

Sandia
National
Laboratories

SAND2019-15411C

The Pollution Effect and Novel Methods to Reduce Its Influence in the Mid-Frequency Range

Jerry W. Rouse and Timothy F. Walsh
Sandia National Labs
Albuquerque, NM 87185

178th Meeting of the Acoustical Society of America
San Diego, California
2-6 December 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Assumptions

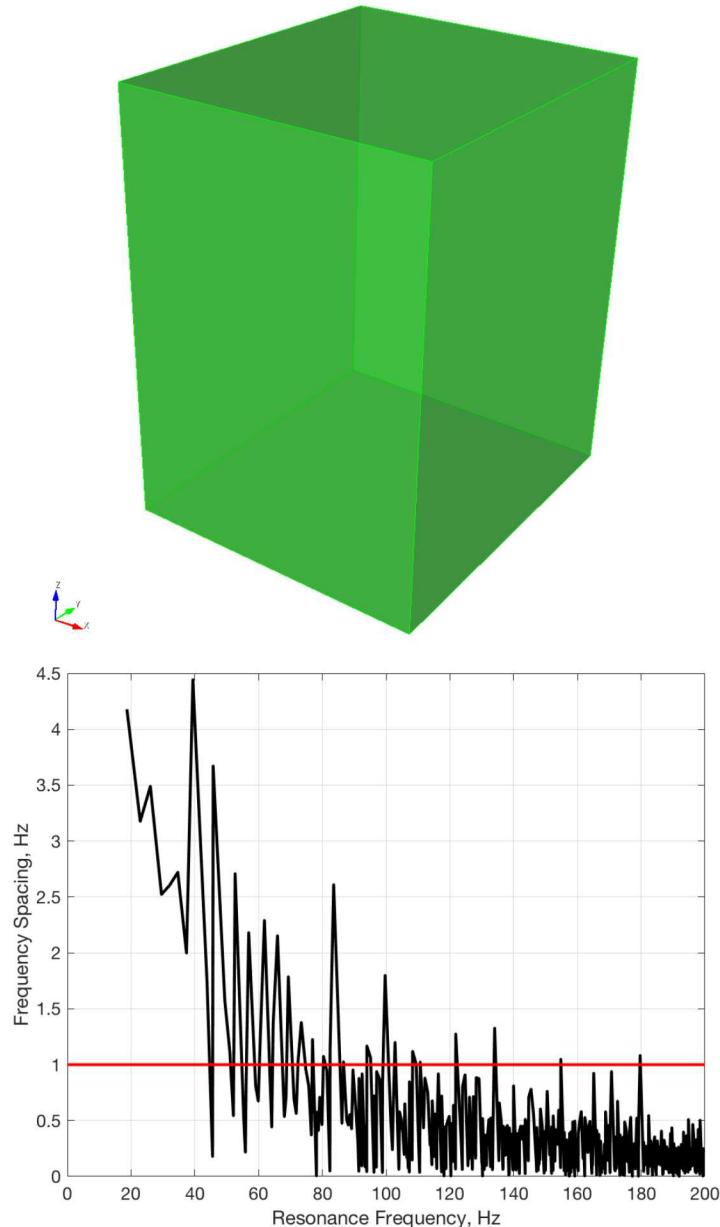
- Consider only deterministic problems
 - Assume fluid properties and damping are known
- Demonstrate pollution using acoustics
 - Results and methods applicable to elastodynamics
- Considering only finite element solution in frequency domain
 - Helmholtz equation

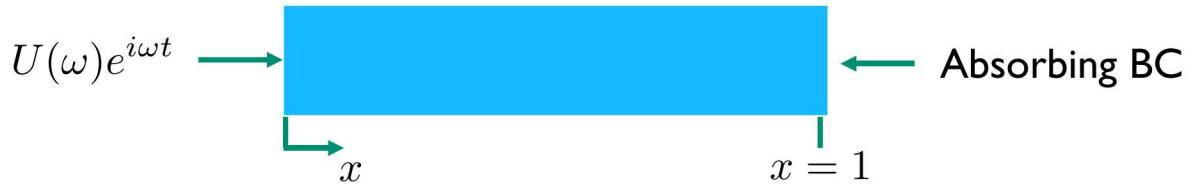
Outline

- Illustration of mid-frequency and pollution error
- History of pollution error
- Description of pollution error
- Methods to mitigate pollution error
- Conclusions

Mid-Frequency Illustration

- Sandia Reverberation Chamber
- Dimensions:
 - $L_x = 6.58 \text{ m (21.6 ft)}$
 - $L_y = 7.50 \text{ m (24.6 ft)}$
 - $L_z = 9.17 \text{ m (30.1 ft)}$
- Volume:
 - $V = 453 \text{ m}^3 (15994 \text{ ft}^3)$
- Length along diagonal:
 - $L_d = 13.6 \text{ m (44.5 ft)}$
- Schroeder frequency:
 - $f_s \sim 300 \text{ Hz}$
- Mid-frequency onset:
 - $f_{\text{mid}} \sim 100 \text{ Hz}$





$$\frac{\partial^2 p(x)}{\partial x^2} + k^2 p(x) = 0 \quad \text{Helmholtz equation}$$

Wavenumber: $k = \frac{\omega}{c}$

$$\left. \frac{\partial p}{\partial x} \right|_{x=0} = -i\omega \rho_o U$$

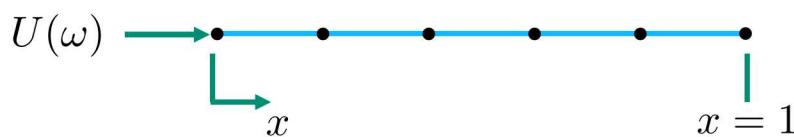
$$\left. \frac{\partial p}{\partial x} \right|_{x=1} = -ikp(1)$$

Boundary conditions

- Construct weak formulation:

$$\int_0^1 \left[-k^2 p(x)w(x) + \frac{\partial p}{\partial x} \frac{\partial w}{\partial x} \right] dx + ikp(1)w(1) = i\omega \rho_o U(\omega)w(0)$$

Test (weighting) function: $w(x)$



- Linear algebraic finite element system:

