This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 15307C

Computing and Visualization in Science manuscript No.

(will be inserted by the editor)

Multilevel Initialization for Layer-Parallel Deep Neural

Network Training

Eric C. Cyr -

Received: date / Accepted: date

Abstract This paper investigates multilevel initializa-
tion strategies for training very deep neural networks
with a layer-parallel multigrid solver. The scheme is
based on the continuous interpretation of the training
problem as a problem of optimal control, in which neu-
ral networks are represented as discretizations of time-
dependent ordinary differential equations. A key goal is
to develop a method able to intelligently initialize the
network parameters for the very deep networks enabled
by scalable layer-parallel training. To do this, we ap-
ply a refinement strategy across the time domain, that
is equivalent to refining in the layer dimension. The
resulting refinements create deep networks, with good
initializations for the network parameters coming from
the coarser trained networks. We investigate the effec-
tiveness of such multilevel “nested iteration” strategies
for network training, showing supporting numerical ev-
idence of reduced run time for equivalent accuracy. In
addition, we study whether the initialization strategies
provide a regularizing effect on the overall training pro-
cess and reduce sensitivity to hyperparameters and ran-
domness in initial network parameters.

Keywords Layer-parallel - deep neural networks -
cascadic multigrid - nested iteration

Eric C. Cyr
Sandia National Laboratories
E-mail: eccyr@sandia.gov

Stefanie Giinther
Lawrence Livermore National Laboratory
E-mail: guenther5@llnl.gov

Jacob B. Schroder

Dept. of Mathematics and Statistics, University of New Mex-
ico

E-mail: jbschroder@unm.edu

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned

Stefanie Giuinther - Jacob B. Schroder

1 Introduction

We consider learning problems that are based on the
continuous neural network formulation as in [12,7], and
note that there has been considerable interest in related
ODE- and PDE-inspired formulations as of late [26,5,
6,21,23]. In this setting, the neural network is cast as
a time-dependent ordinary differential equation (ODE)
which describes the flow of data elements y, € R™f, k =

1,...,s (the feature vectors) through the neural net-
work as
Opur(t) = F(ux(t),0(t)) vt € (0,T) (1)

Here, ug(t) € R™ describes the state of a neural net-
work of width w, and 6(t) € RP represents the network
parameters (weights). L;, maps the input feature vec-
tors yi to the network dimension; the right-hand-side
F then determines the flow of the data element through
the network. F' typically consists of an affine transfor-
mation that is parameterized by 0(¢), and a nonlinear
transformation that is applied element-wise using an
activation function, i.e.

Fug(t),0(8)) = o(W(0())ux(t) + b(6(2))), 3)

where W (6(¢)) is a linear transformation, such as a con-
volution, applied to the state ug(t), b(6(t)) is a bias
added to the state, and o: R — R denotes the nonlin-
ear activation function applied componentwise, such as
the ReLU activation o(z) = max(z,0).

In contrast to traditional neural networks that trans-
form the network state at prescribed layers, the continu-
ous formulation prescribes the rate of change of the net-
work state using an ODE parameterized by 6(t). This
control function 6(t) is to be learned during training by

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Eric C. Cyr et al.

solving a constrained optimization problem. For exam-
ple, in supervised learning, the optimization problem
aims to match the network output uy(T") to a desired
output ¢ € R™ that is given from the training data
set:

1 r
in — T t 4
mjn {3 Hun(T):) + | rewa @
s.t. equations (1) — (2) are satisfied Vk =1,...,s. (5)

Here, ¢ denotes a loss function that measures the dis-
tance of the network output at final time T to the de-
sired output, and R denotes a regularization term, such
as a Tikhonov regularization on 0(¢) and/or its time
derivative, that stabilizes the optimization problem nu-
merically. Training is generally considered successful,
if the network parameters 6(t) generalize well to new,
previously unseen data, which is represented as a vali-
dation data set.

