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Abstract—Deciding on an imaging modality for terrain classi-
fication can be a challenging problem. For some terrain classes a
given sensing modality may discriminate well, but may not have
the same performance on other classes that a different sensor may
be able to easily separate. The most effective terrain classification
will utilize the abilities of multiple sensing modalities. The chal-
lenge of utilizing multiple sensing modalities is then determining
how to combine the information in a meaningful and useful way.

In this paper, we introduce a framework for effectively combin-
ing data from optical and polarimetric synthetic aperture radar
sensing modalities. We demonstrate the fusion framework for two
vegetation classes and two ground classes and show that fusing
data from both imaging modalities has the potential to improve
terrain classification from either modality, alone.
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I. INTRODUCTION

A given remote sensing modality, such as optical imagery,
gives two-dimensional spatial information and measurements
from a narrow portion of the electromagnetic (EM) spectrum.
Furthermore, with multiple acquisitions of a scene over a time
interval, temporal information can also be derived. Combining
optical imagery with LiDAR data, for example, can give in-
formation on the third spatial dimension. Further combination
with another imaging modality, such as synthetic aperture radar
(SAR), can extend the EM dimension of information [1].

Combining and utilizing information from multiple sensing
modalities can give tremendous more ability than working
with data from any given sensor alone. However, combining
information from multiple sources is not a trivial problem.
There are many articles that address multi-source and multi-
temporal data fusion for various purposes, such as fusing SAR
and optical data to retrieve soil moisture in vegetated areas
[2] and to determine urban land cover [3]. Other researchers
have also used SAR and optical imagery for land-cover clas-
sification utilizing support vector machines (SVMs) [4], [5],
genetic algorithms for feature selection combined with SVMs
[6], neural networks [5], and dynamic learning neural networks
[7].

In this paper, we use the probabilistic feature fusion (PFF)
one-class classifier for terrain classification [8]. PFF-based
classifiers may require more up-front feature modeling than
other classifiers, but they also offer the advantage of being
able to trace decisions back to individual features which many
other classifiers do not provide.

II. DATA

The data for this research consists of high-resolution optical
and PolSAR imagery. The optical images were collected on

June 14, 16, and 18, 2016 and the PolSAR images were
collected on March 17, 2016. Figure 1(a) illustrates a pseudo-
colored PolSAR image of the scene and figure 1(b) illustrates
the optical image of the scene.

A. Optical

The optical images were collected with a commercially
available digital single-lens reflex (DSLR) camera with a Bayer
RGB filter. The camera was flown on-board an unmanned
aerial system (UAS). Sixteen ground control points were setup
in the peripheral extremities of the scene to enable geo-
referencing the optical images. An automatic white balance
adjustment was applied to the optical images. The pixel size
of the optical imagery is 0.025 m.

A natural pixel-wise feature vector can be extracted from
the R, G, and B (RGB) color channels; however, the color
channels tend to be highly correlated for the terrain categories
considered. The RGB data were transformed into the CIE 1976
Lab color space and then used to define the optical feature
vector,

vopt = [Lab]”. 1)

B. Polarimetric SAR

The PolSAR data were collected with the Sandia National
Laboratories-developed Facility for Advanced RF and Al-
gorithm Development (FARAD) X-band radar flown on a
DHC-6 airplane. The SAR sensor was in videoSAR mode,
which continuously collects phase histories around a circular
trajectory about the scene center, and collected multiple passes
(circular trajectories) of the scene. The stand-off range of the
radar to the scene center was nominally 3460 m with a grazing
angle of 38°.

Calibrated polarimetric image sets were formed every 5°
around the circular trajectories at 0.2032 m range and azimuth
resolution. The image sets between two different passes were
then co-registered in order to form coherence change detection
(CCD) maps [9]. The PolSAR image sets were then processed
through the G4U [10] and H/A/« [11] polarimetric decom-
positions to produce maps of each of the respective parameter
sets from the decompositions. The total power (span) maps
were also formed from the PolSAR image sets. Finally, the
derived parameter maps were multi-looked across 20° arcs of
the circular trajectory in order to reduce speckle and improve
parameter estimates.

A feature vector can be extracted from the multi-looked
parameter maps. The feature vector contains the following
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where {H, o} are H/A/«a decomposition parameters (note
the A parameter is not used), {P,, Py, P,, P.} are G4U
decomposition parameters, Span is the total power parameter,
and +y is the coherence parameter.
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Fig. 1. [Illustration of the imaged scene from (a) a pseudo-colored, multi-
looked PolSAR image, and (b) the optical image.

C. Optical/PolSAR Image Co-Registration

In order to perform data fusion terrain classification, the
feature vectors from both the optical and PolSAR data must
be co-aligned. The multi-looked PolSAR parameter maps were
geo-rectified, the optical images were re-sampled to match

the same pixel spacing as the PolSAR parameter maps, and
then a manual warping was done to achieve co-aligned pixels.
After co-aligning the images sets, the feature vectors from the
different imaging modalities can be combined as,

o { VSAR ] ) 3)
Vopt
There are unique geometric differences between the two
imaging modalities, such as layover in SAR imaging, that have
not been compensated. The terrain classes considered here
contain classes where geometric differences are negligible.

III. DATA FUSION

In this section, we describe our data fusion terrain clas-
sification method. The steps that will be covered include:
first, selecting training data for the terrain classes from a
joint segmentation of the PolSAR and optical images; second,
selecting discriminating features from the combined feature
vector for each class; third, modeling the selected features with
probabilistic feature fusion.