$$(-k^2 \mathbf{M} + \mathbf{K})\mathbf{p} = \mathbf{u}$$

↑
pressure at nodes

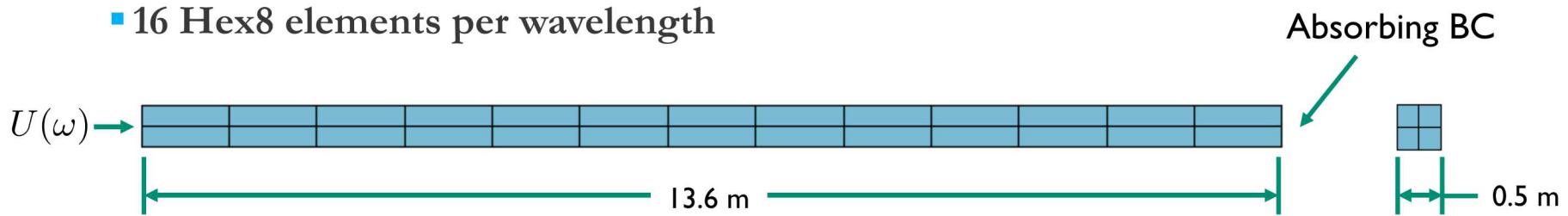
$$p^h(x) = \sum_{i=1}^N \phi_i(x) p_i$$

$$w^h(x) = \sum_{i=1}^N \phi_i(x) c_i$$

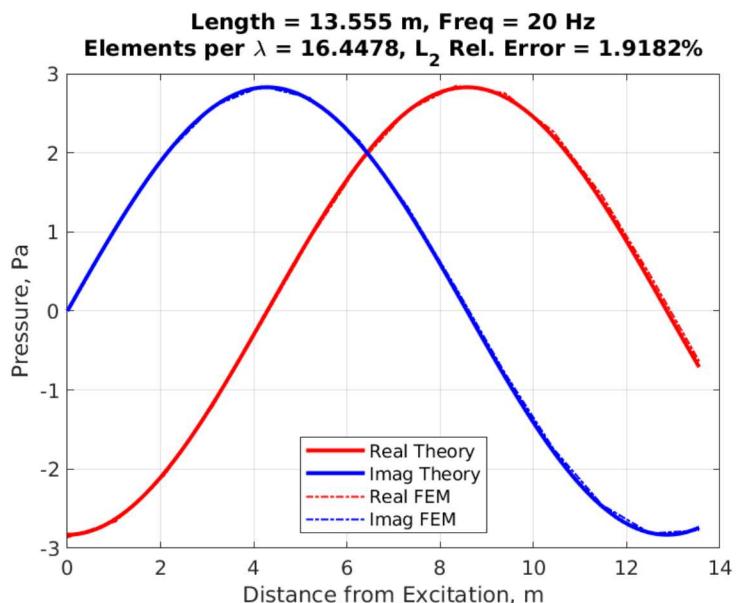
↑
Galerkin formulation

Semi-Infinite 1D Duct Example – 20 Hz

- Duct length 13.6 m
 - Equal to diagonal of Sandia reverb chamber
- Excitation frequency: **20 Hz**
- **16 Hex8 elements per wavelength**



- Analytical solution: $p(z) = \rho_o c U(\omega) e^{-ikz}$



L_2 relative error = 1.9 %

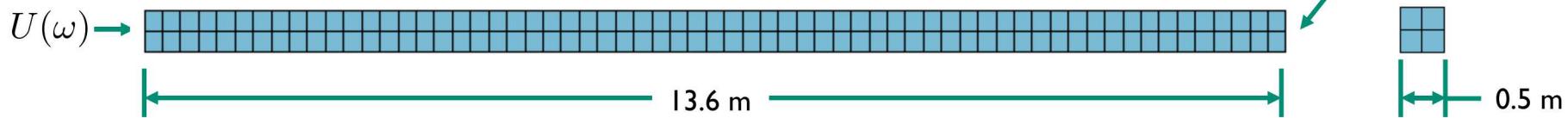
$$\tilde{e}_2 = \frac{\|p - p_h\|_2}{\|p\|_2}$$

$$\|u\|_2 = \left[\int_0^L |u(z)|^2 dz \right]^{1/2}$$

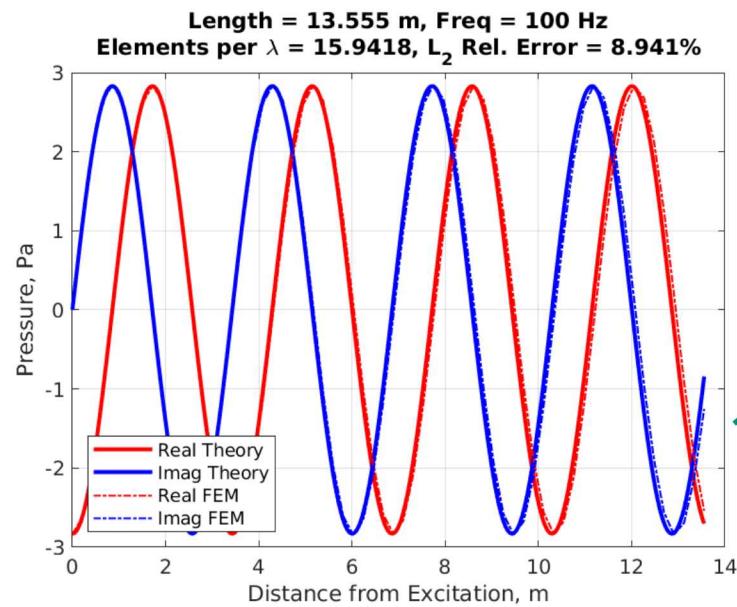
Percent error at end = 2.9 %

Semi-Infinite 1D Duct Example – 100 Hz

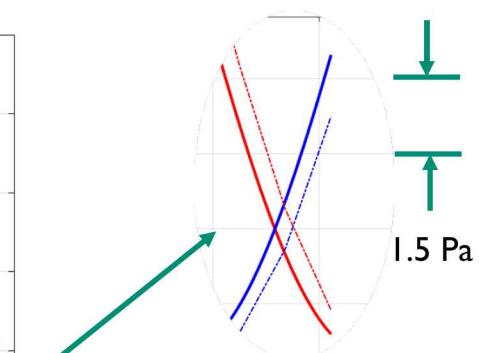
- Excitation frequency: 100 Hz
- 16 Hex8 elements per wavelength



