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Assumptions

= Consider only deterministic problems

= Assume fluid properties and damping are known

= Demonstrate pollution using acoustics

= Results and methods applicable to elastodynamics

= Considering only finite element solution in frequency domain

* Helmholtz equation



Outline

= [lustration of mid-frequency and pollution error

= History of pollution error

= Description of pollution error

" Methods to mitigate pollution error

®* Conclusions



Mid-Frequency lllustration

® Sandia Reverberation Chamber

= Dimensions:
*L.= 6.58 m (21.6 fo)
*T,=7.50 m (24.6 o
*L,=9.17 m (30.1 fo)

* Volume:
=V =453 m® (15994 £t)

= Length along diagonal:
Ty =13.6 m (445 fo

= Schroeder frequency:
= £ ~ 300 Hz

= Mid-frequency onset:
= £~ 100 Hz
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s | Classical Galerkin Finite Element Method — ID

I

=1

Helmholtz equation

W
Wavenumber: k£ = —
c
ndary conditions

" Construct weak formulation:

Op Ow

/o1 [_ k*p(zx)w(z) + %%]dw +ikp(L)w(1) = iwpoU(w)w(0)

Test (weighting) function: w(x) N

U(w) o . . . "

" i=1:
L. | N

i Wi

" Linear algebraic finite element system: _—r =

1=1
Y t
(=" M-+ K)? u Galerkin

formulation

pressure at nodes




s 1 Semi-Infinite ID Duct Example — 20 Hz

" Duct length 13.6 m
" Equal to diagonal of Sandia reverb chamber

= Excitation frequency: 20 Hz
=16 Hex8 elements per wavelength Absorbing BC

lﬂw%*Illllllllllllllllllllllllllllllllllllllll‘// 1
!: 13.6 m :! | | 0.5m

= Analytical solution: p(z) = poc U(w)e—ikz

Length = 13.555 m, Freq = 20 Hz
Elements per )\ = 16.4478, L2 Rel. Error = 1.9182%

L, relative error = 1.9 % o
o
o, lp=pull ¢,
|Ipl[2 g
o

| Percent error at end = 2.9 %

s = [ [ uaz]

Real Theory
=— |mag Theory
iscmaime Real FEM
-------- Imag FEM

0 2 4 6 8 10 12 14
Distance from Excitation, m



7 1 Semi-Infinite ID Duct Example — 100 Hz @

= Excitation frequency: 100 Hz
=16 Hex8 elements per wavelength Absorbing BC

I 3.6 m =I |¢-’|— 0.5m

Length = 13.555 m, Freq = 100 Hz
Elements per )\ = 15.9418, L2 Rel. Error = 8.941%

L, relative error = 8.9 %

Pressure, Pa
o

[T e Theoy | Percent error atend = 15.5 %
-------- Real FEM
/ -------- Imag FEM
2 2 4 6 8 10 12 14

Distance from Excitation, m

Same number of elements per wavelength as 20 Hz case, 4.7X the L, error!




¢ | Semi-Infinite ID Duct Example — 100 Hz )

= Excitation frequency: 100 Hz
= 35 Hex8 elements per wavelength Absorbing BC

U(w)— /

13.6 m

a

\ 4

\ 4

05m

a

Length = 13.555 m, Freq = 100 Hz
Elements per )\ = 34.92, L, Rel. Error = 1.8968%

L, relative error = 1.9 %

Pressure, Pa
o

Real Theory
“2 [ | s |mag Theory
S Real FEM
-------- Imag FEM

Percent error at end = 3.3 %

e

0 2 4 6 8 10 12 14
Distance from Excitation, m

Require 35 elements per wavelength at 100 Hz for
same error as |6 elements per wavelength at 20 Hz



9 1 Semi-Infinite ID Duct Example — 300 Hz

= Excitation frequency: 300 Hz (onset of diffuse field)
" 60 Hex8 elements per wavelength Absorbing BC

/ -
!: [3.6 m :! _’l L_ 0.25m

Length = 13.555 m, Freq = 300 Hz
Elements per )\ = 59.9714, L2 Rel. Error = 1.9473%

