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DSMC

A

Kn = 7 governs applicability of different models

When do we have to use kinetic methods?

® Kn < 0.01 -can use CFD

® 0.01 < Kn £ 0.1--can use CFD with appropriate boundary
conditions

® Rarefied flows (large A)

® Meso- and nanoscale flows (small L)

DSMC (Direct Simulation Monte Carlo) - main engineering/
computational tool for transitional and rarefied regimes
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DSMC

Main ideas of DSMC:

® Model many particles, each represents many ( ~ 10'°) real

molecules
® Separate convection and collision steps: particles move along

straight lines in between collisions (r,, 5, = I, + VA?)

® Collisions are performed stochastically: computational cost ~ O(N,)

® Sample macroscopic parameters based on microscopic quantities of
molecules in cells

DSMC can be used in a wide range of flows, but becomes very

expensive at low Kn numbers!

&b

[ ||
21 inlil
| n— 4
— : 1 ODEN
The University of Texas at Austin ComputetionalFluid Physics Lab




DSMC

Main drawbacks of DSMC.:

® Stochastic fluctuations lead to issues with:
® Modelling low-speed flows (poor signal-to-noise ratio)
® Modelling transient flows (cannot do time-averaging)
® Hybridization with CFD (noisy boundary conditions in CFD solver)
® Particle-in-cell codes (stiff numerically)

® |ssues with modelling trace populations such as:
® High-velocity particles _—

® Excited internal states Planar slice of DSMC
simulation data ~— ————x

® J[race species

Example:
Ar/e- mixture: 0.1% ionization ’

For each electron, need to have 10° argon particles
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Discrete Boltzmann Equation

Boltzmann equation:

0
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Discrete velocity method:
® Select a fixed (discrete) set of allowed velocities

® Can replace integral collision operator with a sum
In scaled form:

0 . 1 a1
;f Vib=—2, B &) - didd | 2,
i)
Here é(@ is the (scaled) number of particles in a volume f° centered

around &; f is the grid spacing

DVM at UT Austin: Quasi-Particle Simulation Method (QUIPS)
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DSMC vs QUIPS

DSMC QUIPS
"Fixed mass, variable velocity "Fixed velocity, variable mass
particles.” quasi-particles.”

\ Y
Resolution limited by Allows resolution of tails/
ratio of real molecules trace populations up to
to DSMC particles machine precision
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QUIPS

Numerical scheme:

Velocity distribution function in each physical cell is a 3-dimensional
array (3 velocity components) (not considering internal energies)

1. Compute change in velocity distribution function in each physical
cell due to collisions

2. Perform convection
1. Apply appropriate boundary conditions
2. Compute convection
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QUIPS

Convection:

In present work, a simple first-order upwind finite difference scheme is

used; more accurate methods (e.g., Finite Volume) are widely used for
DVM (works of Titarev, Kolobov, etc.)

B0 = @@ - e (4]0 - d@)). 71 < 0
B0 = B, @ — ¢ ($LD - d_@). 7> 0

Vo

At
AX

Stability criterion: ¢ = <1
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QUIPS collisions

How to compute collision integral?

Y [dini@) - dindd)| o,
A Monte-Carlo method: &+

® Select two discrete velocity locations (based on their mass)
® Deplete them by a small value; replenish mass
® Repeat many times

® Parameter that controls number of collisions/noise

1 Noise parameter
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QUIPS collisions

How to compute collision integral (replenishment)?

Find post-collision velocity (random point on a sphere)

Vy A

\
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—/
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QUIPS Collisions: Remapping

But velocity does not necessarily lie on grid!

® Remap post-collision mass to 7 points on grid
® Conserves mass, momentum, energy
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QUIPS summary

QUIPS (Quasi-Particle Simulations):

Strictly conservative

Can handle multiple species, non-uniform velocity grids
Can handle internal energies (rotational, vibrational)
Can model chemical reactions

Variance reduction

Accuracy of collision integral evaluation can be adjusted without
increase in RAM requirements
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Hybridization in velocity space

What happens if we combine DSMC and QUIPS
representations? Vv
<

QUIPS mass

DSMC particles
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Hybridization in velocity space

Why hybridize in velocity space?

® Faster (represent bulk of distribution with a few DSMC particles),
while retaining accuracy in modelling of high-energy particles/trace
species (use QUIPS)

® DVM have issues when there are discontinuities in boundary

conditions

Previous work:
® G.Dimarco, L. Pareschi (2008) - BGK solver, DSMC for tails, DVM for bulk

® T. Pan, K. Stephani (2016) - DSMC for bulk, DG for tails
® T Pan K. Stephani (2017) - DSMC for bulk, BGK for tails
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Hybrid QUIPS/DSMC

How to hybridize?