L_2 relative error = 8.9 %



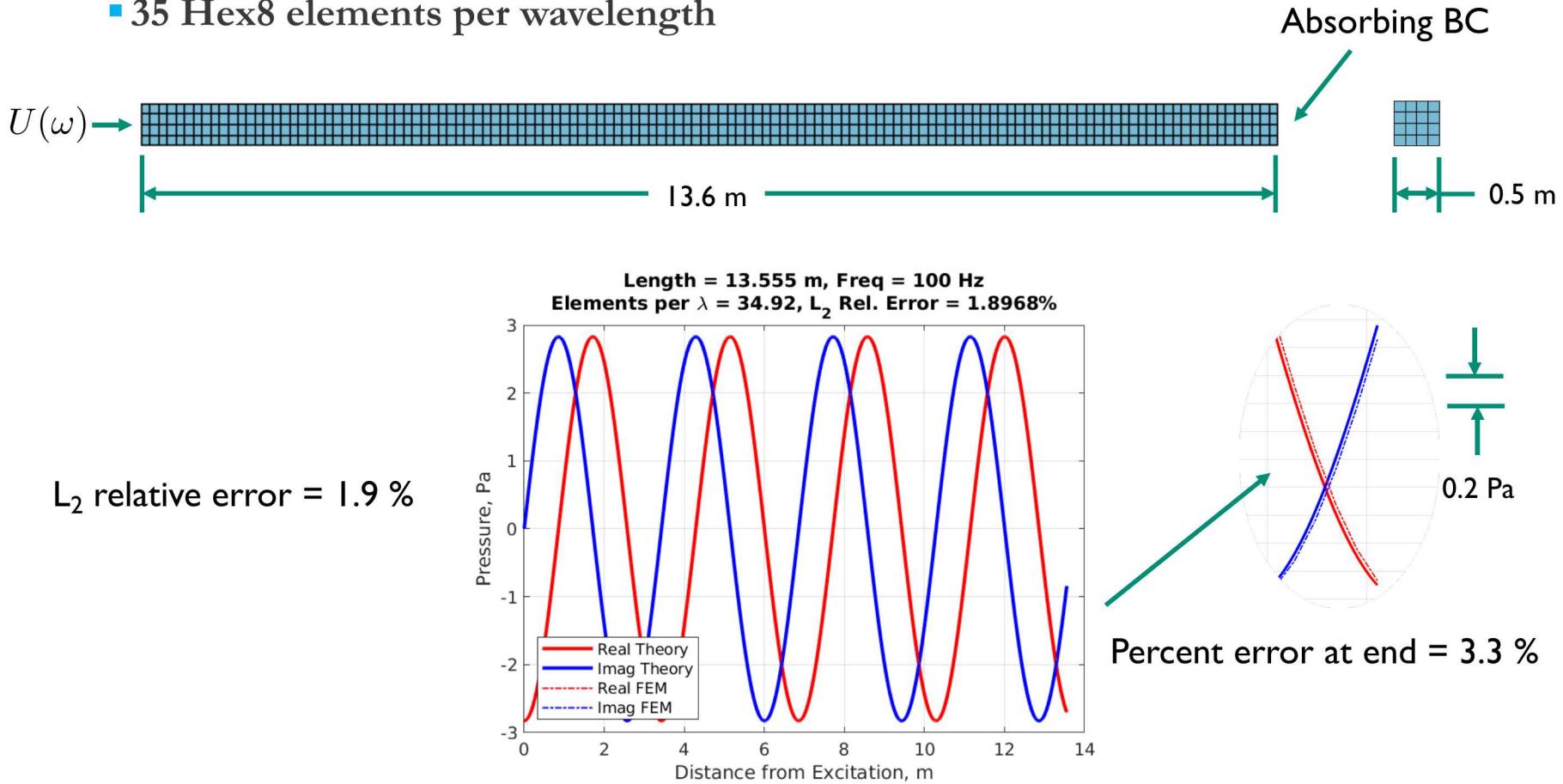
Percent error at end = 15.5 %



Same number of elements per wavelength as 20 Hz case, 4.7X the L_2 error!

Semi-Infinite 1D Duct Example – 100 Hz

- Excitation frequency: 100 Hz
- 35 Hex8 elements per wavelength

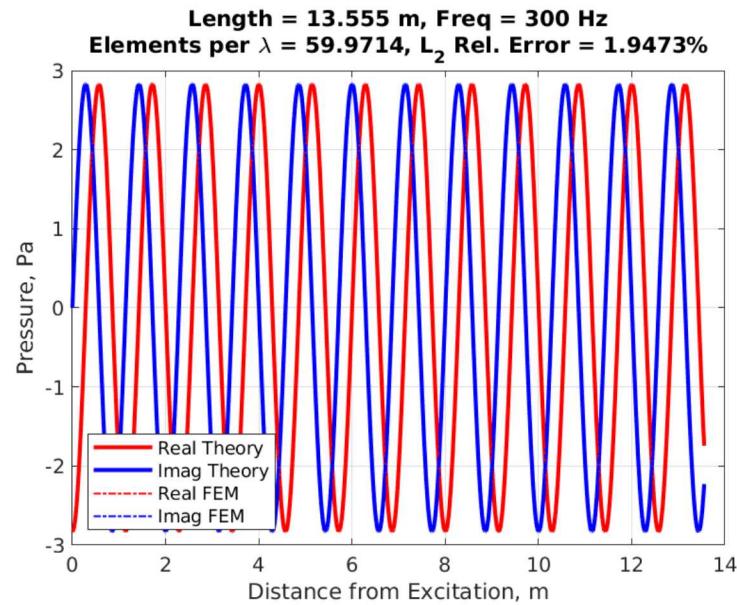
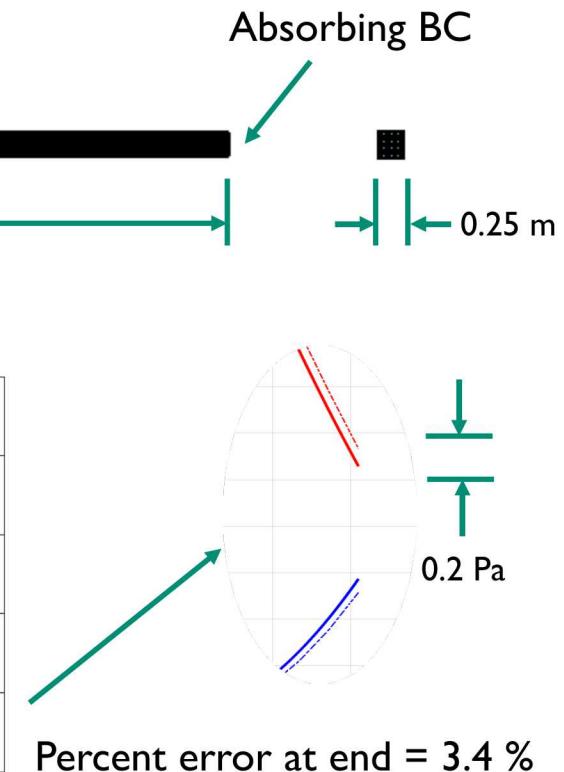


Require 35 elements per wavelength at 100 Hz for same error as 16 elements per wavelength at 20 Hz

Semi-Infinite 1D Duct Example – 300 Hz

- Excitation frequency: **300 Hz** (onset of diffuse field)
- 60 Hex8 elements per wavelength**

L_2 relative error = 1.9 %



Require 60 elements per wavelength at 300 Hz for same error as 16 elements per wavelength at 20 Hz

Semi-Infinite 1D Duct Example – Results

- Examine results from previous slides for 1.9% relative error solutions
- Find L_2 error remains constant if $k^3h^2 = C_1^2$
 - Constant dependent on duct length



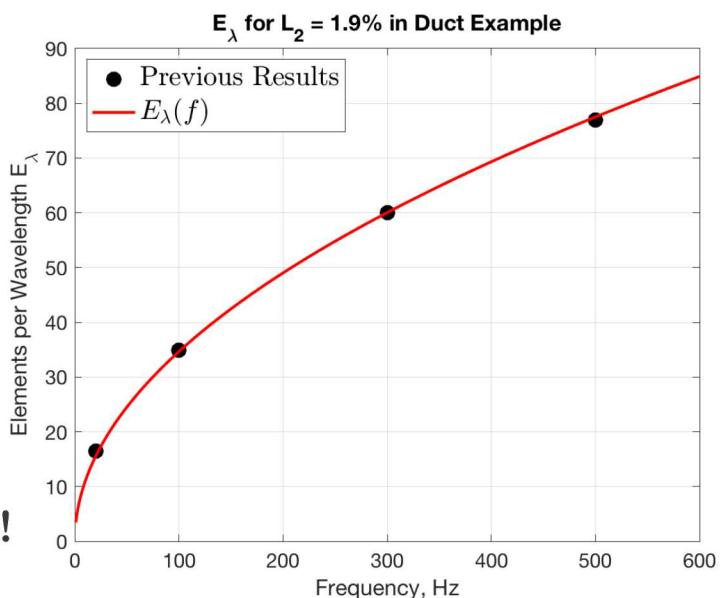
- Expression for elements-per-wavelength needed for 1.9% error:

$$k = 2\pi/\lambda \quad \longrightarrow \quad k^3h^2 = \frac{8\pi^3}{\lambda E_\lambda^2}$$

$$h = \lambda/E_\lambda$$

$$E_\lambda(f) = C_1 \sqrt{\frac{8\pi^3 f}{c}}$$

- Standard rule-of-thumb $kh = \text{const}$ insufficient!