We selected two vegetation classes, VEG1 and VEG2, and
two ground classes, GRD1 and GRD2, to demonstrate the
proposed method. Figure 2 illustrates examples of the training
data selected from these classes.
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Fig. 2. Illustration of the terrain classes: (a) VEGI, (b) VEG2, (¢) GRDI,
and (d) GRD2. On the left is the optical data and on the right is the color-
composite POISAR data. The outlines illustrate examples of selected training
data.

A. Selecting Training Data

The selection of training data from heterogeneous data types
must be done with care. It may be that the terrain from one
imaging modality looks homogeneous, but heterogeneous in
the other, due to the measured reflectance or back-scatter. To
help ensure training data is consistent for each terrain class, the
optical and PolSAR images can be combined. We generated
color-composite images of the PolSAR images and used the
‘imfuse’” command in Matlab to combine the green channel
from the optical images and color-composite PoISAR images.
We used the combined images along with the PolSAR and
optical images to select training and test data.



A superpixel segmentation is then performed on the fused
image using the simple linear iterative clustering (SLIC) al-
gorithm [12]. Each superpixel contains relatively homogenous
regions of nominally 40 pixels. The training data were selected
by selecting superpixels; however, the terrain classification is
performed on the pixel data within the superpixels.

B. Feature Selection

The combined feature vector has eleven elements; however,
depending on the terrain class, not every element is a useful
feature. Plotting pair-wise scatterplots of the feature vector
training data allows a way to visualize which feature vector
elements discriminate between terrain classes. Figure 3 illus-
trates a scatterplot of the P, and b feature vector training data
for four terrain classes. In the figure, it is clear that the P,
parameter helps to separate the classes that the b parameter
could not do alone, and vice versa.
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Fig. 3. Illustration of a scatterplot from the P, and b feature vector superpixel
training data for two vegetation classes (green and blue) and two ground
classes (yellow and magenta).

C. PFF Classifier

Probabilistic feature fusion (PFF) is a Frequentist framework
for one-class classification. The PFF framework allows for
defining and selecting discriminating features, each of which
are individually modeled. For the data in this paper, each
feature in the PFF framework consists of the absolute distance
computed from the mean of the selected features from the pair-
wise scatterplot training data for each terrain class. Gamma
probability distributions fit the metric data well and were used
to model the feature data. For the features of a given terrain
class, the PFF framework fuses the p-values generated from the
gamma distributions to give a final fused p-value. The fused
p-value gives a measure of consistency with the training data
for each terrain class.

The feature vector elements for the four terrain classes,
determined from the scatterplot data, are summarized in table
I. Note that the Fused VEG1 and VEG2 PFF models only
have PolSAR feature vector elements; however, the GRDI1
and GRD?2 features include feature vector elements from both
imaging modalities. For the VEG1 and VEG2 classes, the

scatterplot data from the optical imagery are highly overlapped,
whereas the scatterplot data from both imaging modalities

showed separability for the GRD1 and GRD2 classes.

TABLE 1. SELECTED FEATURE VECTORS FOR EACH TERRAIN CLASS
AND FOR EACH DATA SET.
VEGI VEG2 GRD1 GRD2
RGB L.a,b L,a,b L.a,b L.a,b
SAR H.Py.Py.B: | H.Py.Pu.Bs H,P,y H,P,,y
Fused H, PP, P. | H PP, P, H,P,y,Lb | H,P,y,Lb

The training data were used to compute the mean for each
of the selected features for the absolute distance metric and
then gamma distributions were fit to each set of metric data.
Figure 4 illustrates the fused p-value output of the four selected
features for the VEGI class for both in-class and out-of-class
data.
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Fig. 4. Tllustration of the fusion of selected features for PFE. The upper-left
plot illustrates the theoretical probability distribution fit to the fused in-class
training data; the upper-right plot illustrates the in-class p-value distribution,
which is ideally uniform; the lower-left plot shows that the out-of-class data
is very separate from the theoretical in-class distribution; and the lower-right
plot shows that the out-of-class samples have low p-values.

IV. RESULTS

To illustrate the proposed heterogeneous terrain classifica-
tion algorithm, we selected training data for two vegetation
classes and two ground class in the training imagery and
trained the PFF classifiers for each class. We then applied the
PFF classifiers to validation data, selected from the same im-
agery set as the training data, to determine the performance of
the data fusion compared to each imaging modality separately.

Figure 5 illustrates the receiver operating characteristic
(ROC) curves of the terrain classifier models from the different
imaging modalities and the fusion of them on the validation
data. As can be seen from the figure, the fused and the PoISAR
data have equivalent performance on the vegetation classes,
which is to be expected since the vegetation classes are formed
from the same feature vector elements in both cases. The fused
ground classes, however, incorporate features from both the
optical and the PolSAR data and can be seen to have superior
performance compared to either data set alone for the most
meaningful regions of the ROC curves.



Fig. 5.
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Iustration of the ROC curves for each terrain PFF model from the optical, PoISAR, and fused data. The fused data can be seen to have equal or
superior performance compared to the performance of the data from each separate imaging modality over the meaningful regions of the ROC curve.

V. CONCLUSION

In this paper we introduced and successfully demonstrated
an optical and PolSAR data fusion framework for terrain clas-
sification using the PFF one-class classifiers. The ROC curves
illustrate that adding optical data to the PolISAR data increases
the performance of both of the ground terrain classes.
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