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Mel Baer

§Baer, 1996 [11

§Mie-Gruneisen

§Elastic perfectly plastic yield

— lkbar

§Hot spots scale with particle

size

Baer, 2000 
[2]

History Variable Reactive Burn

(HVRB)

HMX distribution 68% TMD

Reaction concentrated at large

particle centers
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of Shock-Induced Flow of Reactive Porous Medie 1996 JANNAF Combustion Subcommittee and Propulsion Systems Hazards
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§Baer, 2002 [3'
4]

§Shock wave transmission

through sugar

§ORVIS comparison

§Identified temperature

distribution regimes

§Suggested link to stochastic

differential equations
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Materials" Proceedings of the 12
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Mesoscale Model Elements
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EOS for Crystalline HNS
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[6] Yarrington, C. D., Kittell, D. E., Wixom, R. R. and Damm D. L., "A Mie-Griineisen EOS with Non-Constant Specific Hear Journal of Physics
Conference Series, Vol. 500, p. 052053, 2014.
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FT, Sandialat I
laboratories

1. Predicted with DFT-
MD, no empirical
parameters

2. VASP software, AMO5
functional, NVT
dynamics.

3. Using temperature to
build complete EoS. [71

It ends with a table
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Failed shock to detonation transition
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D:

Frey Mapping [9]
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UF, 80% TMD

Nano, 80% TMD

UF, 88% TMD
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Figure: Schematic of experiment. Image from 011es et al.[2]
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Conclusions:

• New way to observe initiation and
run-to-detonation in energetic materials

• Calibration of chemistry models with full
mesoscale representation

• Surprising effects of air on the results
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