Brief History

- First paper illustrating these results was Bayliss, et al.¹ in 1985
 - Performed an analysis similar to that just presented
- Harari and Hughes² 1991
 - Examined dispersion
 - Proposed 10 elements per wavelength ‘rule-of-thumb’ for first-order elements
- Ihlenburg and Babuška³ 1995
 - Derived expression for relative error for h-refinement with first-order ($p=1$) elements
- Ihlenburg and Babuška⁴ 1997
 - Derived general expression for relative error for h- and p-refinement.
- Babuška and Sauter⁵ 1997
 - Impossible to eliminate pollution effect in two or more spatial dimensions in Galerkin FE
- Ihlenburg⁶ 1998
 - Authors book providing overview of accurate numerical analysis for Helmholtz equation

¹ A. Bayliss, C. I. Goldstein, and E. Turkel. *Journal of Computational Physics*, 59(3):396-404, 1985.

² I. Harari and T. J. R. Hughes. *Computer Methods in Applied Mechanics and Engineering*, 87(1):59-96, 1991.

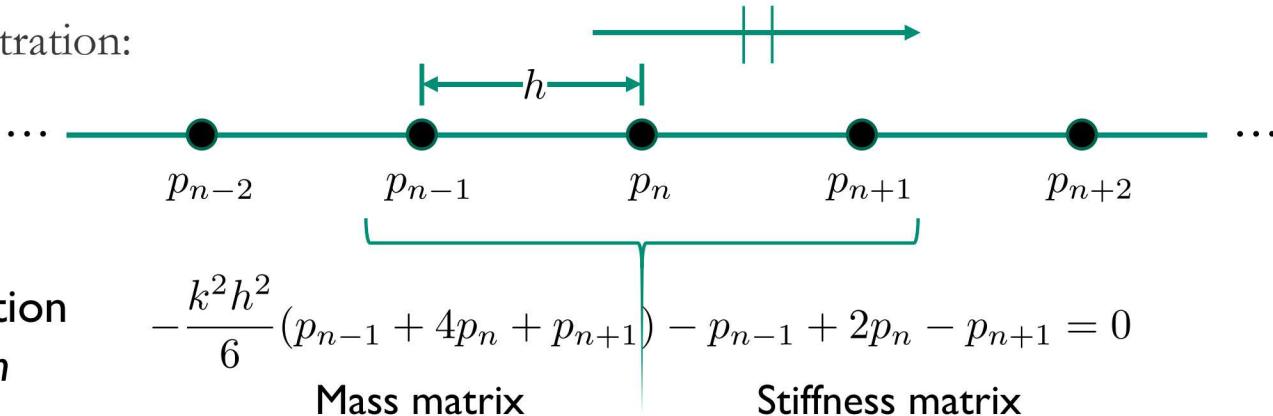
³ F. Ihlenburg and I. Babuška. *Computers and Mathematics with Applications*, 30(9):9-37, 1995.

⁴ F. Ihlenburg and I. Babuška. *SIAM Journal on Numerical Analysis*, 34(1):315-358, 1997.

⁵ I. M. Babuška and S. A. Sauter. *SIAM Journal on Numerical Analysis*, 34(6):2393-2423, 1997.

⁶ F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer, 1998.

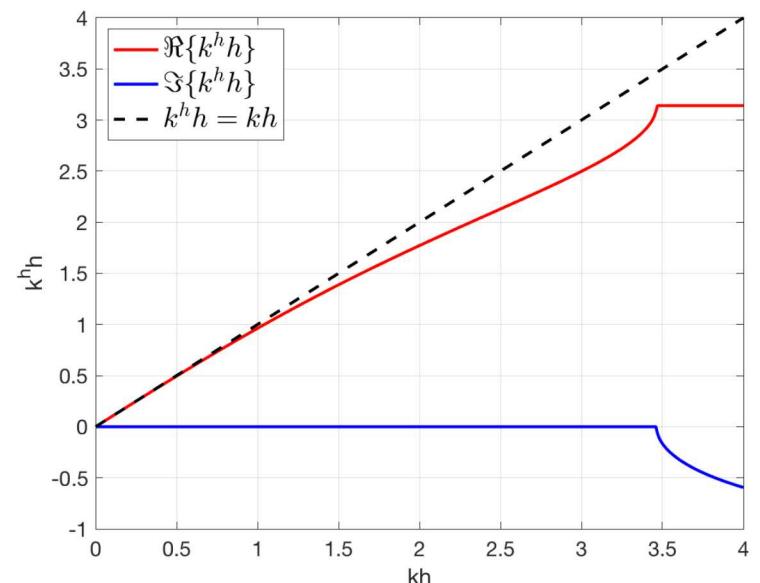
- Numerical solutions of the Helmholtz equation are dispersive
 - Both finite element and finite difference
- 1D Illustration:



- Exact solution for plane wave: $p_{exact} = e^{-ikx}$
- Substitute into row equation: $p_j = e^{-ik^h h j}$
 - Expression for discrete wavenumber k^h :