To solve the neural network flow numerically, classi-
cal time-integration schemes are applied that discretize
the ODE in equation (1) on a given time-grid 0 = ¢; <
.-+ <ty =T, and solve the resulting equations one af-
ter another for each time step ¢;. In this scenario, each
time-step is associated with one layer of a classical arti-
ficial neural network, leading to the traditional network
propagation with u} ~ ux(¢t") and 6" ~ 6(t") being
the network state and weights at layer n, respectively.
In fact, it has been observed that many state-of-the-art
artificial neural networks can be interpreted as discrete
time-integration schemes of the parametrized ODE in
equation (1) (see e.g. [22]). For example, an explicit
Euler scheme to discretize (1) gives

uptt = uf + hE(uf, 0m), (6)

which resembles the classical ResNet [16] with an addi-
tional time-step size h > 0. We note that h = 1 in the
classical ResNet.

The continuous network formulation opens the door
for leveraging various optimization schemes and opti-
mal control theory that has been developed for ODE
and PDE constraints [20,24,3]. In particular, stability
analysis of explicit time-integration schemes suggests
favoring many-layer networks utilizing a small step size
h in order to ensure a numerically stable network prop-
agation. Networks based on numerical time-integration
schemes can therefore easily involve hundreds or thou-
sands of discrete layers (time-steps) [11,7,12].

However, training such huge networks comes with
both numerical and computational challenges. First of
all, the serial nature of time evolution creates a barrier
for parallel scalability. If network states are propagated
through the network in a serial manner, as is done with

classical training methods, an increase in the number
of layers (i.e. more time steps, and smaller steps sizes)
results in an equally larger time-to-solution. In order to
address this serial bottleneck, a layer-parallel multigrid
scheme has been developed in [11] to replace the se-
rial forward and backward network propagation. In this
scheme, the network layers are distributed onto multi-
ple compute units, and an iterative multigrid method
is applied to solve the network propagation equations
inexactly in parallel, across the layers. This iterative
scheme converges to the same solution as serial network
propagation. The result is that runtimes remain nearly
constant when the numbers of layers and compute re-
sources are increased commensurately (weak scaling),
and that runtimes can be significantly reduced for a
fixed number of layers and increasing compute resources
(strong scaling). The layer-parallel multigrid method
will be summarized in Section 2.1.

In addition, many-layer networks increase the com-
plexity of the underlying optimization problem. In par-
ticular, considering more and more layers and hence
more and more network parameters creates highly non-
convex optimization landscapes which require proper
initialization in order to be trained effectively. A num-
ber of schemes have been developed for initializing plain
and residual neural networks. Commonly implemented
techniques include Glorot [10] and He [15]; however,
this is still an active area of research, with new meth-
ods being proposed (e.g. [14,17,8]).

In this paper, we investigate a multilevel network
initialization strategy that successively increases the
number of network layers during layer-parallel multi-
grid training. The first use of such a multilevel (or
“cascadic”) initialization strategy for an ODE network
was done in the context of layer-serial training in [12].
Here, a sequence of increasingly deeper network train-
ing problems are solved, and each new deeper network
is initialized with the interpolated learned parameters
from the previous coarser network. We refer to this pro-
cess as a “nested iteration”, because of this terminol-
ogy’s long history. Nested iteration broadly describes
a process (originally for numerical PDEs/ODEs) that
starts by finding the solution for a relatively coarse
problem representation, where the solution cost is rel-
atively cheap. This coarse solution is then used as an
inexpensive initial guess for the same problem, but at a
finer resolution. Nested iteration was first discussed in
a multigrid context at least in 1981 [13], and the con-
cept of nested iterations for solving numerical PDEs
goes back at least to 1972 [19,18]. Nested iteration is
often called “full multigrid” in the multigrid context,
and famously provides optimal O(n) solutions to some
elliptic problems with n unknowns [4,25]. Nested iter-

Multilevel Initialization for Layer-Parallel Deep Neural Network Training 3

ation, especially when only regions with large error are
marked for refinement, can lead to remarkably efficient
solvers [1,9]. We will take advantage of this inherent
efficiency to cheaply find good initializations for ODE
networks, by successively refining the time grid of the
ODE network, adding more and more time-grid levels
to the multigrid hierarchy.

