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Stochastic game theory is used to analyze interactions
where the outcome is uncertain

Normal > Hacked > Hazard
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Challenges:

* Managing the size of the state space
* Defining transition probabilities

* Optimizing the solution




The residual heat removal system maintains reactor
water level during a loss of coolant accident
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System-theoretic process analysis was used
to identify scenarios of interest

1. Identify losses, hazards, and constraints
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2. Model the control structure
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3. Identify the unsafe control actions
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4. |dentify loss scenarios




The stochastic states define the environment
of the players’ interactions
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Actions were defined for both players at each state
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Network

Defender’s Choices

Authentication: on/off

Wireless: on/off

Authentication: on/off

Firewall: on/off

Encryption: on/off

Attacker’s Choices

Join: yes/no

Wireless Exploit: yes/no

Join: yes/no

Attack: yes/no

Decryption: yes/no




The Common Vulnerability Scoring System was used
to estimate state transition probabilities

CVSS Exploitability Metrics
1. Attack vector

. Attack complexity

2
3. Privileges required
4. User interaction

Probabilities may be validated with capture the flag games



Reward functions were defined to quantify
the costs and benefits for both players

Immediate reward function for player A/D:
ra/p(si,ap,aa,5;) = 0aypls;) — Eayplaasp)

Cumulative utility func’gngn for player A/D:
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The Nash equilibrium provides the optimal action

for each player at each state
State i: Attacker’s Strategy

State i: Defender’s Strategy
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There are several challenges to finding the solution.

1. Large parameter space: 576 probabilities

2. Parameter constraints: probability laws

3. Solution uniqueness



Stochastic game theory is a promising method for selecting
cybersecurity control actions for nuclear power plants.

* Threat actor was defined using threat agent libraries

» System-Theoretic Process Analysis was used to manage the
stochastic state space

* The Common Vulnerability Scoring System was used to
estimate transition probabilities

* Solving the game presents additional optimization challenges
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