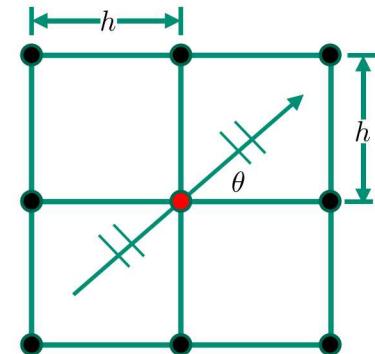
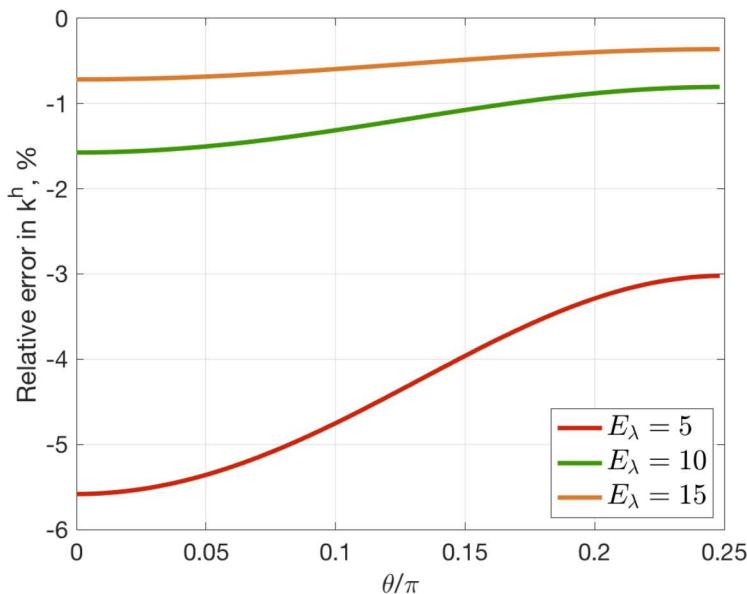
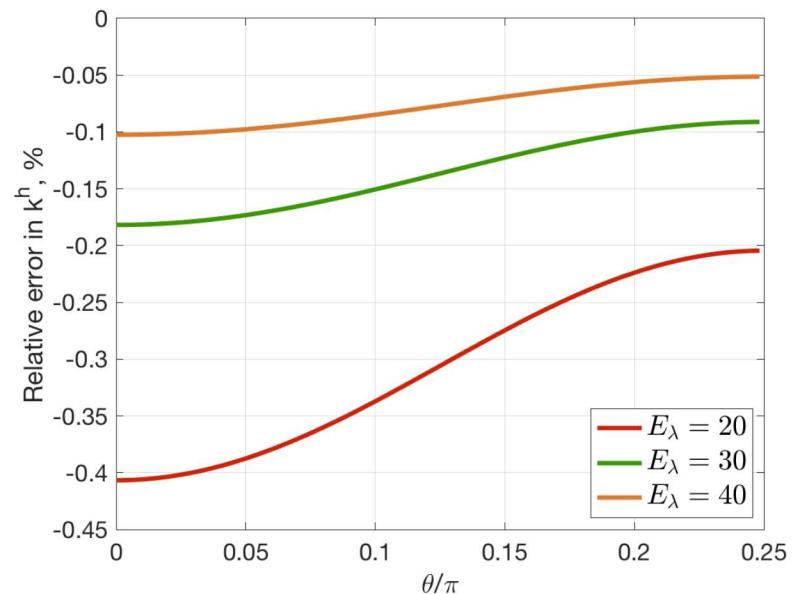
$$k^h h = \cos^{-1} \left[\frac{1 - (kh)^2/3}{1 + (kh)^2/6} \right]$$

- The dispersion is a phase lead: $c^h \geq c$
- Evanescent FE prediction unless $kh < \sqrt{12}$



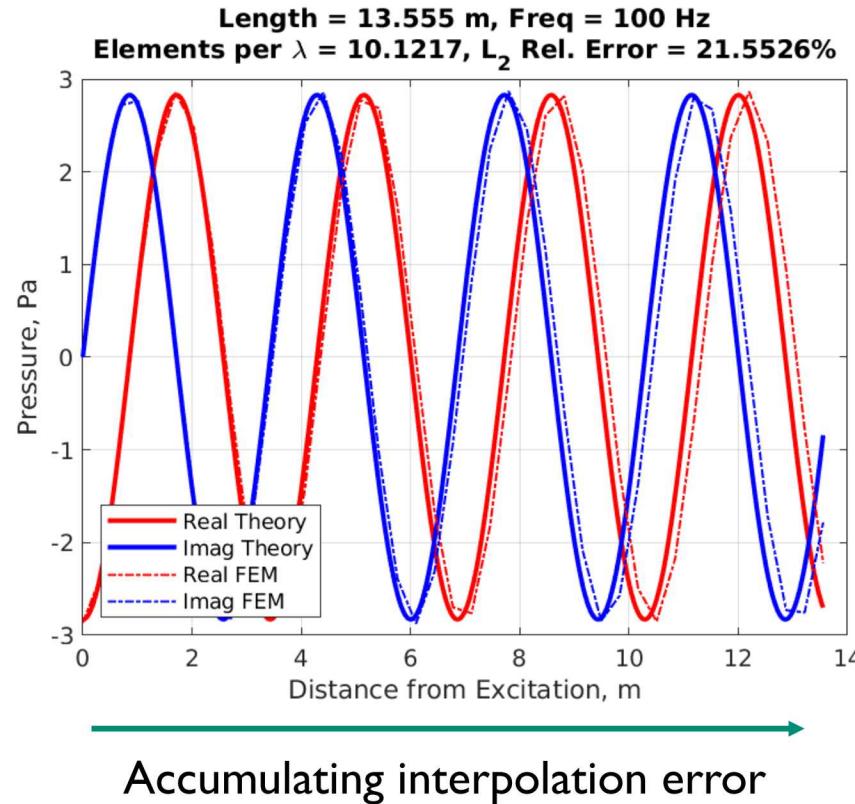
Dispersion Error – 2D Illustration

- Bilinear quadrilateral elements
- Exact plane wave solution: $p_{exact}(x, y, \theta) = e^{-ik[x \cos(\theta) + y \sin(\theta)]}$
- As before substitute into FE row equation for center node
 - Obtain expression for discrete wavenumber: $k^h h = f(kh, \theta)$
- Largest dispersion when plane wave is aligned with mesh ($\theta = 0$)
- Dispersion always present for $E_\lambda < \infty$



Pollution Effect

- Dispersion analysis shows error depends on mesh refinement kh
 - The error is local to the elements, due to interpolation by shape functions
- However, accumulation of dispersion over the domain ‘pollutes’ the prediction
 - The longer the domain relative to a wavelength, the greater the pollution
- Return to prediction at 100 Hz with 10 elements per wavelength:



Relative Error Equation and the ‘Pollution Effect’

- Ihlenburg and Babuška derived general expression for relative error of Galerkin finite element solution of Helmholtz equation:

$$\frac{|u - u_h|_1}{|u|_1} \leq C_1 \left(\frac{kh}{p} \right)^p + C_2 L k \left(\frac{kh}{p} \right)^{2p}, \quad kh < 1$$

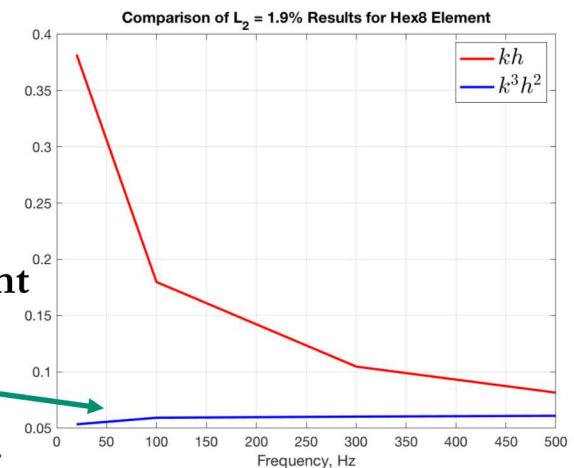
Element size: h
 Element order: p
 Domain length: L

Interpolation
 Error
 (dispersion)

‘Pollution
 Effect’

The dominate issue
 at mid-frequencies

- Applies to oscillatory solutions
- Derived using the Green’s function, Galerkin error analysis, FE stability and approximation statements
 - Expressed in terms of the H^1 -seminorm
- Note kL product in the pollution term
- For constant relative error: second term must remain constant**
 - Discovered previously in the 1D duct results



F. Ihlenburg and I. Babuška. *SIAM Journal on Numerical Analysis*, 34(1):315-358, 1997.

F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer, 1998.

