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Executive Summary

Problem: The numerical nature of phase-field models
causes for these model to be ill-suited for scenarios where a
large number of candidate microstructures need to be
evaluated to identify an optimal solution (i.e., inverse-type
problems and high-throughput scenarios).

Solution: We developed high-fidelity surrogate mesoscale
models that accurately predict microstructure evolution
without the need to numerically solve the computationally
intensive phase-field equations. This is achieved by
combining low-dimensional statistically representative
microstructure representation with machine learning and
time-series analysis techniques.

Results: The protocol developed in this work successfully
established a reduced-order model that accurately predicts
the microstructure evolution with a significantly reduced
computational load: our simulations only required 5 minutes 
on a regular laptop while the explicit phase field model
simulations required 90 minutes on 180 processors.

Conclusions: The ability to obtain accurate yet fast phase-
field-based microstructure evolution results will enable
unbiased automated explorations of vast model spaces to
identify the optimal process and material parameters for any
desired evolutionary process.
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a) The microstructure of the material is quantified
using digital representation of the
microstructure [1].
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c) Principal Component Aanalysis (PCA) enables
us to obtain an objective (data-driven) low-
dimensional representation of the defined
statistical description of the microstructure [1].

d) Time Series Multivariate Adaptive Regression
Splines (TSMARS) [2] are used to establish a
functional dependence predicting the future
values of a PC components (i.e., in reduced
space) based on its previous values and the
process parameters. Subsequently, the
predicted PC components are used to
recover the spatial correlations of the
structure.

e) A phase recovery algorithm [3] is used to
recover the microstructure from the predicted
2-point statistics.

Building Reduced-Order Model for Spinodal 
Decomposition: 
• 9 different volume fractions, sampled every 10%
• 100 Latin hypercube sampled mobilities sampled
over 4 orders of magnitudes [.01,100]for each
volume fraction sampledl

• Each sampled mobility and volume fraction
combination was run for 50,000,000 timesteps
and 100 "snapshots" (or timesteps) of the
evolution of the microstructure per simulation (101 — 4

including the initial microstructure) were captured. -_,
• Each simulation required 90 minutes and 180 —7—

processors. 
• Total of 900 simulations.
• Trained the TSMARS surrogate model starting 
at timestep 50 for 40 timesteps. 
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Case Study: Spinodal Decomposition
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Training Set Results: 
Predictions at timestep 100
Density Plot of the Euclidean Distance between
the Predicted Statistics  and the True Statistics
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