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Advance planetary accretion models
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Stewart et al., 2019

Extant EOS models rely on simplified models.
But, critical behavior mostly unconstrained.

2



Computational Approach
Simplest EOS with a critical point:

13(p,T) = ct(T) + b(T)p + c(T)p2 + cl(T)p3

At the critical point: 
AP

(32P

ap2 ) T

INT-MD Approach:
• VASP + PAW's
• Mermin functional
• NVT with N=28/56/112
• PBE xc functional
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Continuous structural evolution

Onset of vaporization
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Continuous structural evolution
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Continuous structural evolution

Nearly pure vapor
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Dynamics in 2 phase region
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Continuous structural evolution
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Critical point estimation
Impose C.P. condition:

(02
0

)aT

Yields a simple quadratic eqn:

B ± V B2 4AC
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Critical point estimation
Impose C.P. condition: i 8

(011)

io )7-7

(02P
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Yields a simple quadratic eqn:
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Maxwell construction

fPo

pi

(1--)(p') P) dp' = 0
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Coexistence curve
Renormalization Group result:

1
Pv = Pc 2 

(C1x° ± C2x°±°) ± C2x
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Summary
• INT-MD spanned 1-16x expanded & 5000-8000 K
• Incongruent vaporization
• Critical point from EOS & phase boundaries from RG
• Critical point 3x lower in density, 30% lower in
temperature than M-ANEOS.