Convergence using Linear Elements

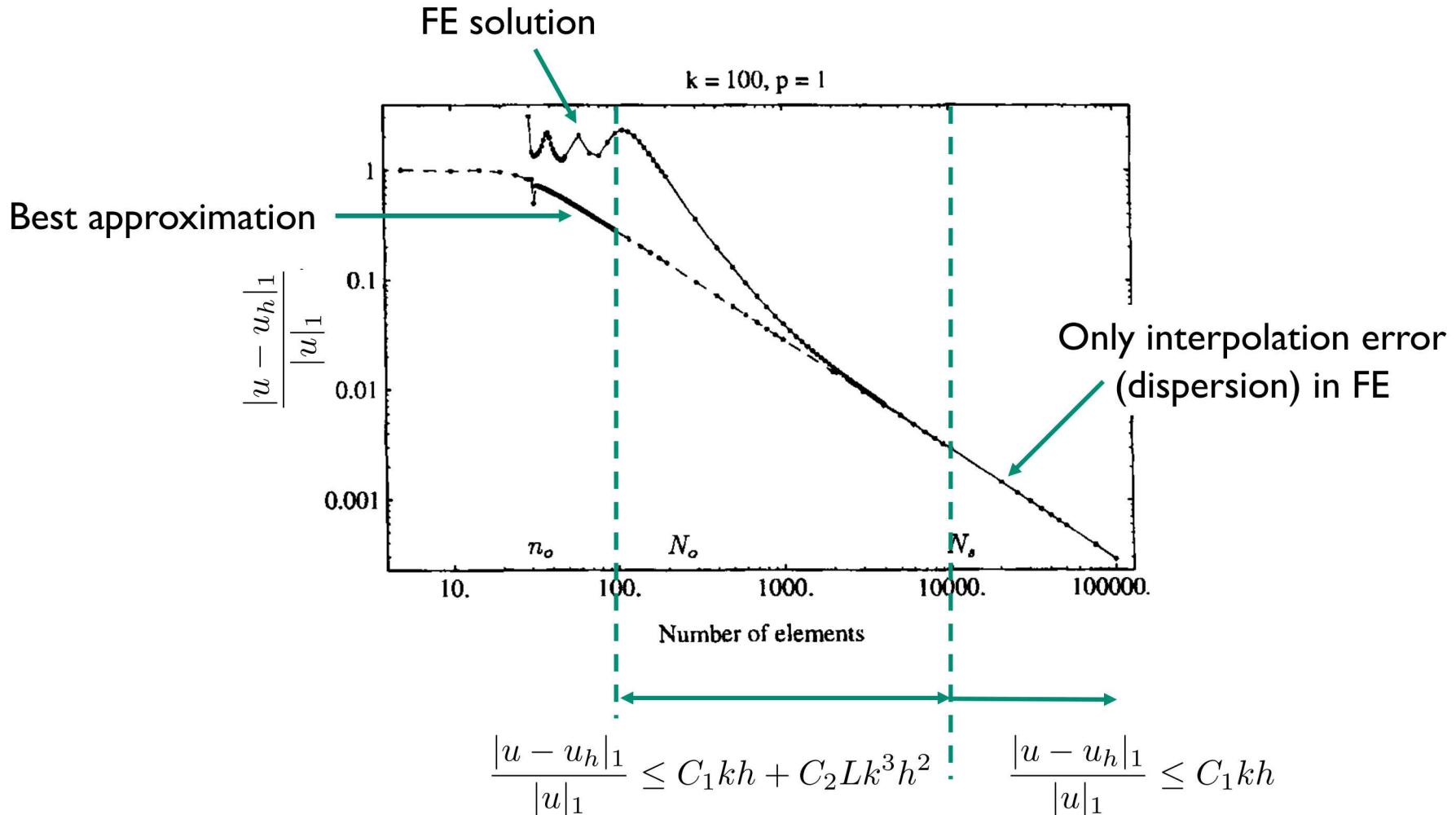


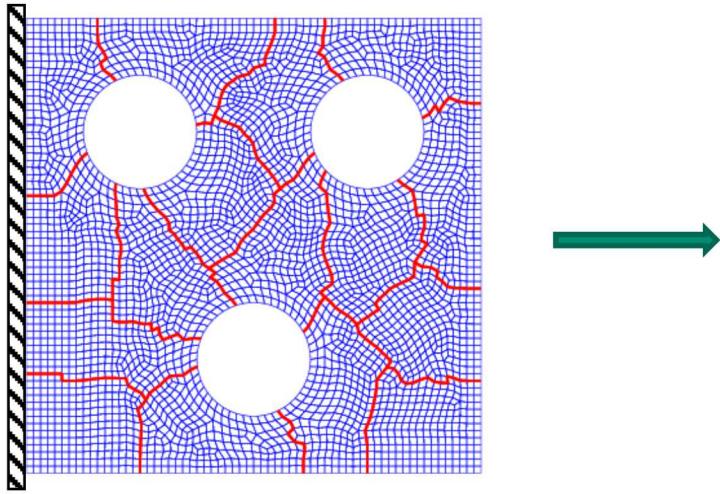
Figure: F. Ihlenburg and I. Babuška. *International Journal For Numerical Methods In Engineering*, 38(22):3745-3774, 1995.

Methods to Reduce Pollution

- Brute force method
- Higher-order shape functions
- Isogeometric analysis
- Enriched/Wave-based finite element methods
- Discontinuous Petrov-Galerkin

Brute Force - Domain Decomposition and Massively Parallel

- Domain Decomposition
 - First performed by Schwarz in the 1870s
 - Decompose model into smaller subdomains, each often assigned to one processor
 - Two-level methods have “local” subdomain and “global” coarse solves
 - Solve using preconditioned conjugate gradients or GMRES
- Massively Parallel
 - Distribution of processors (nodes), each with own memory, linked together by a specialized network communication system



C. Farhat and F.-X. Roux. *International Journal for Numerical Methods in Engineering*, 32:1205-1227, 1991.

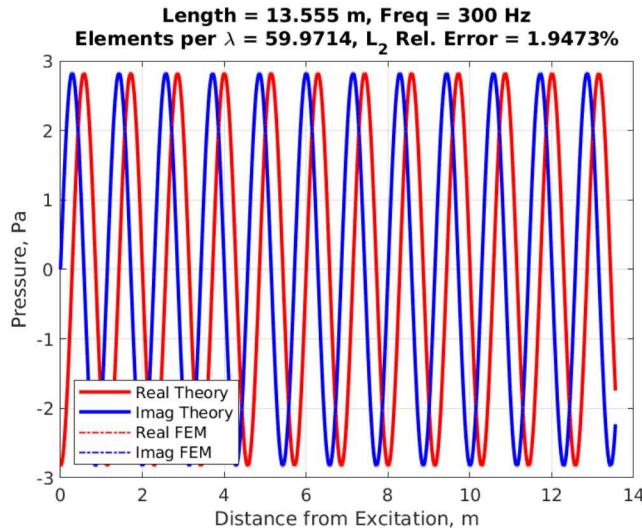
C. R. Dohrmann, and O. B. Widlund. *International Journal for Numerical Methods in Engineering*, 82(2):157-183, 2010.