24
. 1 |
L, relative error = 1.9%  °; 0.2 Pa
50
g
a.
U
2l Real Theory | Percent error at end = 3.4 %
= |mag Theory
-------- Real FEM
1 -------- Imag FEM U
2 2 4 6 8 10 12 14

Distance from Excitation, m

Require 60 elements per wavelength at 300 Hz for
same error as |6 elements per wavelength at 20 Hz



Semi-Infinite |D Duct Example — Results

0.35

= Examine results from previous slides for 1.9%
relative error solutions

= Find L, error remains constant if k¥°h? = C?
= Constant dependent on duct length
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= Expression for elements-per-wavelength needed
for 1.9% error:

k = 27'(—/)\ k3h2 _ 87'('3 ji::
h =X Ex AE2 =
873 g

Ex(f) =Cy . / s

= Standard rule-of-thumb kh = const insufficient!
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n | Brief History

= First paper illustrating these results was Bayliss, et al.! in 1985

* Performed an analysis similar to that just presented

* Harari and Hughes? 1991
= HExamined dispersion

= Proposed 10 elements per wavelength ‘rule-of-thumb’ for first-order elements

® Thlenburg and Babuska’ 1995

" Derived expression for relative error for h-refinement with first-order (p=1) elements

* Ihlenburg and Babuska* 1997

= Derived general expression for relative error for h- and p-refinement.

= Babuska and Sauter® 1997

= Impossible to eliminate pollution effect in two or more spatial dimensions in Galerkin FE

= Thlenburg® 1998

= Authors book providing overview of accurate numerical analysis for Helmholtz equation

U A. Bayliss, C. I. Goldstein, and E. Turkel. Journal of Computational Physics, 59(3):396-404, 1985.

21. Harari and T. J. R. Hughes. Computer Methods in Applied Mechanics and Engineering, 87(1):59-96, 1991.
3F Ihlenburg and 1. Babuska. Computers and Mathematics with Applications, 30(9):9-37, 1995.

*F Ihlenburg and 1. Babuska. SLAM Journal on Numerical Analysis, 34(1):315-358, 1997.

> 1. M. Babuska and S. A. Sauter. SLAM Journal on Numerical Analysis, 34(6):2393-2423, 1997.

6 F. Thlenburg, Finite Element Analysis of Acoustic Scattering, Springer, 1998.




2 | Dispersion Error

" Numerical solutions of the Helmholtz equation are dispersive

= Both finite element and finite difference

A 4

= 1D Illustration: |1

Lz h o
[ g
o o [ ] [ ] e
Pn—2 Pn-1 Pn Pn+1 Pn+2
l J
FE row equation k*h?
- 6 (pn—l + 4pn +pn+1 — Pn—1 + 2pn — Pn+1 = 0
for node n
Mass matrix Stiffness matrix
] 4 T i T
= Exact solution for plane wave: pegaet = Sl 35| :gg;%
—ik"hj 3-|- - k"h=kh

= Substitute into row equation: p; =e

= Expression for discrete wavenumber kM

_[1—(kh)?/3 5] -
k"h = cos™!
co8 [1 ¥ (kh)2/6 1|
= The dispersion is a phase lead: "> c .0

= Evanescent FE prediction unless kh < v/12




13

Dispersion Error — 2D lllustration

= Bilinear quadrilateral elements

= Exact plane wave solution: Pezact(,y,0) = e~

= As before substitute into FE row equation for center node

= Obtain expression for discrete wavenumber: k"h = f(kh, 6)

= Largest dispersion when plane wave is aligned with mesh (6 = 0)

= Dispersion always present for Ey < oo
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Relative error in kh, %
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14+ | Pollution Effect

= Dispersion analysis shows error depends on mesh refinement kh

" The error is local to the elements, due to interpolation by shape functions

" However, accumulation of dispersion over the domain ‘pollutes’ the prediction

" The longer the domain relative to a wavelength, the greater the pollution

= Return to prediction at 100 Hz with 10 elements per wavelength:

Length = 13.555 m, Freq = 100 Hz
Elements per A = 10.1217, L, Rel. Error = 21.5526%
3 T T T T T T

