can be applied to boolean
expressions and is best understood through a simple example.
Consider the simplified Z3 expression from III-B : ‘y > 6
and not y = 6’. We can rewrite this expression as a Boolean
expression: (a + b) b” where a is label for ‘y > 6’ and b
is a label for ‘y = 6’. Furthermore, we can supplement our
knowledge by noticing that the product ab is a “don’t care”,
i.e., it is not possible for ‘y > 6’ and ‘y = 6’ to both be true. As
such, we are free to include this term in our solution if we so
choose. We can then formulate the constraint simplification
problem as choosing the best implementation for the truth
table:

E

0/0]0
0110
1101
111X

Which, in this case, is just a, i.e., our expression can be
simplified to just ‘y > 6’. The formal underpinnings of this ap-
proach are described in [9]. At present, we are in the process of
re-implementing this code for use in simplifying complex Z3
boolean expressions. This technique is an example of a general
purpose approach to simplifying complex solver constraints
that involve boolean operations. It can be computationally
expensive (we use the solver to discover “don’t cares”) but
is an example of the type of analysis we believe should be
generally available to individuals trying create human readable
path constraints.

V. SUMMARY

In this paper we presented several examples to demonstrate
our belief that tools to create human readable path-constraints
would be very valuable contributions to the static analysis
community. We also presented evidence suggesting that such
tools can be created. We can do better than having every

Submitted to NDSS 2020 Workshop on Binary Analysis Research

SAND2019-15210 C - Unclassified Unlimited Release

individual project contemplate the implementation of “domain-
specific” simplification strategies (while possible, we have
found it difficult to find individual projects that have under-
taken such an effort). Instead, we believe that many general
purpose techniques (such as those we described in sections
III-A and IV) can be developed for broad use, and that, for
many problems in static binary analysis, it will be possible to
create human readable path constraints that can be used for
many different mission problems.

We believe that when simple solutions are available, it is im-
perative that tools present simple answers. We do not advocate
that humans become experts at interpreting complex solver
constraints — rather we want to make available algorithms that
humans can choose to use to analyze constraints to expose
simple facts when they have been accumulated (e.g., using
tools like symbolic execution). When answers are complex,
we anticipate humans not wanting closed-form solutions, but
rather the ability to query a complex solution in order to
facilitate additional analysis.

There are many future research directions suggested by
our initial investigations into creating human readable path-
constraints. A formal definition of “human readability” and
the development of metrics would allow us to score path-
constraint expressions and penalize ones that are deemed less
readable. The score could be based on the elements of the
expression (e.g., a penalty for use of ‘bvxor’), the depth and
complexity of the expression, etc. Instead of working with the
patterns that arise from symbolic execution of the constraints,
we could work further upstream and alter the constraints that
are created within angr when symbolically executing a VEX
instruction, e.g., as shown in the origin of the path constraint
in example II-A. It may be that by injecting constraints that are
easier for humans to read for a given instruction, we can create
more readable path constraints and trade off some efficiency
to achieve this goal. It is also quite likely that by examining
the constraints that are added we can enrich our understanding
of the patterns we need to recognize. It is also possible that
focusing on the readability of the bit vector path-constraints
would be another viable approach for most of our tools and
allow us to stay in the bit-vector domain.

REFERENCES

[1] T. Amon, G. Borriello, and Jiwen Liu. Making complex timing
relationships readable: Presburger formula simplification using don’t
cares. In Proceedings 1998 Design and Automation Conference. 35th
DAC. (Cat. No.9SCH36175), pages 586-590, June 1998.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3), 2018.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.
Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Proceedings of the 22Nd International
Conference on Computer Aided Verification, CAV’10, pages 24-40,
Berlin, Heidelberg, 2010. Springer-Verlag.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 209-224, Berke-
ley, CA, USA, 2008. USENIX Association.

[2

—

[3

[ty

[4

[inary

[5

[ty

[6]

[7]

[8

—

[9]

[10]

(11]

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The
s2e platform: Design, implementation, and applications. ACM Trans.
Comput. Syst., 30(1):2:1-2:49, February 2012.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin, Heidelberg,
2008. Springer-Verlag.

Isil Dillig, Thomas Dillig, and Alex Aiken. Small formulas for large
programs: On-line constraint simplification in scalable static analysis.
In Radhia Cousot and Matthieu Martel, editors, Static Analysis, pages
236-252, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Hoon Hong. Simple solution formula construction in cylindrical al-
gebraic decomposition based quantifier elimination. In Papers from
the International Symposium on Symbolic and Algebraic Computation,
ISSAC °92, pages 177-188, New York, NY, USA, 1992. ACM.

E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P.R. Stephan, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Sis: A system for sequential circuit synthesis.
Technical Report UCB/ERL M92/41, EECS Department, University of
California, Berkeley, 1992.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. Sok: (state of) the art of war:
Offensive techniques in binary analysis. In Security and Privacy (SP),
2016 IEEE Symposium on, pages 138—157. IEEE, 2016.