Higher-order Shape Functions

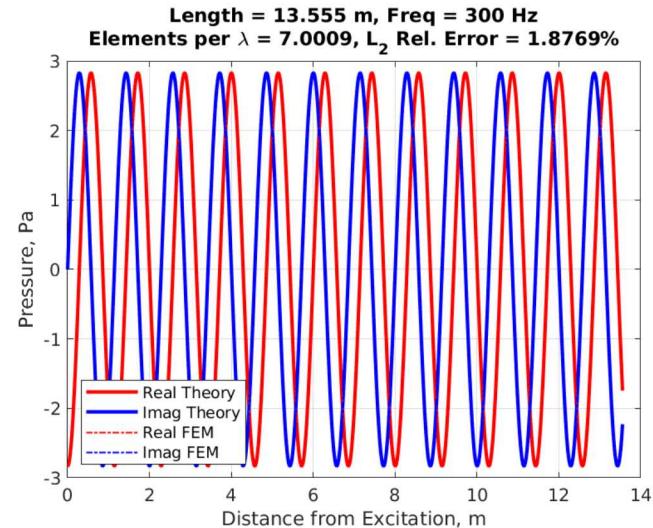
- Express relative error in terms of elements-per-wavelength E_λ

$$\frac{|u - u_h|_1}{|u|_1} \leq \tilde{C}_1 \frac{1}{E_\lambda^p} + \tilde{C}_2 \frac{Lf}{c E_\lambda^{2p}}, \quad kh < 1$$

- As order of shape functions p increases, pollution effect decreases by E_λ^{-2p}
- Comparison of Hex8 ($p=1$) and Hex20 ($p=2$) at 300 Hz:
 - Same relative error with $\frac{1}{4}$ the degrees of freedom



Hex8: 60 elements/wavelength
 L_2 relative error = 1.9 %



Hex20: 7 elements/wavelength
 L_2 relative error = 1.9 %

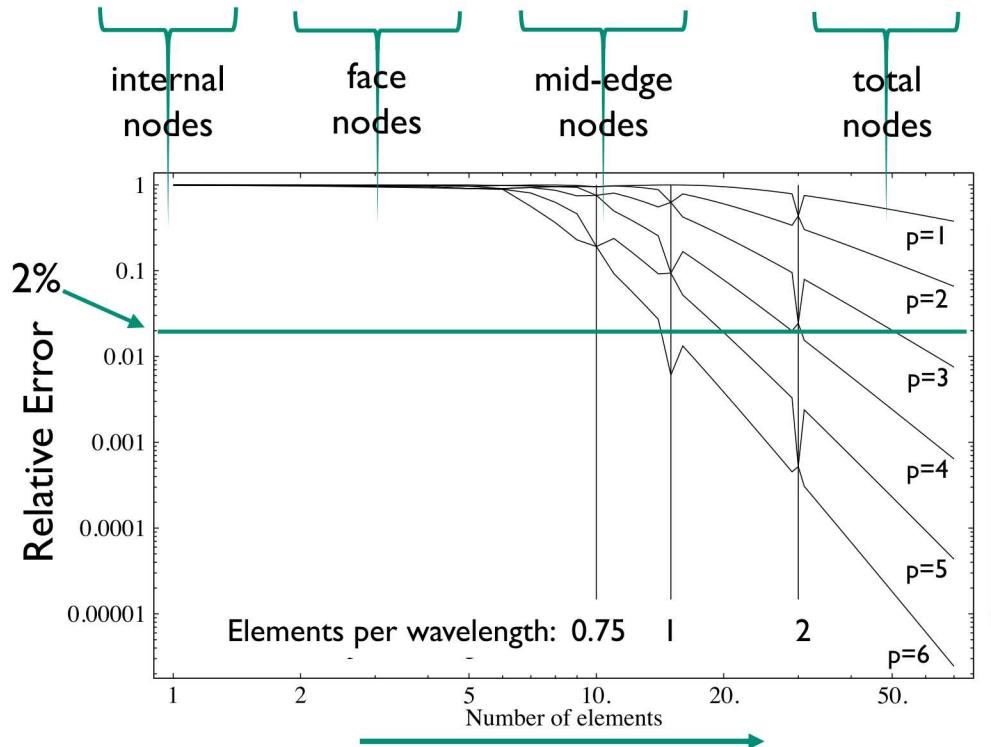
L. L. Thompson and P. M. Pinsky. *Computational Mechanics*, 13(4):255-275, 1994.

F. Ihlenburg and I. Babuška. *SIAM Journal on Numerical Analysis*, 34(1):315-358, 1997.

Hierarchical Polynomial Bases

- High wavenumber and large domains ($kL \gg 1$) require $p > 2$ for accurate predictions and computationally feasible FE system
- Hierarchical Legendre polynomials
 - Add mid-edge, face and internal nodes to standard Hex8:

$$(p-1)^3 + 6(p-1)^2 + 12(p-1) + 8 = (p+1)^3, \quad p \geq 2$$



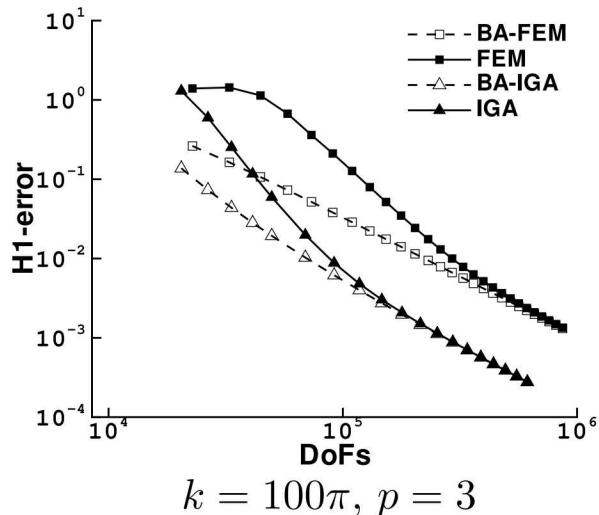
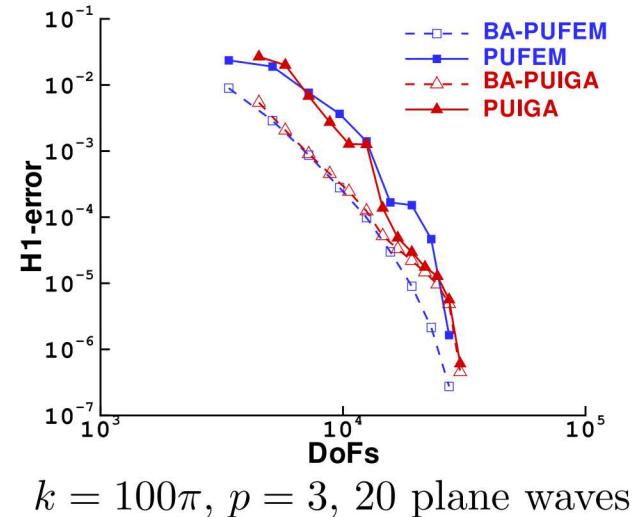
$$\phi_i(x) = \sqrt{\frac{2i-1}{2}} \int_{-1}^{\xi} P_{i-1}(\tau) d\tau$$

Legendre polynomial

I. Babuška, B. A. Szabo and I. N. Katz. *SIAM Journal on Numerical Analysis*, 19(3):515-545, 1981.
 Figure: F. Ihlenburg and I. Babuška. *SIAM Journal on Numerical Analysis*, 34(1):315-358, 1997.