Pressure, Pa
o

L

Real Theory
-2r Imag Theory 7
e Real FEM
/- ------- Imag FEM
_3 1 1
0 2 4 6 8 10 12 14

Distance from Excitation, m

v

Accumulating interpolation error



s | Relative Error Equation and the ‘Pollution Effect’

= Ihlenburg and Babuska derived general expression for relative error of Galerkin finite

element solution of Helmholtz equation:

kh

lu — upl1

|ul1 p

Element size: h
Element order: p
Domain length: L

Interpolation
Error
(dispersion)

‘Pollution
Effect’

= Applies to oscillatory solutions

< (?)p + Cng(—)2p, kh <1

The dominate issue
at mid-frequencies

= Derived using the Green’s function, Galerkin error analysis, FE stability and

approximation statements

0.4

Comparison of L2 = 1.9% Results for Hex8 Element
T T T T T T

= Expressed in terms of the H'-seminorm

= Note kL. product in the pollution term oar

0.25 -

o . 0.2+
* For constant relative error: second term must remain constant

0.15 -

" Discovered previously in the 1D duct results \
)

05

F Ihlenburg and 1. Babuska. SLAM Journal on Numerical Analysis, 34(1):315-358, 1997. o
F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer, 1998.

0.35 -

—kh
—k3h2|]
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Frequency, Hz
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Convergence using Linear Elements

FE solution
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Figure: E Thlenburg and 1. Babuska. International Journal For Numerical Methods In Engineering, 38(22):3745-3774, 1995.



17 I Methods to Reduce Pollution

= Brute force method

= Higher-order shape functions

= [sogeometric analysis

= Enriched/Wave-based finite element methods

" Discontinuous Petrov-Galerkin




s | Brute Force - Domain Decomposition and Massively Parallel

" Domain Decomposition
= First performed by Schwarz in the 1870s
" Decompose model into smaller subdomains, each often assigned to one processor
= Two-level methods have “local” subdomain and “global” coarse solves

" Solve using preconditioned conjugate gradients or GMRES

" Massively Parallel

* Distribution of processors (nodes), each with own memory, linked together by a specialized
network communication system
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C. Farhat and E-X. Roux. International Journal for Numerical Methods in Engineering, 32:1205-1227, 1991.
C. R. Dohrmann, and O. B. Widlund. Infernational Journal for Numerical Methods in Engineering, 82(2):157-183, 2010.




s I Higher-order Shape Functions

= Express relative error in terms of elements-per-wavelength Ey

lu—uplt _ ~ 1 - Lf
— T < (O1=+C kh <1
uly = VEP T zcE/Q\p’ <

= As order of shape functions p increases, pollution effect decreases by E; **

= Comparison of Hex8 (p=1) and Hex20 (p=2) at 300 Hz:
= Same relative error with 4 the degrees of freedom

Length = 13.555 m, Freq = 300 Hz Length = 13.555 m, Freq = 300 Hz
Elements per \ = 59.9714, L2 Rel. Error = 1.9473% Elements per )\ = 7.0009, L2 Rel. Error = 1.8769%

M nmmm Ty,

= TWWWWWWWY = TWWWWWWWY

° % Dsancefombxcimbon,m * ° Deowemmmgwmnm

Hex8: 60 elements/wavelength Hex20: 7 elements/wavelength
L, relative error = 1.9 % L, relative error = 1.9 %

L. L. Thompson and P. M. Pinsky. Computational Mechanics, 13(4):255-275, 1994.
E Ihlenburg and 1. Babuska. SLAM Journal on Numerical Analysis, 34(1):315-358, 1997.