® Pick region in velocity space where VDF is represented by DSMC
particles

® Use DSMC collision mechanics (instead of small depletion/
replenishment)
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Hybrid QUIPS/DSMC

Sources of new particles in DSMC region?

1.Post-collision velocity lies inside the region
2.Remapping

3.Collision of two variable-weight DSMC :
particles: requires splitting .
‘:ﬁ 1.i \/y ’%5
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Hybrid QUIPS/DSMC

How to avoid (exponential) growth of number of particles?

® Do conservative N:2 merging (preserve mass, momentum, energy,
spatial moments)
® Current work utilizes a simple grid-based approach (M*M*M

merging cells); CPU time ~ O(N,); additional RAM ~ O(M?)
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Hybrid QUIPS/DSMC

Example of hybrid VDF representation
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Numerical results

lonization rate computation

® |nitialize with an Ar/e- mixture, compute electron-impact ionization
rate coefficient (based on cross-sections given by Thompson
[Lieberman and Lichtenberg, 1994])

® CPU time per step vs. error compared to analytic rate as measure of

efficiency

Simulation parameters: 7,, = 300K; 2¢V < T, < 10eV; 0.1% ionization
Hybrid/variable weight DSMC code uses 128 particles unless stated
otherwise

Possible hybridization options:
1. Ar, e- as hybrid
2. One species as DSMC, other as pure QUIPS
3. One species as DSMC, other as hybrid
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Error in ionization rate coefficient

At T=2eV, tails contain
0.2% mass: for standard

DSMC need ~500 particles
to get 1 particle in tail!

100-

At T=5eV, 10% mass
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If modelling electrons with hybrid scheme, use DSMC particles for low-

velocity electrons
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Electron-impact ionization rate

—— Analytic (Thompson)
—&— SPARTA, No =100, Ny =10°
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Numerical results

Single-species Couette flow

® Pure argon flow
® Channel width 0.5 mm, 50 cells

® Temperature of walls 300K, right wall velocity 1000 m/s (M =~ 3.1)
® |nitial pressures:
® 207 Pa(Kn ~ 0.1)

® Higher Knudsen numbers not considered due to low number of
collisions
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Measures of efficiency

® | ook at noise (RMSE) in high-order moments (gives more weight to
higher-velocity tails):

' 8
Mg ~ (\/ V2 + vy2 + sz) (v, Vy, V)dv,dv,dv,

® CPU time per step vs. RMSE as measure of efficiency

RMSE(My) = %Z (Mg(t) _ M8€CI)2
=1
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Velocity profiles

—— Pure QUIPS

—— Hybrid, 128 particles/cell
—— Hybrid, 1024 particles/cell
—— SPARTA, 100000 particles/cell
—— SPARTA, 10000 particles/cell
SPARTA, 1000 particles/cell
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Temperature profiles
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Temperature error
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8th Moment error

10!
10°; T
o | |
o &
n \
. -1 . \
g 10 b 8
w
= N,/cell=10000
1072
o
&
O _
O g-3| —— Pure QUIPS Np/cell=1000
| —@- Hybrid, 128 particles/cell
| —®- Hybrid, 1024 particles/cell
10—4- —k— SPARTA Ny/cell=100
i ige T
RMSE(Mg)

&b

[ ||
21 inlil
| n— 33
" : 1 ODEN
The University of Texas at Austin ComputetionalFluid Physics Lab




Conclusions

® A new approach to modelling raretfied gas flows based on a velocity
space hybridization has been developed

® Such an approach can give better computational efficiency
(compared to a pure QUIPS approach) and less RAM usage
(compared to SPARTA) for flows where trace species are important

® For a 1-D single-species Couette flow, no obvious benetfits due to
absence of influence of trace populations, but approach is validated

Current efforts:
® Adaptive DSMC region

® Modelling of 1-D and 2-D weakly ionized flows
® [nternal energies
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RMSE of 8th moment

Computational time per collision step vs. error in tails

—e— QUIPS, 293 grid —e— Hybrid, 293 grid, 1024 DSMC particles
--+-- QUIPS, 153 grid ~-+-- Hybrid, 153 grid, 128 DSMC particles
—e— Hybrid, 293 grid, 128 DSMC particles -+ SPARTA
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