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Kn = - governs applicability of different models

When do we have to use kinetic methods?

• Kn < 0 .01 - can use CFD

• 0.01 < Kn < 0 .1 - can use CFD with appropriate boundary

conditions

• Rarefied flows (large 2)

• Meso- and nanoscale flows (small L)

DSMC (Direct Simulation Monte Carlo) - main engineering/

computational tool for transitional and rarefied regimes
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Main ideas of DSMC:

• Model many particles, each represents many ( r•J 1015) real

molecules
• Separate convection and collision steps: particles move along

straight lines in between collisions (rt+At = rt + v At)

• Collisions are performed stochastically: computational cost N 0(N )

• Sample macroscopic parameters based on microscopic quantities of
molecules in cells

DSMC can be used in a wide range of flows, but becomes very

expensive at low Kn numbers!
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Main drawbacks of DSMC:

• Stochastic fluctuations lead to issues with:
• Modelling low-speed flows (poor signal-to-noise ratio)
• Modelling transient flows (cannot do time-averaging)

• Hybridization with CFD (noisy boundary conditions in CFD solver)

• Particle-in-cell codes (stiff numerically)

• Issues with modelling trace populations such as:
• High-velocity particles
• Excited internal states Planar slice of DSMC

sirnulation data

a Ng
• Trace species

Example:
Ar/e- mixture: 0.1% ionization

For each electron, need to have 103 argon particles
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iscrete Boltzmann Equation

Boltzmann equation:

at 
+n • vr0 = f [0(00(0 001)0(C)1 g6tc1C

Discrete velocity method:
• Select a fixed (discrete) set of allowed velocities
• Can replace integral collision operator with a sum
In scaled form:

di
+ I) • Vii(St

11 [(n 
(130)/4(e) (k)(kie)] gat

Here k) is the (scaled) number of particles in a volume 163 centered
around C; ß is the grid spacing

DVM at UT Austin:
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DSMC vs QUIPS

DSMC QUIPS
"Fixed mass, variable velocity "Fixed velocity, variable mass

particles." quasi-particles."
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Resolution limited by
ratio of real molecules
to DSMC particles

z

Allows resolution of tails/
trace populations up to

machine precision

TEXAS
The University of Texas at Austin Conwational FkOd Physics Lab

E.
ODEN

7 Peter Clarke thesis defence, 2015



Numerical scheme:

Velocity distribution function in each physical cell is a 3-dimensional

array (3 velocity components) (not considering internal energies)

1. Compute change in velocity distribution function in each physical

cell due to collisions

2. Perform convection

1. Apply appropriate boundary conditions
2. Compute convection
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Convection:
In present work, a simple first-order upwind finite difference scheme is
used; more accurate methods (e.g., Finite Volume) are widely used for

DVM (works of Titarev, Kolobov, etc.)

(kn46i o) (hin,o) (on,±0 on)co)) <
q%+6ii(ir‘i) qvn,o) (oko) - >

Stability criterion: c
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ulPs collisions

How to compute collision integral?

poiNce) (ii)/*edig/at
A Monte-Carlo method:
• Select two discrete velocity locations (based on their mass)

• Deplete them by a small value; replenish mass

• Repeat many times
• Parameter that controls number of collisions/noise

1
Nc011 2r 

RMS

Noise parameter
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UPS collisions

How to compute collision integral (replenishment)?

Find post-collision velocity (random point on a sphere)
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UPS Collisions: Remapping

But velocity does not necessarily lie on grid!

• Remap post-collision mass to 7 points on grid

• Conserves mass, momentum, energy

Ve,x

Ve,y

V.A 1,y
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QUIPS summary

QUIPS (Quasi-Particle Simulations):

• Strictly conservative

• Can handle multiple species, non-uniform velocity grids
• Can handle internal energies (rotational, vibrational)

• Can model chemical reactions
• Variance reduction

• Accuracy of collision integral evaluation can be adjusted without
increase in RAM requirements
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ybridization in locity space

What happens if we combine DSMC and QUIPS

representations? V,

QUIPS mass

DSMC particles
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ybridization in velocity space

Why hybridize in velocity space?

• Faster (represent bulk of distribution with a few DSMC particles),
while retaining accuracy in modelling of high-energy particles/trace

species (use QUIPS)
• DVM have issues when there are discontinuities in boundary

conditions

Previous work:

• G. Dimarco, L. Pareschi (2008) - BGK solver, DSMC for tails, DVM for bulk

• T. Pan, K. Stephani (2016) - DSMC for bulk, DG for tails

• T. Pan K. Stephani (2017) - DSMC for bulk, BGK for tails
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How to hybridize?