In this work, we put the nested iteration (or cas-
cadic) initialization idea into the context of an itera-
tive layer-parallel multigrid solver, which re-uses the
coarser grid levels during multigrid cycling. We investi-
gate two interpolation strategies (constant and linear)
and their influence on the layer-parallel multigrid con-
vergence and training performance. We further investi-
gate the effect of multilevel initialization as a regular-
ization force, with the desire that deep network training
can become less sensitive towards hyperparameters and
variation in network parameter initializations. In other
words, the goal is that with a better initial guess for
the network parameters, the training process becomes
more robust and less sensitive.

2 Methods: Layer-Parallel Training and Nested
Iteration

2.1 Layer-Parallel Training via Multigrid

In this section, we summarize the layer-parallel training
approach as presented in [11]. For a full description of
the multigrid training scheme, the reader is referred to
the original paper, and references therein.

At the core of the layer-parallelization technique is
a parallel multigrid algorithm that is applied to the
discretized ODE network, replacing the serial forward
(and backward) network propagation. Consider the dis-
cretized ODE network propagation to be written as

u"t = & (u", 0m). (7)

For example, one can choose @(u"™, ™) = u™+hF (u™, ™),
thus letting @ denote the right hand side of (6) for a
ResNet with step size h and h := "1 —¢" on a uni-
form time grid. Classical sequential training solves (7)
forward in time, starting from u® = L;,y for either a
general feature vector y, or for a batch of feature vectors
Yy = {Ur}rescq,.. s}, finally stopping at the network
output «V. On the other hand, the layer-parallel multi-
grid scheme solves (7) by simultaneously computing
all layers with an iterative nonlinear multigrid scheme
(FAS, [4]) applied to the network layer domain. This
multigrid scheme essentially computes inexact forward-
and backward-propagations in an iterative fashion, such
that the process converges to the layer-serial solution.

® ¢ @ O > ¢ & D
N T T) N T T)
® ! t t t ® t t t 1 o
@ [
) Y
® t t t t *— t t t ®

Fig. 1 F-layer (top) and C-layer (bottom) smoothing oper-
ations for a coarsening factor of ¢ = 5. Graphic taken from
[11].

To compute these inexact propagations, a hierarchy
of ever coarser layer-grid levels is created, which in turn
accelerate convergence to the layer-serial solution on
the finest level. A coarser level is created by assigning
every c-th layer to the next coarser level, giving the
step size h; := hc' at the I-th level, with level [= 0
being the finest. For each level, this assignment results
in a partitioning of the layers into F- (fine-grid) and C-
(coarse-grid) layers.

Each multigrid iteration then cycles through the dif-
ferent layer-grid levels while applying smoothing oper-
ations to update (improve) the network state at F- and
C- layers, which can be updated in parallel in an al-
ternating fashion. Each F- or C-layer smoothing op-
eration consists of an application of the layer propa-
gator @y, using the step size h; of the current grid,
to update the F- or C- layer states, see Figure 2.1.
Additionally, each coarse level has a correction term
that involves the residual of states between successive
layer-grid levels, which is a part of the FAS method.
Typically, FC' F-smoothing is applied on each grid level
which refers to a sucessive application of F-smoothing,
then C-smoothing, then F-smoothing again. Note that
these smoothing operations are highly parallel as F-
and C-point sweeps are applied locally on each layer in-
terval and independently from each other. Serial prop-
agation only occurs on the coarsest level, where the
problem size is trivial.

At convergence, the layer-parallel multigrid solver
reproduces the same network output as serial propaga-
tion (up to a tolerance). However it enables concurrency
across the layers. This concurency creates a cross-over
point in terms of computational resources, after which
the layer-parallel multigrid approach provides speedup
over the layer-serial computation.

The same layer-parallel multigrid strategy can be
applied to parallelize both the forward propagation and
the backpropagation to compute the gradient with re-
spect to the network weights 6. For the latter, the
layer propagator at each grid level propagates partial
derivatives of @5, with respect to v and 6™ backwards
through the time domain (through the layers), again
locally and in parallel.

Eric C. Cyr et al.

