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2 Assumptions

■ Consider only deterministic problems
■ Assume fluid properties and damping are known

■ Demonstrate pollution using acoustics

■ Results and methods applicable to elastodynamics

■ Considering only finite element solution in frequency domain

■ Helmholtz equation



3 Outline

■ Illustration of mid-frequency and pollution error

■ History of pollution error

■ Description of pollution error

■ Methods to mitigate pollution error

■ Conclusions



4 Mid-Frequency Illustration

• Sandia Reverberation Chamber

• Dimensions:

• Lx = 6.58 m (21.6 ft)

• Ly = 7.50 m (24.6 ft)

• Lz = 9.17 m (30.1 ft)

• Volume:

• V = 453 m3 (15994 ft3)

• Length along diagonal:

• Ld = 13.6 m (44.5 ft)

• Schroeder frequency:

• fs — 300 Hz

• Mid-frequency onset:

• Gild — 100 Hz
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5 Classical Galerkin Finite Element Method — l D
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6 Semi-Infinite I D Duct Example — 20 Hz

• Duct length 13.6 m

• Equal to diagonal of Sandia reverb chamber

• Excitation frequency: 20 Hz

• 16 Hex8 elements per wavelength

U(w)—.r   1
- 13.6 m

• Analytical solution: p(z) = pocU(w)e-ikz

Length = 13.555 m, Freq = 20 Hz
Elements per À = 16.4478, 12 Rel. Error = 1.9182%
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7 Semi-Infinite I D Duct Example — 100 Hz

• Excitation frequency: 100 Hz

• 16 Hex8 elements per wavelength

U(w)—•

Absorbing BC

L2 relative error = 8.9 %

13.6 m

Length = 13.555 m, Freq = 100 Hz
Elements per A = 15.9418, L2 Rel. Error = 8.941%
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8 Semi-Infinite I D Duct Example — 100 Hz

U(w)

• Excitation frequency: 100 Hz

• 35 Hex8 elements per wavelength

L2 relative error = 1.9%

13.6 m

Length = 13.555 m, Freq = 100 Hz
Elements per A = 34.92, L2 Rel. Error = 1.8968%
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9 Semi-Infinite I D Duct Example — 300 Hz

• Excitation frequency: 300 Hz (onset of diffuse field)

• 60 Hex8 elements per wavelength

U(w)—.

L2 relative error = 1.9 %
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Length = 13.555 m, Freq = 300 Hz
Elements per A = 59.9714, L2 Rel. Error = 1.9473%
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io Semi-Infinite I D Duct Example — Results

• Examine results from previous slides for 1.9%
relative error solutions

• Find L2 error remains constant if k3h2 = C?

• Constant dependent on duct length
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Brief History

• First paper illustrating these results was Bayliss, et al.1 in 1985
• Performed an analysis similar to that just presented

• Harari and Hughes2 1991

• Examined dispersion

• Proposed 10 elements per wavelength 'rule-of-thumb' for first-order elements

• Ihlenburg and Babuška3 1995

• Derived expression for relative error for h-refinement with first-order (p=1) elements

• Ihlenburg and Babuška4 1997

• Derived general expression for relative error for h- and p-refinement.

• Babuška and Sauter5 1997

• Impossible to eliminate pollution effect in two or more spatial dimensions in Galerkin FE

• Ihlenburg6 1998

• Authors book providing overview of accurate numerical analysis for Helmholtz equation

1 A. Bayliss, C. I. Goldstein, and E. Turkel. Journal of Computational Physics, 59(3):396-404, 1985.

2 I. Harari and T. J. R. Hughes. Computer Methods in Applied Mechanics and Engineering, 87(1):59-96, 1991.
3 F. Ihlenburg and I. Babuška. Computers and Mathematics with Applications, 30(9):9-37, 1995.

4 F. Ihlenburg and I. Babuška. SIAIVI Journal on Numerical Ana#sis, 34(1):315-358, 1997.

5 I. M. Babuška and S. A. Sauter. SIAM Journal on Numerical Analysis, 34(6):2393-2423, 1997.

6 F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer, 1998.



12 Dispersion Error

• Numerical solutions of the Helmholtz equation are dispersive
• Both finite element and finite difference

• 1D Illustration:

FE row equation

for node n
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• Exact solution for plane wave: pexact = e-ikx

• Substitute into row equation: pj = e ikhhj

• Expression for discrete wavenumber kh :

(kh)2/31
kh h = cos-1- 
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• Evanescent FE prediction unless kh < 12

Pn—i 2Pn — Pn+i = 0

Stiffness matrix

4 

3.5

2.5

_c
-c 1 5•

0.5

-0.5

—R{khh}
Nkhh}

- - khh = kh

0.5 1 1.5 2 2.5 3 3.5 4

kh



13 Dispersion Error — 2D Illustration

• Bilinear quadrilateral elements

e-ik[x cos(0)+y sin(e)]• Exact plane wave solution: Dexact(X y, 0)

• As before substitute into FE row equation for center node

• Obtain expression for discrete wavenumber: kh h = f (kh, 0)

• Largest dispersion when plane wave is aligned with mesh (0 = 0)

• Dispersion always present for EA < oo
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14 Pollution Effect

• Dispersion analysis shows error depends on mesh refinement kh

• The error is local to the elements, due to interpolation by shape functions

• However, accumulation of dispersion over the domain 'pollutes' the prediction

• The longer the domain relative to a wavelength, the greater the pollution

• Return to prediction at 100 Hz with 10 elements per wavelength:

Length = 13.555 m, Freq = 100 Hz
Elements per A = 10.1217, L2 Rel. Error = 21.5526%
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is Relative Error Equation and the 'Pollution Effect'