• Pick region in velocity space where VDF is represented by DSMC

particles

• Use DSMC collision mechanics (instead of small depletion/

replenishment)

1

0.5 c

Vz o 3

—0.5 %

—1.5 • •
•
• • •

—2
••• •

—1.
—2 
5 •

•• • •

—1 ••
•••

—0.5 •

0.5 

• 
•
•Vx 0
•

1.5 •

2

•- • • %t

• • •.••••• 
•

•
lor•.111,*

61 • *1 lip
Olt
•1 

•.• 

_

Ai
. • • • 1 • •

▪ •
•• • w• •• •• ••• •

•
.
•

•

•
.
•

•

.

•

•

.

•

• •

Vy

•

•
•
•
•

•• •

•

•
•

•

•

•

TEXAS
The University of Texas at Austin

I iimE

ODEN
1 6



Sources of new particles in DSMC region?

1.Post-collision velocity lies inside the region

2.Remapping

3.Collision of two variable-weight DSMC

particles: requires splitting
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How to avoid (exponential) growth of number of particles?

• Do conservative N:2 merging (preserve mass, momentum, energy,

spatial moments)

• Current work utilizes a simple grid-based approach (M*M*M

merging cells); CPU time r•i 0(Np); additional RAM 0(M3)
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Hybrid QUIP SMC

Example of hybrid VDF representation
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Numerical results
lonization rate computation

• Initialize with an Ar/e- mixture, compute electron-impact ionization

rate coefficient (based on cross-sections given by Thompson

[Lieberman and Lichtenberg, 1994])

• CPU time per step vs. error compared to analytic rate as measure of

efficiency

Simulation parameters: TAr = 300K; 2eV < Te < lOeV; 0.1% ionization
Hybrid/variable weight DSMC code uses 128 particles unless stated
otherwise

Possible hybridization options:

1. Ar, e- as hybrid
2. One species as DSMC, other as pure QUIPS

3. One species as DSMC, other as hybrid
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At T=2eV, tails contain

0.2% mass; for standard

DSMC need —500 particles

to get 1 particle in tail!

At T=5eV, 10% mass
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If modelling electrons with hybrid scheme, use DSMC particles for low-

velocity electrons

• • •

• • •

• • •

• • •
•

• • • •
4r
•

• • ••

• • ♦
• •

•
•
•

• • II, •
•

• • * ••• • -•• • •♦ • ••• • • • •
• • • • • • • •
• • • • • •
• • • • • • • • •

At vY

•
• •4, •

•

•

• • • •

• • a • Rip es *.

••• 
• •• •

• • • 4

• • 4.• •

•
•

•

•

t 
* °

IAN Os .. •

•

E on

•
•
•
•
• Vx110.
•
■
■
•
•
• • •
•

•

• 
•• •

• • • #. • • • •

• • • • 41̀

• • • • • • • • •

• • vion

TEXAS
The University of Texas at Austin

ME

ODEN
22



Electron-impact ionization rate
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CPU vs. error
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CPU vs. error
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Numerical results

Single-species Couette flow

• Pure argon flow

• Channel width 0.5 mm, 50 cells

• Temperature of walls 300K, right wall velocity 1000 m/s (M Pr:, 3.1)

• Initial pressures:

• 207 Pa (Kn erz,i 0 .1)

• Higher Knudsen numbers not considered due to low number of
collisions

TEXAS
The University of Texas at Austin Conwational FkOd Physics Lab

NE
ODEN

28



• Look at noise (RMSE) in high-order moments (gives more weight to

higher-velocity tails):

)M8 P"' (\/Vx2 Vy2 Vz
2 0(v vy, v )dv dv dvxlylz v x z

• CPU time per step vs. RMSE as measure of efficiency

RMSE(M8) (M8(t)
n t=1

meg  2

8
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Velocity profiles
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Temperature profiles
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Temperature error
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1o1
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onclusions

• A new approach to modelling rarefied gas flows based on a velocity

space hybridization has been developed

• Such an approach can give better computational efficiency

(compared to a pure QUIPS approach) and less RAM usage

(compared to SPARTA) for flows where trace species are important
• For a 1-D single-species Couette flow, no obvious benefits due to

absence of influence of trace populations, but approach is validated

Current efforts:
• Adaptive DSMC region
• Modelling of 1-D and 2-D weakly ionized flows

• Internal energies
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RMSE of 8th moment

Computational time per collision step vs. error in tails
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