The layer-parallel solvers could in principle be sub-

stituted for forward- and backpropagation in any gradient-

based optimization scheme for solving (4) when train-
ing. One would only replace the sequential forward- and
backpropagation with the layer-parallel multigrid iter-
ations. However due to its iterative nature, the layer-
parallel scheme is very well suited for simultaneous op-
timization approaches that utilize inexact gradient in-
formation to update the network weights. In [11], the
simultaneous One-shot method is applied, which per-
forms a fixed number of d multigrid iterations for the
network state and its derivative, with d being as low as
2, before each update of the network weights. Therein, a
deterministic optimization approach has been applied,
involving second order Hessian information. However
the use of this approach with stochastic optimization,
e.g., stochastic gradient descent method (SGD), is pos-
sible, although not yet tested numerically.

2.2 Nested Iteration (Multilevel) Initialization of Deep
Neural Networks

Our proposed answer for initializing deep networks is
nested iteration, where a trained coarse network, with
fewer time-steps, is interpolated to initialize a finer net-
work, with more time-steps. Our nested iteration algo-
rithm is depicted in Figure 2.2 and Algorithm 1, with
the following notation. Let the total number of nested
iteration levels be L, where L = 0 is the finest level
(i.e., largest network) and the superscript @) denotes
quantities on nested iteration level I, e.g., u“~1 and
607D are the coarsest-level state and control (weights
and biases) variables for all time steps (layers). Addi-
tionally, let {m(®)} be a set of size L containing level
dependent optimization iteration counts, e.g., m(9) de-
notes the number of optimization iterations to carry out
on the final, finest level 0. Line 5 of Algorithm 1 rep-
resents one optimization iteration of the layer-parallel
training approach to update the current weights 0(1),
applying d inner layer-parallel multigrid iterations.

Finally, we define the interpolation operator P to
interpolate the weights and biases 0" to the next finer
level (I —1). The interpolation here is a uniform refine-
ment in time with refinement factor 2. That is, there
are exactly twice as many time-steps on the finer grid
(I — 1) as on the coarser grid (). Thus, if L = 4 and
the initial number of layers were 16, the final network
would have 128 layers, as depicted in Figure 2.2. We al-
low for two types of interpolation, piece-wise constant

Final trained 728
layer network

Well-initialized DNN
with 128 layers

Nested iteration refinement yields good initial
network parameters for deeper network

€ ===

; 4 . 128 layers
! | C
! ! // 64 layers
i w
1 32 layers
; -->/\/ /
Initial coarse 16 L>@ ¢ |
layer network [x 1glayers
1
1

PR

A
]]
1 1

| Layer-parallel multigrid training |

Fig. 2 Nested iteration algorithm, starting with a coarse 16
layer network, and then carrying out 3 refinements to reach
a 128 layer network. Refinements are in red, and the black
arrows depict the layer-parallel multigrid training, which is
not to be confused with nested iteration cycling.

in time and linear in time, and thus define P as

6"~ = PUPWV where (8)
65, " =00, and
9%;3 = 9,(7%), if piece-wise constant

1
6,1 = 5(6%) + 6L, if linear,

forn =0,..., N® with N® being the number of layers
on nested iteration level [.

Algorithm 1 nested_iter(u“=, 9=V L {m®})

1: > Loop over mested iter. levels, then optimization iter.
2: Initialize u(X—1 @(L—1)

3: forl=L-1,1>0,1l-=1do

4 fori=0, i <m®, i4+=1do

5: ul® W) « LPT(u®,0) d) > LPT: Layer-

6: parallel training
7 end for

8 aU—1) = pHg®) > Interpolate
9: end for

10: return 09 > Return finest level weights

The weights 6L~V on the coarsest nested iteration
level are initialized according to the overall hyperpa-
rameters, e.g., zero weights for internal layers, and ran-
dom weights from a certain distribution for the opening
and closing layers. These strategies are discussed in the
results Section 3. Additionally, the choice between lin-
ear and piece-wise constant interpolation now becomes
another hyperparameter to choose. In our experiments,
both strategies performed similarly, in terms of multi-
grid convergence and training and validation accuracy.
Thus, we report results only for piece-wise constant in-
terpolation in Section 3.