Enriched Isogeometric Analysis

- Proposed by Hughes et al¹
- Uses non-uniform B-splines (NURBS)
 - Defines geometry in CAD models
 - Used as shaped functions for the method
- Improved accuracy relative to classical polynomial shape functions
- An enriched method has been proposed with greater accuracy relative to higher-order piecewise polynomials²



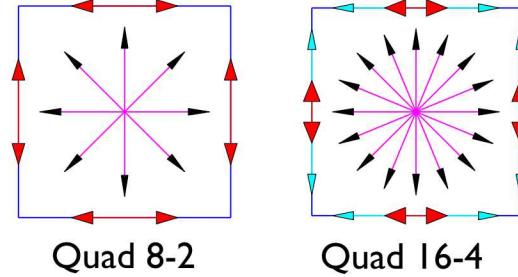
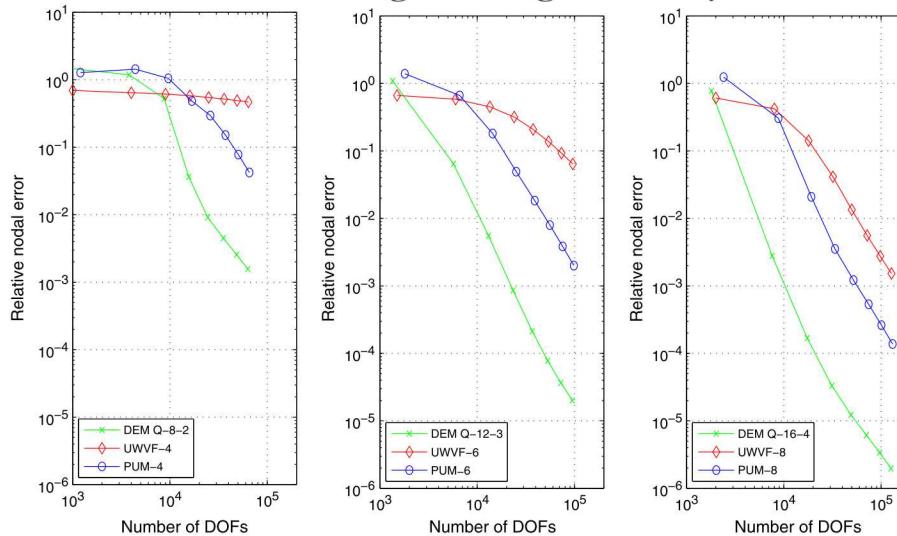
¹ T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. *Comp. Methods in Appl. Mech. and Eng.*, 194(39-41):4135-4195, 2005.

² M. Dinachandra and S. Raju. *Computer Methods in Applied Mechanics and Engineering*, 335:380-402, 2018.

Figures: G. C. Diwan and M. S. Mohamed. *Computer Methods in Applied Mechanics and Engineering*, 350:701-718, 2019.

Enriched / Wave-based Finite Elements

- Incorporate piecewise plane waves into the standard basis functions
- Specific examples:
 - Discontinuous enrichment method¹
 - Ultra weak variational formulation²
 - Partition of unity method³
- DEM and UWF discontinuous, weakly enforce continuity across adjacent elements
- Due to plane wave enrichment, convergence significantly faster than Galerkin FE



¹ R. Tezaur and C. Farhat. *International Journal for Numerical Methods in Engineering*, 66(5):796-815, 2006.

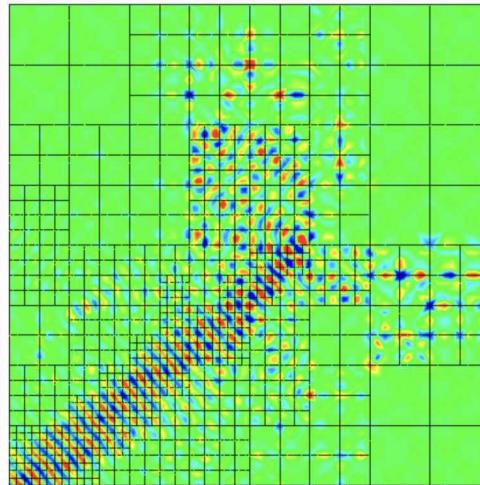
² T. Huttunen, J. P. Kaipio, and P. Monk. *SIAM Journal on Numerical Analysis*, 213(1):166-185, 2008.

³ A. El Kacimi and O. Laghrouche. *International Journal for Numerical Methods in Engineering*, 77(12):1646-1669, 2009.

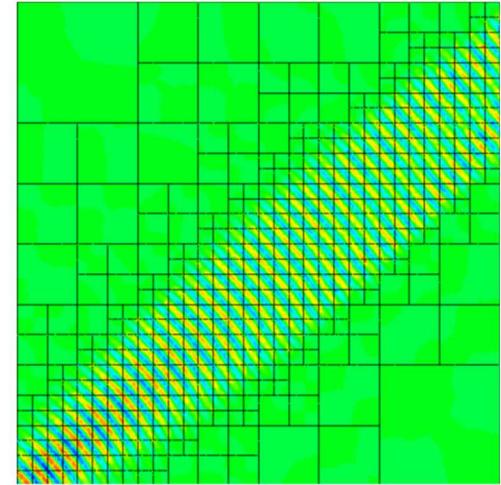
Figures: D. Wang, R. Tezaur, J. Toivanen, and C. Farhat. *Inter. Journal for Num. Methods in Engineering*, 89(4):403-417, 2012.

Discontinuous Petrov-Galerkin

- Developed by Demkowicz at UT Austin
- Trial functions are continuous, test functions are discontinuous
 - Computes optimal test functions on the fly
- Ultraweak formulation
 - Positive definite matrices
- Pollution is diffusive rather than dispersive
 - Pollution free in 1D
- Unconditionally stable
 - Allows for hp-adaptivity



Galerkin FEM



DPG

L. Demkowicz and J. Gopalakrishnan. *ICES REPORT 15-20, The University of Texas at Austin*, 2015.

J. Zitelli and I. Muga and L. Demkowicz and J. Gopalakrishnan and D. Pardo and V. M. Calo. *Journal of Computational Physics*, 230(7): 2406-2432, 2011.

Figures: S. Petrides. *PhD Dissertation, The University of Texas at Austin*, 2019.

Conclusions

- Pollution effect is the dominate accuracy issue in the mid-frequency range
 - Occurs in one, two and three spatial dimensions
 - Can not eliminate in 2D and 3D for Galerkin FE
- Pollution is the accumulation of interpolation error over the domain
 - Increases with increasing kL
- Much of the understanding was developed in the mid-1990s
 - Began with the famous paper by Bayliss, Goldstein and Turkel
- Many methods to alleviate pollution
 - All methods seek to converge as best approximation with coarsest discretization
 - Main methods are p-refinement and plane wave enrichment
 - DPG provides unconditional stability for hp-adaptivity
- Related note: pollution also occurs in the Boundary Element Method¹
 - Appears as diffusion

¹ S. Marburg. *Journal of Theoretical and Computational Acoustics*, 26(2):1850018, 2018.