20 | Hierarchical Polynomial Bases

= High wavenumber and large domains (kL >> 1) require p > 2 for accurate
predictions and computationally feasible FE system

= Hierarchical Legendre polynomials

= Add mid-edge, face and internal nodes to standard HexS8:
(p—1°+6(p—1)°+12(p—1)+8= (p+1)°,

l

] |

J

intefrnal face mid-edge total
nodes nodes nodes nodes
1E[ - Q.; /'i\/ “ ]
/\
\ =5
2% 01t
=2
O \ /\ P
O  oo01}
£ p=S
L
) i
g oo >
B2 P=
)
Q  0.0001
o
p=>5
0.00001 |
Elements per wavelength: 0.75 | 2 3
- - P:

2 5 10.
Number of elements

p=>2

i(z) = \/? /_ i Pi_y(r)dr
1

Legendre
polynomial

Increasing
element
order

I. Babuska, B. A. Szabo and 1. N. Katz. SLAM Journal on Numerical Analysis, 19(3):515-545, 1981.
Figure: F Ihlenburg and 1. Babuska. SLAM Journal on Numerical Analysis, 34(1):315-358, 1997.



21 | Enriched Isogeometric Analysis

= Proposed by Hughes et al

= Uses non-uniform B-splines (NURBS)

= Defines geometry in CAD models
= Used as shaped functions for the method

= Improved accuracy relative to classical polynomial shape functions

= An enriched method has been proposed with greater accuracy relative to higher-
order piecewise polynomials?
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UT. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Comp. Methods in Appl. Mech. and Eng., 194(39-41):4135-4195, 2005.
2 M. Dinachandra and S. Raju. Computer Methods in Applied Mechanics and Engineering, 335:380-402, 2018.
Figures: G. C. Diwan and M. S. Mohamed. Computer Methods in Applied Mechanics and Engineering, 350:701-718, 2019.
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» | Enriched / Wave-based Finite Elements

" Incorporate piecewise plane waves into the standard basis functions

< .
X -

Rt
= Specific examples: | [~ ~l
= Discontinuous enrichment method! ¢ #
» Ultra weak variational formulation? Y / Y_< J

= Partition of unity method? - <>
Quad 8-2 Quad 16-4

= DEM and UWF discontinuous, weakly enforce continuity across adjacent elements

[y
|

<

" Due to plane wave enrichment, convergence significantly faster than Galerkin FE
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' R. Tezaur and C. Fathat. International Journal for Numerical Methods in Engineering, 66(5):796-815, 2000.

2'T. Huttunen, J. P. Kaipio, and P. Monk. SLAM Journal on Numerical Analysis, 213(1):166-185, 2008.

3> A. El Kacimi and O. Laghrouche. International Journal for Numerical Methods in Engineering, 77(12):1646-1669, 20009.
Figures: D. Wang, R. Tezaur, ]. Toivanen, and C. Farhat. Inter. Journal for Num. Methods in Engineering, 89(4):403-417, 2012.
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23 | Discontinuous Petrov-Galerkin

" Developed by Demkowicz at UT Austin

= Trial functions are continuous, test functions are discontinuous

= Computes optimal test functions on the fly

" Ultraweak formulation

= Positive definite matrices

* Pollution is diffusive rather than dispersive

= Pollution free in 1D

* Unconditionally stable
= Allows for hp-adaptivity

DPG

L. Demkowicz and J. Gopalakrishnan. ICES REPORT 15-20, The University of Texas at Austin, 2015.

J. Zitelli and 1. Muga and L. Demkowicz and J. Gopalakrishnan and D. Pardo and V. M. Calo. Journal of Computational
Physies, 230(7): 2406-2432, 2011.

Figures: S. Petrides. PhD Dissertation, The University of Texas at Austin, 2019.



24 | Conclusions

= Pollution effect is the dominate accuracy issue in the mid-frequency range

" Occurs in one, two and three spatial dimensions
= Can not eliminate in 2D and 3D for Galerkin FE

= Pollution is the accumulation of interpolation error over the domain

" Increases with increasing kL

® Much of the understanding was developed in the mid-1990s
" Began with the famous paper by Bayliss, Goldstein and Turkel

= Many methods to alleviate pollution
= All methods seek to converge as best approximation with coarsest discretization
" Main methods are p-refinement and plane wave enrichment

" DPG provides unconditional stability for hp-adapativity

= Related note: pollution also occurs in the Boundary Element Method!
= Appears as diffusion

LS. Matburg. Journal of Theoretical and Computational Aconstics, 26(2):1850018, 2018.