One key detail in Algorithm 1 is the choice of the
number of inner layer-parallel multigrid iterations d. It

Multilevel Initialization for Layer-Parallel Deep Neural Network Training 5

has been observed numerically, that a small choice of d
during early optimization iterations can lead to steep
drops in the training and validation accuracy after the
interpolation step in line 8. Rather than being related
to the interpolation itself, we observed that the true
cause of these steep drops were inaccurate multigrid
solves which lead to big errors in the gradient, and thus
poor updates to the weights. We therefore enforce more
multigrid iterations immediately after interpolation, in
particular we choose d = 10 for the first 3 optimization
iterations after interpolation to the new grid level, and
d = 2 after that (i.e. after ¢ > 3). In general, we recom-
mend to apply enough multigrid iterations that ensure
to drop the multigrid error below a relative error toler-
ance, such as guaranteeing a relative error drop of the
multigrid residual of 4 orders of magnitude. It is impor-
tant to note that this issue does not occur when using
nested iteration with sequential training, as in [12].
Other possible enhancements to the algorithm, such
as refinement by other factors than 2 and other inter-
polation formulas are topics for future research.

3 Results

We use two machine learning problems to demonstrate
the performance of the nested iteration algorithm:

1. “Peaks” example:
The first problem is referred to as “peaks”, and sug-
gested in [12]. The task is to classify particles as
members of five distinct sets. We train on s = 5000
data points consisting of particle positions y, €
[-3,3]?, while membership in the sets is defined by
a vector of probabilities ¢, € R® (unit vectors).

2. Indian Pines:
The second example is a hyperspectral image seg-
mentation problem using the Indian Pines image
data set [2]. The classification task for this problem
is to assign each pixel of a 145 x 145 pixel image
to one of 16 classes representing the type of land-
cover (e.g. corn, soy, etc...), based on 220 spectral
reflectance bands representing portions of the elec-
tromagnetic spectrum. We choose s = 1000 pixels
for training.

For both examples, we choose a ResNet architec-
ture as in (6), with a ReLU activation function o that
is smoothed around zero. The linear transformations
inside each layer consist of a dense matrix of network
weights.

In order to provide a fair basis for comparison be-
tween the nested iteration and non-nested iteration train-
ing simulations we introduce a common “work unit.” In

all examples below, the work unit is defined as the av-
erage wall-clock run time for each iteration of the non-
nested iteration on the fine grid. Thus the number of
work units required for a non-nested iteration is equal
to the number of optimization iterations. For the nested
iteration, this rescaling of the run time provides a com-
mon basis for comparison to the non-nested iteration.
In addition, the metric used for comparison below is
the validation accuracy. This is measured by withhold-
ing a subset of the data from training and checking the
performance of inference on those values. The percent-
age (ranging from 0% to 100%), of correctly classifying
members of that data set is the validation accuracy.

3.1 Peaks Example

Two versions of the peaks problem are run with resid-
ual networks of width 5 and 8. For both the nested
and non-nested cases, 16 processors are used for the
inner layer-parallel solve. The nested iteration is run
with a schedule starting with m(? = 200 coarse steps,
m) = 125 steps, and m(®) = 75 fine level steps. For
non-nested iteration 188 optimization steps are taken
(the number of steps was chosen so the run time of
non-nested was nearly the same as nested iteration).
The final simulation time for the peaks problem is set
toT = 5.

A challenge facing neural networks usage is the range
of parameters associated with both their design and
training. In addition, due to the variability of the loss
surface, the initial guess for the controls and state vari-
ables can have a dramatic impact on the quality of the
training. The tables in Figure 3 show statistics for 12
independent training runs, for each of 4 sets of parame-
ters, yielding a total of 48 uniquely trained neural net-
works. The parameters selected for this study were the
initial magnitude of the randomly initialized weights
denoted w;, and the Tikhonov regularization parame-
ter denoted yr. Based on a larger hyperparameter scan,
we selected two values for each parameter that yield
the greatest validation accuracy for nested iteration and
non-nested iteration. As a result w; € {0.0,107} and
1 € {1075,1077}, yielding a total of four parameters.

