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Abstract and Motivation

Rare Earth 2,5-dihydroxyterephthalic acid (RE-DOBDC)
metal organic frameworks (MOFs) with the composition
RE12(p3-OH)16(C806H4)8(C806H5)4 (RE=Y,Eu,Tb,Yb), have
demonstrated a unique and strong optical response to the
presence of acid gases for varying applications. Here, ground
state density functional theory (DFT) methods are used to
investigate the underlying mechanisms of interactions of
acid gases within the RE-MOF frameworks at the atomistic
level. Individual gas molecules are calculated to have varying
binding energies and interaction types with the RE-MOF
framework, indicating binding site selectivity. To highlight RE-
MOF response to industrial environments, mixtures of
multiple acid gases (S02, NO2, and H20) are investigated at
various concentrations. The ab initio molecular dynamic
(AIMD) trajectories are investigated for direct competitive
adsorption with the pore structure of RE-DOBDC MOF,
providing additional insight into adsorption selectivity for
more complex and realistic mixed gas environments.

Computational Methodology

• Spin polarized ground state geometries and ab initio
molecular dynamics calculated using Density Functional
Theory (DFT) as implemented in theVienna Ab initio
Simulation Package (VASP).

• Calculation parameters:
• Plane wave basis set.
• Projector augmented wave potentials.
• Exchange correlation functional of Perdew-Burke-

Ernzerhof designed for solids (PBEsoI).

• Calculated Optical Absorption
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4n-mecou
fait] - 3he2

• Transition Dipole Moment
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• One Electron Kohn-Sham Equation
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Conclusions

• Multiple binding sites exist at unsaturated metal sites
and linker positions. Binding energies of individual gases
indicate a selectivity of S02 H20 > NO2.

• In humid NOx environments H20 preferentially binds
to metal sites and NOx binds to organic ligands.

• NOx exposure decreases photoluminescence in all
synthesized RE-DOBDC MOFs due to interaction with
DOBDC ligands.

• The percentage of intramolecular Hydrogen bonds
produce a shift in the calculated optical properties ofY-
DOBDC.
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study complex acid gas mixtures in nanoconfined pore
spaces.

Future Work

• Predicting new unsynthesized RE-DOBDC MOFs for
acid gas separation and sensing.

• Analyzing new gas species formed via reaction due to
complex gas mixtures.

• Identifying impact of nanoconfinement on gas
interactions due to size of MOF pore.

• Provide large data sets, generated from ab initio
molecular dynamic trajectories, for machine learning
analysis.
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Introduction to MOFs and RE-DOBDC MOFs
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Acid Gas Binding Energies in RE-DOBDC MOFs
Rare Earth Metal Gas Adsorption Sites

Binding Energy: -70.27 kJ/mol Binding Energy: -62.52 kJ/mol
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• Gas adsorption energies are dependent on metal location and local coordination environment.

Photoluminescence Quenching of RE-DOBDC MOFs in Humid NO.
Experimental Photoluminescence
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Calculated Optical Absorption
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Transition Charge Densities

• Intrinsic RE-DOBDC MOF photoluminescence is reduced only upon exposure to NOx.
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Hydrogen Bonding in Y-DOBDC
H-Bonding

(%)

Optimized Lattice Parameters Total
Energy
(eV)

H Bonds
Band Gap

(eV)a (A) b (A) c (A)
Volume

(A3)
p (g/cm3)

0 14.88 14.86 21.36 4724 1.299 -1953.34 0 1.93
20 15.47 15.46 20.95 5013 1.224 -1953.09 4 1.80
40 15.45 15.44 20.97 5004 1.227 -1955.22 8 1.15

60 15.45 15.43 20.95 4996 1.229 -1957.57 10 1.21
80 15.44 15.43 21.00 5004 1.227 -1960.02 16 1.18

100 15.44 15.43 20.97 4996 1.229 -1962.03 20 1.25
Expta 15.14 15.14 21.39 4904 - - - -

2D H-Bonding Representation
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H-bonding required to maintain measured geometry.
Increased H-bonding induces red shift of primary optical
absorption.
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Mixed Acid Gas Dynamics
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This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


