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, | Spontaneous Raman Scattering in Flows

CH4 mixture fraction in non-reacting jet
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“*Non-reacting flows
“*[Jiang, et al., 2018]
* High-speed (10 kHz) 2D imaging
* Species mixture fractions

“*[Gabet, et al., 2010]
* 1D line imaging

* Species mixture fractions

“*Reacting flows

“[Krishna, ct al., 2019] [Jiang, et al. 2018]
* High-speed (10 kHz) Degree of thermal non-equilibrium assessed in
* Thermometry from Rayleigh Scattering a jet shear layer and core

“*Non-equilibrium flows
“*|Reising, et.al., 2016]
* Traditional speeds (10 Hz), time integrated
* High-speed jets (Re;= 27,0000 to 77,000)
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First demonstration of high-speed Ramat spectroscopy”for temperat'hré
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Spontaneous Raman Spectroscopy

G
IA) = T[Uu — (U, J)]4 »

_hcE, (v) _hcE,(v.)
J e, exp( kT ) exp( kT ) Boltzmann factor
X gsle)) o)
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Simulated Raman Spectra
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_ “* QQ-branch transitions resolved in this work
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“* Peak signal ratios between vibrational bands is
temperature dependent
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4‘ What Drives the Need for Fast Diagnostics?

High Temperature Shock Tube Test Section Pressure Data
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“*Spontaneous Raman Scattering has been demonstrated in NASA’s Electric Arc Shock Tube
[Sharma, et al., 1993]

Sandia’s High Temperature Shock Tube is a high-speed, impulsive facility

X Longer laser pulses allow more energy to be coupled for each measurement

+* The pulse-burst duration is on the order of transient air-shock interactions
o . .

** High burst rate can provide multiple pulses per camera exposure

** Temporal resolution is set by laser pulse duration, T ~ 3-200 ns

Burst-mode Raman thermometry provides high repetition rate measurements with
nanosecond temporal resolution




Benchtop Experimental Design

Max. frame rate: 5 kHz
Test time: 1.4 ms, "Kinetics Mode"

EMCCD Detector

V- S

Burst rate: 10 kHz, Burst duration: 2.5 ms
Ligser = 200 ns, Elaser ~13J

QU

H,-air gas mixtures,
¢ =0.29-1.23
Hencken Burner

Pulse-burst laser

M: 532 nm Turning Mirror M\
L, ,: Spherical Lens
AL: Achromatic Lens
P: Periscope

RL: Relay Lens, f =101 & 50 mm | L,

¢ Signal was collected 90 © from probe volume \. I .\x\

“* Periscope aligned laser waist image to slit

% Image was compressed by 2x using Relay Lens pair Spectrometer



Detector Architecture

% Full-burst signal was collected in “Frame

Transfer” mode = Full Chip

% Pulse-burst sighal was  collected

“Kinetics” mode=> 280 row illumination at

5 kHz

o Chip is always exposed as rows are shifted

—> stray light mitigation critical
10 kHz pulse train with camera gate

=== |aser Pulse
== Camera Trigger

Time (ms)

SBoght Exposure

n

* Pulse train intensity stabilizes after 5 pulses

“* First pulse-burst frame collected four pulses
of Raman signal

% Test time limited by number of frames
* Frames set by number of rows
illuminated




Pulse-burst (5 kHz) Raman Signal at ¢ = 0.29

Raw Signal Pulse-burst Data Frames
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Binned Spectra Data points

“*Frame exposure = 150 ps
* Integrated over two pulses

* Limited row illumination decreased Raman signal

Intensity (arb)

’:‘Binm'ng the data resulted in a decrease in spectral
resolution, but an increase in peak signal

“*Raman is a linear technique

* 1 flame temperature = | number density =2 | Sg

Raman Shift (cm” 1)




Temperature Inference from Spectral Fits

Burst-Int. Raman Spectra, ® = 0.29 5 kHz Raman Spectra, ® = 0.29
Fit Temperature = 1149 K - Fit Temperature = 1182 K
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“*Precision of inferred temperatures from five full-burst spectra = £ 8.7 K
“*Precision of a single burst = £ 27 K

“*Precision from 5 bursts = £ 23 K




Temperature Inference from Spectral Fits

9
Inferred Temperatures from Bursts Pulse-Burst Raman Spectra, ® = 0.23
Fit Temperature = 2078 K
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“*SNR defined as the ratio of the peak signal to the RMS baseline fluctuations

“*Operational range of Raman was set when SNR < 5, ¢ = 0.73

Precision is always within 3% of the measured temperatures




o | Quantifying Measurement Accuracy

Flame Temperature Map Across Equivalence Ratios

2L ————— — Adiapatic ;equilibrium temperatures calculated,
I

—Equilibrium Temperature .

[ Full Burst Raman usi antera

f Pulse-Burst Raman z

% Accuracy was determined by % difference
y y
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0 between mean and adiabatic temperatures
“*Max % Dif. = 3.9% at ¢ = 0.73 => Full Burst

Max % Dif. = 3% at ¢ = 0.73 = Pulse- Burst
e Leanest flame, ¢ = 0.29, % Dif. < 1%
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* Accuracy improved in lean flames due to improved signal-to-noise

**Full-burst temperatures were systematically higher at of ¢ > 0.5

Pulse-burst Raman thermometry was precise and accurate within 3% in lean H,-air flames |




Next Steps: High Temperature Shock Tube

HST provides a facility to study dynamics of particle curtains and kinetics of shock-
heated gas mixtures

Current parameters~ S = Pnf — ng Predicted parameters
o2 Pulse burst lasef, A = 53% 2 2 ** Energy/exposure remains constant
=1]/exposure % Estimated from current HST testing

o T(cl) 0.73) = 2100K .~ * - @ Thoseshoas™ 2100 K

% P~ 0.8 atm (SNL NM) HS Inc1dent laser power * Ppost shock — JU atm
n: N2 number density
do
FritalUSCE St b Raman signal in shock tube is expected to
e: detector efficiency be a factor of 38 greater than flame

~ 1: Sampling length

Data acquisition rates > 5 kHz

Q: collection solid angle



Next Steps: High Temperature Shock Tube

Challenge Consideration
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Summary and conclusions

“*Spectrally-resolved Raman thermometry has been assessed in a stabilized neat-
adiabatic flat-flame burner to gauge its accuracy and precision as a temperature
measurement technique.

“*Full-burst spectra utilizing the entire 13 ] of burst energy served as a baseline
over an equivalence ratio range of 0.29 — 1.23.

“*Measurements were demonstrated at 5 kHz by integrating two pulses onto a

high-speed, back-illuminated EMCCD detector over an equivalence ratio range
of 0.29 —0.73.

“*The standard deviation of the 5-kHz Raman thermometry was 2 — 3% of the
measured temperature, dependent on SNR

“*The accuracy of the burst-mode measurement was at worst 3%, indicating that
this simple, robust configuration can potentially offer high-speed measurements
with high accuracy
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