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Mesoscale Model Elements
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EOS for Crystalline HNS
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Failed shock to detonation transition
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Constitutive Models (Strength)
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Shock Pressure, P. (GPa)
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UF, 88% TMD
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UF and nano-TATB 80 & 88%TMD
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Conclusions:

e New way to observe initiation and
run-to-detonation in energetic materials

e Calibration of chemistry models with full
mesoscale representation

e Surprising effects of air on the results
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