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Executive Summary

Problem: The numerical nature of phase-field models
causes for these model to be ill-suited for scenarios where a
large number of candidate microstructures need to be
evaluated to identify an optimal solution (i.e., inverse-type e ua .
problems and hlgh-throughput Scenarios). a) IPIPTIPEE l ......................... .} 1 m(x,n) ~ Z zm?)(h(n))(s(x) b) 2_point Spatia| correlations are calculated on
Microstmcture 17 —17 ' h=1s=1 this digital representation in order to obtain a
statistical representation of the microstructure

a) The microstructure of the material is quantified
using digital representation of the
microstructure [1].
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Solution: We developed high-fidelity surrogate mesoscale

models that accurately predict microstructure evolution [1].
without the need to numerically solve the computationally “w*”‘i% T S8
intensive phase-field equations. This is achieved by " e P < =§Zm2m§’+r c) Principal Component Aanalysis (PCA) enables

combining low-dimensional statistically representative
microstructure representation with machine learning and
time-series analysis technigues.

us to obtain an objective (data-driven) low-
dimensional representation of the defined
statistical description of the microstructure [1].

Results: The protocol developed in this work successfully
established a reduced-order model that accurately predicts
the microstructure evolution with a significantly reduced

d) Time Series Multivariate Adaptive Regression
Splines (TSMARS) [2] are used to establish a
functional dependence predicting the future

computational load: our simulations only required 5 minutes T values of a PC components (i.e., in reduced
on _a reqular laptop while the explicit phase field model il space) based on its previous values and the
simulations required 90 minutes on 180 processors. Reduced-order Model process parameters. Subsequently, the

d) e) predicted PC components are used to
Conclusions: The ability to obtain accurate yet fast phase- : : recover the spatial correlations of the
field-based microstructure evolution results will enable Time-series Phase structure.
unbiased automated explorations of vast model spaces to machine learning | __, Recovery
identify the optimal process and material parameters for any based prediction Algorithm e) A phase recovery algorithm [3] is used to
desired evolutionary process. recover the microstructure from the predicted

2-point statistics.
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Case Study: Spinodal Decomposition
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and 100 “snapshots” (or timesteps) of the e . -
. . . . % 0.9970 e %‘ ! e
evolution of the microstructure per simulation (101 —+ — | | &
. . « mgn . —5- o 010 ; S
including the initial microstructure) were captured. _ ‘ I 1
- Each simulation required 90 minutes and 180 - i\ iy |
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