

RESIDUAL-MINIMIZING APPROACHES FOR TRANSIENT PROBLEMS ON NEXT-GENERATION COMPUTING ARCHITECTURES

Nathan V. Roberts¹, Stefan Henneking², Sean T. Miller¹, and Eric C. Cyr¹

¹ Sandia National Laboratories, Center for Computing Research, 1450 Innovation Boulevard, Albuquerque, NM 87123, {nvrober,seamill,eccyr}@sandia.gov

² University of Texas at Austin, Oden Institute, 201 E. 24th Street, Austin, TX, USA, stefan@ices.utexas.edu

Key Words: Minimum-Residual Methods, Discontinuous Petrov-Galerkin, Next-Generation Platforms, Transient Problems

The discontinuous Petrov-Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan minimizes the solution residual in a user-controllable norm; the mathematical structure provides stability even on a coarse mesh, usually without the need for careful analysis for each new PDE under consideration, and without requiring stabilization terms to be added or the trial space to be carefully constructed. Camellia is an open-source library, built atop Trilinos, that aims to provide a computationally efficient environment for rapid development of solvers for DPG and other finite element methods.

To date, the focus in DPG research has largely been on steady-state equations. There have been several studies of space-time DPG, but the sole examination of time-stepping techniques for DPG in the literature of which we are aware is a mathematical analysis of Rothe's technique for an ultraweak formulation of the heat equation by Führer et al.

Here, building on the work of Führer et al., we present and compare several other time-stepping approaches for DPG and DPG-like formulations of the heat equation, with particular concern for computational costs on next-generation computing architectures. We are now converting Camellia to make use of Kokkos to allow performance portability; we present some performance results for DPG-like formulations running on GPU accelerators.

REFERENCES

- [1] N. V. Roberts. Camellia: A rapid development framework for finite element solvers. *Computational Methods in Applied Mathematics*. **19**(3):581–602, 2019.
- [2] T. Führer, N. Heuer, and J. S. Gupta. A time-stepping DPG scheme for the heat equation. *Computational Methods in Applied Mathematics* **17**(2):237–252, 2017. *Int. J. Num. Meth. Engng.* (1994) **37**:3323–3341.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.