The top table shows results for a network with width
5, while the bottom shows the results for width 8. In
both cases, there are 64 residual layers, plus an open-
ing and classification layer. The tables show that the
nested iteration achieves better validation accuracy on
average for both network configurations. In addition,
there is less variation as measured by both the stan-
dard deviation and the range of extrema using nested
iteration. We attribute this to the use of a sequence
of coarse grid problems to define an improved initial

Eric C. Cyr et al.

5 Channel
Nested Non-Nested
Mean 86.7% 85.0%
Median 88.0% 88.5%
Max 97.0% 95.0%
Min 66.0% 20.0%
Std. Dev | 7.69% 11.7%
8 Channel
Nested Non-Nested
Mean 92.3% 90.7%
Median 94.0% 91.8%
Max 99.0 % 96.5%
Min 72.5 % 57.0%
Std. Dev | 5.18 % 6.08 %

Fig. 3 These tables show the statistical variation of the
peaks example run using a scan over 4 sets of hyperparam-
eters, and 12 training runs. For both the 5 channel and 8
channel peaks problem the nested iteration demonstrates less
sensitivity to hyperparameter choice and initialization then
the non-nested iteration.

guess for the fine grid. At the coarse level, because of
the reduced parameter space, the variation seen in the
objective surface is potentially not as large. When only
the fine simulation is used in non-nested iteration, the
likelihood that the training algorithm gets stuck in a
local minima early in the process is likely increased. In
effect, the nested iteration is behaving like a structural
regularization approach for the objective surface.

Figure 4 shows the validation accuracy of the peaks
problem as a function of work units for the individual
best runs of nested iteration and non-nested iteration.
The non-nested iteration corresponds to a single red
line. The three levels of the nested iteration are plotted
in a sequence of colors that show the achievement for
each level of the algorithm. Again this is a function of
work units, so these levels are scaled relative to the cost
of a single fine level optimization step (some variability
may occur due to the use of a backtracking algorithm).

In both the top image (for width 5 residual net-
works) and the lower image (width 8), the nested iter-
ation has clearly superior validation accuracy as com-
pared to the non-nested iteration. Moreover, the accu-
racy achieved for any number of work units is larger
with nested iteration.

3.2 Indian Pines Example

For the Indian Pines example, we use a residual neural
network with width 220, that contains at the fine level
128 residual layers, plus opening and classification lay-
ers. For nested iteration, we use three levels with the
coarsest having 32 residual layers. The final simulation
time is T" = 5. All runs were performed on 32 proces-

Validation Accuracy
B

100

80

60

40

Validation Accuracy (%)

20 —— Nested - Level 2
Nested - Level 1

—— Nested - Level 0

—— Non-nested

0 25 50 75 100 125 150 175
Work Units

Validation Accuracy
100

[o ———————————————

80

60

40

Validation Accuracy (%)

20 —— Nested - Level 2
Nested - Level 1

—— Nested - Level 0

—— Non-nested

0 25 50 75 100 125 150 175
Work Units

Fig. 4 Validation accuracy as a function of computational
work units for the peaks problem. The top image shows a
network containing 5 channels, while the network in the bot-
tom image contains 8. The validation accuracy is uniformly
larger for the nested iteration.

sors, implying the coarse grid contains 1 residual layer
per processor.

Figure 5 compares the validation accuracy of train-
ing with the non-nested algorithm to two nested itera-
tion strategies. For all cases, the validation accuracy is
plotted as a function of work units performed through-
out the optimization solver. The first nested iteration
strategy uses a schedule that performs m® = 200 op-
timization iterations on the coarse level, m®) = 100 on
the medium, and just m(®) = 50 iterations on the fine.
This approach is designed to reduce the run time as-
suming that most of the work of training can be done
on coarser levels. Note, as a result of not iterating on the
fine grid as much, this may result in a lower achieved
validation accuracy (indeed this is born out by the re-
sults). The top plot in the figure shows the non-nested
iteration (red line), and the three different levels of the
nested iteration (multiple colors). Considering only the
coarse problem, it is clear that the nested iteration
achieves higher validation accuracy in less computa-
tional time. This can be attributed to the much greater
number of iterations taken. Where the increase in speed
is a result of a shallower network. Moreover considering

