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Rare Earth 2,5-dihydroxyterephthalic acid (RE-DOBDC)
metal organic frameworks (MOFs) with the composition
RE |, (M3-OH) ((CsOH,)s(COH:), (RE=Y,Eu,Tb,Yb), have
demonstrated a unique and strong optical response to the
presence of acid gases for varying applications. Here, ground
state density functional theory (DFT) methods are used to
investigate the underlying mechanisms of interactions of
acid gases within the RE-MOF frameworks at the atomistic
level. Individual gas molecules are calculated to have varying
binding energies and interaction types with the RE-MOF
framework, indicating binding site selectivity. To highlight RE-
MOF response to industrial environments, mixtures of ol | ey Bl oroiw wvend | dreru v Kool o Brol el Bl | el Bl ko B30
multiple acid gases (SO,, NO,, and H,O) are investigated at

various concentrations. The ab initio molecular dynamic . . . . .
(AIMD) trajectories are investigated for direct competitive ACld Gas Blnd'“g Enel’gles 11 RE'DOBDC MOFS
adso.rp.tlon Wl.tf.\ the.pc?re s'Fructure of I.RE-DOBD.C. MOF, Rare Earth Metal Gas Adsorption Sites P P
providing additional insight into adsorption selectivity for | s0,
more complex and realistic mixed gas environments.
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Computational Methodology
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* Spin polarized ground state geometries and ab initio
molecular dynamics calculated using Density Functional
Theory (DFT) as implemented in the Vienna Ab initio
Simulation Package (VASP).

Calculation parameters:

* Plane wave basis set. Binding Energy: -70.27 kJ/mol  Binding Energy: -62.52 kJ/mol Binding Energy: -21.87 ki/mol pgld i i i@ & i §@ § o & i i ;i
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* Projector augmented wave potentials.

*  Exchange correlation functional of Perdew-Burle- * Gas adsorption energies are dependent on metal location and local coordination environment.
Ernzerhof designed for solids (PBEsol).

Calculated Optical Absorption Photoluminescence Quenching of RE-DOBDC MOFs in Humid NO,,
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* Intrinsic RE-DOBDC MOF photoluminescence is reduced only upon exposure to NO.,.

Hydrogen Bonding in -DOBDC Mixed Acid Gas

Conclusions
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* NOx exposure decreases photoluminescence in all neating | N/A
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produce a shift in the calculated optical properties of Y-
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* Predicting new unsynthesized RE-DOBDC MOFs for * H-bonding required to maintain measured geometry. pe® & ( b New gas ]:.nteractlons due to
acid gas separation and sensing. * Increased H-bonding induces red shift of primary optical D an 4'\’ pore confinement.
4
* Analyzing new gas species formed via reaction due to absorption. Eu-DOBDC + 4H,0 + 4NO, + 450,

complex gas mixtures.

* lIdentifying impact of nanoconfinement on gas
interactions due to size of MOF pore.

* Provide large data sets, generated from ab initio
molecular dynamic trajectories, for machine learning
analysis.
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