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2 Spontaneous Raman Scattering in Flows

CH4 mixture fraction in non-reacting jet
+Non-reacting flows

•:• [Jiang, et al., 2018]

• High-speed (10 kHz) 2D imaging

Species mixture fractions

,[Gabet, et al., 2010]

1D line imaging

- Species mixture fractions

+Reacting flows

•:• [Krishna, et al., 2019]

• High-speed (10 kHz)

• Thermometry from Rayleigh Scattering

+Non-equilibrium flows

,[Reising, et.al., 2016]

Traditional speeds (10 Hz), time integrated

• High-speed jets (Red= 27,0000 to 77,000)
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[Jiang, et al. 2018]

Degree of thermal non-equilibrium assessed in
a jet shear layer and core
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3  Spontaneous Raman Spectroscopy
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hcE,,(v)1 hcE.,(v.J)\(2J+ 1) exp( kT exp kT

Q(T)

x (1),(v ,J)L (A; Aft(u, el) • b t.)

Simulated Raman Spectra

—T = 1200 K
—T = 1800 K
—T = 2430 K

1=> Boltzmann factor

0( (space-avg. polarizability tensor)2 and

Lineshape function: Lorentzia, Trapezoid

+ Q-branch transitions resolved in this work

+ Peak signal ratios between vibrational bands is

temperature dependent

• SR (X PLaser X number density

2100 2150 2200 2250 2300 2350 2400 2450 2500

Raman Shift (cm-1) [Ustav, et al., 2013] _
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What Drives the Need for Fast Diagnostics?

High Temperature Shock Tube Test Section Pressure Data
40
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[Petter, et al., AIAA2020]
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Time OW

+Spontaneous Raman Scattering has been demonstrated in NASA's Electric Arc Shock Tube
[Sharma, et al., 1993]

Sandia's High Temperature Shock Tube is a high-speed, impulsive facility

+ Longer laser pulses allow more energy to be coupled for each measurement

•:* The pulse-burst duration is on the order of transient air-shock interactions

+ High burst rate can provide multiple pulses per camera exposure

+ Temporal resolution is set by laser pulse duration, r 3-200 ns

Burst-mode Raman thermometry provides high repetition rate measurements with

nanosecond temporal resolution



Benchtop Experimental Design
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Burst rate: 10 kHz, Burst duration: 2.5 ms

tlaser ,',' 200 ns, Eiaser ,',' 13 J

Pulse-burst laser
.

.

.

M

\.••••
M: 532 nm Turning Mirror M
L1,2: Spherical Lens
AL: Achromatic Lens
P: Periscope
RL: Relay Lens, f = 101 Et 50 mm

Max. frame rate: 5 kHz
Test time: 1.4 ms, "Kinetics Mode"

EMCCD Detector

H2-air gas mixtures,
cp = 0.29-1.23

Hencken Burner

+ Signal was collected 90 ° from probe volume

+ Periscope aligned laser waist image to slit

+ Image was compressed by 2x using Relay Lens pair

P

1 

Spectrometer



Detector Architecture
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• Full-burst signal was collected in "Frame

Transfer" mode 4 Full Chip

• Pulse-burst signal was collected in

"Kinetics" mode4 280 row illumination at
5 kHz

• Chip is always exposed as rows are shifted

4 stray light mitigation critical

10 kHz pulse train with camera gate
6
—Laser Pulse
—Camera Trigger

Sleek Exposure

• Pulse train intensity stabilizes after 5 pulses

+ First pulse-burst frame collected four pulses

of Raman signal

+ Test time limited by number of frames

• Frames set by number of rows

illuminated
0 0.5 1 1.5 2

Time (ms)



7 
Pulse-burst (5 kHz) Raman Signal at cp = 0.29
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•:•Frame exposure = 150 pts

Integrated over two pulses

• Limited row illumination decreased Raman signal

+Binning the data resulted in a decrease in spectral
resolution, but an increase in peak signal

+Raman is a linear technique

• T flame temperature 4 number density 41 SR
2200 2250 2300 2350 2400

Raman Shift (cm 1)
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Temperature Inference from Spectral Fits

Burst-Int. Raman Spectra, (1) = 0.29
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Tmean = 1148 ± 8.7 K

5 kHz Raman Spectra, (1) = 0.29

3.5
—0—Experiment
—Fit
—0—Residual
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0.5

2200

Fit Temperature = 1182 K

E = 1 J
2
2310 2320 2330

2250 2300

Raman Shift (cm-1)

2350

Tmean = 1160 ± 23 K

+Precision of inferred temperatures from five full-burst spectra = ± 8.7 K

+Precision of a single burst = ± 27 K

+Precision from 5 bursts = + 23 K

2400
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Temperature Inference from Spectral Fits
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Fit Temperature = 2078 K

+Experiment
—Fit
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+SNR defined as the ratio of the peak signal to the RMS baseline fluctuations

+Operational range of Raman was set when SNR < 5, szi) = 0.73

2400

Precision is always within 3% of the measured temperatures
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Quantifying Measurement Accuracy

Flame Temperature Map Across Equivalence Ratios
2500 +AdialDa- ic Iequilibrium temperatures calculated

—Equilibrium Temperature
I Full Burst Raman Usi antera
i Pulse-Burst Raman

Accuracy was determined by % difference
between mean and adiabatic temperatures

1000 -

500
0 0 5

+Max % Dif. = 3.9% t (I) = 0.73 4 Full Burst

Max % Dif. = 3% at it, = 0.73 4 Pulse- Burst

Leanest flame, (I) = .29, % Dif. < 1%

1
Equivalence Ratio (0)

+Accuracy improved in lean flames due to improved signal-to-noise

+Full-burst temperatures were systematically higher at of (1) > 0.5

1 .5

Pulse-burst Raman thermometry was precise and accurate within 3% in lean H2-air flames



Next Steps: High Temperature Shock Tube11

HST provides a facility to study dynamics of particle curtains and kinetics of shock-
heated gas mixtures

Current parameters S = Pnf 
acr
an

• Pulse-burst laser, = 532-nm,

E = 1 J/exposure

• TA)=0.73) 2100 K

•••• p 0.8 atm (SNL, NM) P: Incident laser power
n: N2 number density
a a—an. Raman cross-section

E: detector efficiency
/: Sampling length
0: collection solid angle

Predicted parameters

• Energy/exposure remains constant

• Estimated from current HST testing
•:*

•••

Tpost-shock= 2100 K

Ppost-shock = 30 atm

1
Raman signal in shock tube is expected to

be a factor of 38 greater than flame

Data acquisition rates 5 kHz



Next Steps: High Temperature Shock Tube
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Challenge
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Consideration
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time gating
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1Abir pulse

spectral filtering
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Summary and conclusions
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❖Spectrally-resolved Raman thermometry has been assessed in a stabilized near-
adiabatic flat-flame burner to gauge its accuracy and precision as a temperature
measurement technique.

❖Full-burst spectra utilizing the entire 13 J of burst energy served as a baseline
over an equivalence ratio range of 0.29 — 1.23.

❖Measurements were demonstrated at 5 kHz by integrating two pulses onto a
high-speed, back-illuminated EMCCD detector over an equivalence ratio range
of 0.29 — 0.73.

❖The standard deviation of the 5-kHz Raman thermometry was 2 — 3% of the
measured temperature, dependent on SNR

❖The accuracy of the burst-mode measurement was at worst 3%, indicating that
this simple, robust configuration can potentially offer high-speed measurements
with high accuracy
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