Multilevel Initialization for Layer-Parallel Deep Neural Network Training 7

Validation Accuracy
100

80

60

40

Validation Accuracy (%)

20 —— Nested - Level 2
Nested - Level 1

—— Nested - Level 0

—— Non-nested

0 50 100 150 200 250 300
Work Units

Validation Accuracy
100

80

60

40

Validation Accuracy (%)

20 —— Nested - Level 2
Nested - Level 1

—— Nested - Level 0

—— Non-nested

0 100 200 300 400 500 600
Work Units

Fig. 5 Validation accuracy as a function of computational
work units for two representative algorithmic configurations
of the nested iteration algorithms. This compares the relative
run time of the non-nested iteration to the run time of the
nested-iteration. In the top image a schedule with 200, 100,
and 50 optimization iterations on the coarse to the fine level
is used by nested iteration. The bottom image has uses 200
iterations regardless of level.

the entire run, the nested iteration has larger validation
accuracy after just 25 work units.

The lower image shows a similar story. However, this
time the schedule for the nested iteration uses m(? =
m® = m(® = 200 optimization steps at each level.
Here again its clear that training for many steps on the
coarse level yields rapid improvements. Overall, higher
validation accuracy is still achieved in all cases for a
fixed number of work units. Relative to the previous
schedule (top image), the validation accuracy of this
uniform schedule is improved, though at the cost of
longer training times.

4 Conclusion

In this work, a nested iteration strategy for network
initialization that enhances recent advances in layer-
parallel training methodologies is developed for ODE
networks. This approach uses a training algorithm where
a sequence of neural networks are successively trained

for a geometrically increasing number of layers. Inter-
polation operators are defined that transfer the weights
between the levels. Results presented for the Peaks and
Indian Pines classification example problems show that
nested iteration can achieve greater accuracy at less
computational cost. An exciting additional benefit was
observed for the peaks problem. In this case the nested
iteration also provided a structural regularization effect
that resulted in reduced variation over repeated runs
in a hyperparameter sweep. A more thorough investi-
gation of this result, and greater improvements to the
nested iteration and layer-parallel algorithms are the
subject of future work.

Acknowledgements

The work of E. C. Cyr was supported by Sandia Na-
tional Laboratories and the DOE Early Career Research
Program. Sandia National Laboratories is a multimis-
sion laboratory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Se-
curity Administration under contract DE-NA0003525.
The views expressed in the article do not necessarily
represent the views of the U.S. Department of Energy
or the United States Government. S. Giinther was sup-
ported by Lawrence Livermore National Laboratory.
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07-NA27344. LLNL-
PROC-798920.

This document was prepared as an account of work
sponsored by an agency of the United States govern-
ment. Neither the United States government nor Lawrence
Livermore National Security, LL.C, nor any of their em-
ployees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights.
Reference herein to any specific commercial product,
process, or service by trade name, trademark, manu-
facturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore
National Security, LLC. The views and opinions of au-
thors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Liv-
ermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