Ihlenburg and Babuška derived general expression for relative error of Galerkin finite
element solution of Helmholtz equation:

lu — Uh l < col( klo P
) + C2L1c(kh)2P , kh < 1

Element size: h lull  P P 
Element order: p
Domain length: L Interp lation 'Poll tion 4_

Er or Eff ct'
(disp rsion)

The dominate issue

at mid-frequencies

• Applies to oscillatory solutions

Derived using the Green's function, Galerkin error analysis, FE stability and
approximation statements

• Expressed in terms of the Hl-seminorm

Note kL product in the pollution term

0.4
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• For constant relative error: second term must remain constant02
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• Discovered previously in the 1D duct results
0.1

F. Ihlenburg and I. Babuška. SIAM Journal on Numerical Ana#sis, 34(1):315-358, 1997. 0.05

F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer, 1998.
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16 Convergence using Linear Elements

FE solution
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17 Methods to Reduce Pollution

• Brute force method

• Higher-order shape functions

• Isogeometric analysis

• Enriched/Wave-based finite element methods

• Discontinuous Petrov-Galerkin



18 Brute Force - Domain Decomposition and Massively Parallel

• Domain Decomposition
• First performed by Schwarz in the 1870s

• Decompose model into smaller subdomains, each often assigned to one processor

• Two-level methods have "local" subdomain and "globar coarse solves

• Solve using preconditioned conjugate gradients or GMRES

• Massively Parallel

• Distribution of processors (nodes), each with own memory, linked together by a specialized
network communication system

iiiiiiiiiiiiiiiiiiiiiiiii
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C. R. Dohrmann, and O. B. Widlund. International Journal forNumerical Methods in Engineering, 82(2):157-183, 2010.



19 Higher-order Shape Functions

• Express relative error in terms of elements-per-wavelength EA

kt — uhll  1 Lf
< Cl p + C2 2 1 kh <1

7/11 EA CEAP

1 As order of shape functions p increases, pollution effect decreases by EA-2P

• Comparison of Hex8 (p=1) and Hex20 (p=2) at 300 Hz:

• Same relative error with 1/4 the degrees of freedom
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20 Hierarchical Polynomial Bases

• High wavenumber and large domains (kL >> 1) require p > 2 for accurate
predictions and computationally feasible FE system

• Hierarchical Legendre polynomials

• Add mid-edge, face and internal nodes to standard Hex8:
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Figure: F. Ihlenburg and I. Babuška. SIAM Journal on Numerical Analysis, 34(1):315-358, 1997.
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21 Enriched lsogeometric Analysis

• Proposed by Hughes et all

• Uses non-uniform B-splines (NURBS)

• Defines geometry in CAD models

• Used as shaped functions for the method

• Improved accuracy relative to classical polynomial shape functions

• An enriched method has been proposed with greater accuracy relative to higher-
order piecewise polynomials2
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1 T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Comp. Methods in Appl. Mech. and Eng., 194(39-41):4135-4195, 2005.

2 M. Dinachandra and S. Raju. Computer Methods in Applied Mechanics and Engineering, 335:380-402, 2018.
Figures: G. C. Diwan and M. S. Mohamed. Computer Methods in Applied Mechanics and Engineering, 350:701-718, 2019.



22 Enriched /Wave-based Finite Elements

• Incorporate piecewise plane waves into the standard basis functions

• Specific examples:

• Discontinuous enrichment method1

• Ultra weak variational formulation2

• Partition of unity method3
Quad 8-2 Quad 16-4

• DEM and UWF discontinuous, weakly enforce continuity across adjacent elements

• Due to plane wave enrichment, convergence significantly faster than Galerkin FE
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1 R. Tezaur and C. Farhat. International Journal forNumerical Methods in Engineering, 66(5):796-815, 2006.

2 T. Huttunen, J. P. Kaipio, and P. Monk. SLAMJournal on Numerical Analysis, 213(1):166-185, 2008.
3 A. El Kacimi and O. Laghrouche. International Journal forNumerical Methods in Engineering, 77(12):1646-1669, 2009.

Figures: D. Wang, R. Tezaur, J. Toivanen, and C. Farhat. Inter. Journal forNum. Methods in Engineering, 89(4):403-417, 2012.



23 Discontinuous Petrov-Galerkin h.

• Developed by Demkowicz at UT Austin

• Trial functions are continuous, test functions are discontinuous

• Computes optimal test functions on the fly

• Ultraweak formulation

• Positive definite matrices

• Pollution is diffusive rather than dispersive

• Pollution free in 1D

• Unconditionally stable

• Allows for hp-adaptivity
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L. Demkowicz and J. Gopalakrishnan. ICES REPORT 1 5-20, The UniversiO of Texas at Austin, 2015.

J. Zitelli and I. Muga and L. Demkowicz and J. Gopalakrishnan and D. Pardo and V. M. Calo. Journal of Computational
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24 Conclusions

■ Pollution effect is the dominate accuracy issue in the mid-frequency range
■ Occurs in one, two and three spatial dimensions

■ Can not eliminate in 2D and 3D for Galerkin FE

■ Pollution is the accumulation of interpolation error over the domain

■ Increases with increasing kL

■ Much of the understanding was developed in the mid-1990s
■ Began with the famous paper by Bayliss, Goldstein and Turkel

■ Many methods to alleviate pollution

■ All methods seek to converge as best approximation with coarsest discretization

■ Main methods are p-refinement and plane wave enrichment

■ DPG provides unconditional stability for hp-adapativity

■ Related note: pollution also occurs in the Boundary Element 1V ethodi

■ Appears as diffusion

1 S. Marburg. Journal of Theoretical and Computational Acoustics, 26(2) :1850018, 2018.