8 Eric C. Cyr et al.
References 17. Humbird, K.D., Peterson, J.L., McClarren, R.G.: Deep
neural network initialization with decision trees. IEEE
1. Adler, J., Manteuffel, T.A., McCormick, S.F., Nolting, transactions on neural networks and learning systems
J., Ruge, JJW., Tang, L.: Efficiency based adaptive lo- 30(5), 1286-1295 (2018)
cal refinement for first-order system least-squares formu- 18. Kronsjod, L.: A note on the nested iterations method. BIT
lations. SIAM Journal on Scientific Computing 33(1), Numerical Mathematics 15(1), 107-110 (1975)
1-24 (2011) 19. Kronsjo, L., Dahlquist, G.: On the design of nested it-
2. Baumgardner, M.F., Biehl, L.L., Landgrebe, D.A.: erations for elliptic difference equations. BIT Numerical
220 band aviris hyperspectral image data set: June Mathematics 12(1), 6371 (1972)
12, 1992 indian pine test site 3 (2015). DOI doi: 20. Lions, J.L.: Optimal control of systems governed by par-
/10.4231/R7RX991C. URL https://purr.purdue.edu/ tial differential equations (1971)
publications/1947/1 21. Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond fi-
3. Biegler, L.T., Ghattas, O., Heinkenschloss, M., van Bloe- nite layer neural networks: Bridging deep architectures
men Waanders, B.: Large-scale pde-constrained opti- and numerical differential equations. arXiv preprint
mization: An introduction. In: L.T. Biegler, M. Heinken- arXiv:1710.10121 (2017)
schloss, O. Ghattas, B. van Bloemen Waanders (eds.) 22. Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond fi-
Large-Scale PDE-Constrained Optimization, pp. 3-13. nite layer neural networks: Bridging deep architectures
Springer Berlin Heidelberg (2003) and numerical differential equations. arXiv preprint
4. Briggs, W.L., Henson, V.E., McCormick, S.F.: A multi- arXiv:1710.10121 (2017)
grid tutorial, 2nd edn. SIAM, Philadelphia, PA, USA 23. Ruthotto, L., Haber, E.: Deep neural networks moti-
(2000) vated by partial differential equations. arXiv preprint
5. Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, arXiv:1804.04272 (2018)
D., Holtham, E.: Reversible architectures for arbitrarily 24. Troltzsch, F.: Optimal control of partial differential equa-
deep residual neural networks. In: Thirty-Second AAAI tions: theory, methods, and applications, vol. 112. Amer-
Conference on Artificial Intelligence (2018) ican Mathematical Soc. (2010)
6. Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Car- 25. Trottenberg, U., Oosterlee, C., Schiiller, A.: Multigrid.
lier, G.: Deep relaxation: partial differential equations for Academic Press, London, UK (2001)
optimizing deep neural networks. Research in the Math- 26. Weinan, E.: A proposal on machine learning via dynami-
ematical Sciences 5(3), 30 (2018) cal systems. Communications in Mathematics and Statis-
7. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, tics 5(1), 1-11 (2017)
D.K.: Neural ordinary differential equations. In: Ad-
vances in neural information processing systems, pp.
6571-6583 (2018)
8. Cyr, E.C., Gulian, M., Patel, R., Pergeo, M., Trask, N.:
Robust training and initialization of deep neural net-
works: An adaptive basis viewpoint. In: Submitted to the
MSML2020 (Mathematical and Scientific Machine Learn-
ing Conference) (2019)
9. De Sterck, H., Manteuffel, T., McCormick, S., Nolting, J.,
Ruge, J., Tang, L.: Efficiency-based h-and hp-refinement
strategies for finite element methods. Numerical Linear
Algebra with Applications 15(2-3), 89-114 (2008)
10. Glorot, X., Bengio, Y.: Understanding the difficulty of
training deep feedforward neural networks. Proceedings
of the Thirteenth International Conference on Artificial
Intelligence and Statistics 9, 249-256 (2010)
11. Giinther, S., Ruthotto, L., Schroder, J., Cyr, E., Gauger,
N.: Layer-parallel training of deep residual neural net-
works. SIAM Journal on Data Science (2019 (submit-
ted)). ArXiv preprint arXiv:1812.04352
12. Haber, E., Ruthotto, L.: Stable architectures for deep
neural networks. Inverse Problems 34(1), 014004 (2017).
DOI 10.1088/1361-6420/aa9a90. URL http://dx.doi.
org/10.1088/1361-6420/aa9a90
13. Hackbusch, W.: On the convergence of multi-grid itera-
tions. Beitrdge Numer. Math 9, 213-239 (1981)
14. Hanin, B., Rolnick, D.: How to start training: The effect
of initialization and architecture. In: Advances in Neural
Information Processing Systems, pp. 571-581 (2018)
15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet
classification. In: Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034 (2015)
16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learn-

ing for image recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 770-778 (2016)

