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High-fidelity simulations are crucial for hypersonic vehicle

analysis and design
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Mach # and wall pressure contours for HIFiRE-1
obtained from the SPARC CFD solver

Time =49.910000
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Temperature of a slender body in hypersonic flow
obtained from the SPARC CFD solver

*High-fidelity: extreme-scale, nonlinear dynamical system model.
* High cost: An unsteady multi-physics simulation can consume weeks on a supercomputet.

*High cost creates a “computational barrier” to the application of many-query and/or time-critical

problems:

* Many-Query: Design Optimization, Model Calibration, Uncertainty Propagation
* Time-Critical: Path Planning, Model Predictive Control, Health Monitoring
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3 | We use model reduction to break the computational barrier
by exploiting high-fidelity simulation data

1. Acquisition: Run high-fidelity simulation

at a few design points, save simulation data

2. Learning: Use machine learning
techniques to identify low-dimensional
structure in the high-fidelity simulation
data

3. Reduction: Build a reduced order model
(ROM) with extracted data structures,
high-fidelity governing equations

‘D Design space
4.  Deployment: Use ROM at remaining O High-fidelity solution

design points *  ROM solution

Model Reduction Criteria
. Accuracy: achieves less than 1% error
. Low cost: achieves at least 100x computational savings

. Property preservation: preserves important physical properties
. Generalization: should work even in difficult cases and for many application codes
. Certification: accurately quantify the ROM error




4 I There is very little previous work on projection-based model
reduction for Hypersonic Vehicles

*No projection-based ROMs for hypersonic aerodynamics!
*[Dalle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.

*[Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model.

*[Falkiewicz et al. 2011]: Multi-physics Hypersonic vehicle ROM: coupled heat transfer ROM to
piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal
response structural model.

*[Crowell and McNamara, 2012]: kriging-based surrogate model approaches for vehicle surface
pressures and temperatures.

*[Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.




s | Our research satisfies model reduction criteria for nonlinear
dynamical systems

Our model reduction research at Sandia
* Accuracy

» LSPG projection: our baseline approach, has been applied to a compressible solver
[Catlberg, Bou-Mosleh, Farhat, 2011; Catrlberg, Barone, Antil, 2017]

e Low cost

—_— b 15t a fraction of the data for evalutaing nondinear finctions [Caslb Model Reduction Criteria
ample mesn: #se a jraction o ¢ aald 01 eValuiaing noninear Juncrions ariperg, 5
parhft, Cortial, Amsallem, 2013 : ¢ . Accuracy: achieves less than 1% error

» Space—time LSPG projection: learn and exploit structure in spatial and temporal . Low cost: achieves at least 100x
data |Catlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher, Computation al savi ngs

Haasdonk, Barth, 2017; Choi and Carlberg, 2019 : :
sasdonks, Barth, 2017; Chot and Carlberg, 2019) Property preservation: preserves important
* Property preservation

physical properties

Generalization: should work even in difficult
cases and for many application codes
Certification: accurately quantify the ROM
error

» Impose additional physical constraints (e.g. conservation) [Cartlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

 Generalization

» Projection onto nonlinear manifolds: high capacity nonlinear approxcimation [Lee,

Carlberg, 2018]
> h-adaptivity: trade cost for accuracy [Catlberg, 2015; Etter and Carlberg, 2019]
» Pressio software: deploy methods for many application codes

e Certification

» Machine learning error model: guantify reduced model uncertainties [Drohmann
and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Catrlberg,
2019; Pagani, Manzoni, Carlberg, 2019]




Least Squares Petrov—Galerkin (LSPG) for steady systems

6 [Carlberg, Bou-Mosleh, Farhat, 201 |; Carlberg, Barone, Antil, 2017]

*High-fidelity simulation = F(X; ) = 0

1. Acquisition

Solve at different
design points

Number of State

Variables

3. Reduction

Number of snapshots, N

<
<

Ll
v

[

Reduce the
number of
unknowns

Save solution data
Compute

2. Learning
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Proper Orthogonal Decomposition
(POD):
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initial guess
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Conservation can be enforced with additional constraints
7 [Carlberg, Choi, Sargsyan, 2018]

*High-fidelity simulation = F(X; ) = 0

1 o Ach]S]tlon ‘Number of snapshots, N - 3 . Red UCtlon
F g Decduze th X(p) = X(j1) = @ “I(u/)
) educe the
§ % number of
£ = unknowns
Solve .at different Save solution data
design points N
Compute o) =" C %%
2. Learning }2‘:‘2& b =0 H A
Proper Orthogonal Decomposition . ¢ = normalization constant
(POD): minimize |[|[Ar(®U; u)|/3
U X v’ Minimize the s.t. Cr(®V; ) =0
Residual Enforce conservation over subdomains:




We do hyper-reduction with collocation to keep offline costs down
*Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:
LSPG: minimize ||Ar(®U; p)lf5 A :|]:|:[|:I Collocation (1 000 .. 0

v - 0 0 10 .. 0

choose rows of A 1 0

from identity matrix )

» Inexpensive compared to DEIM and GNAT.

*Sample mesh: subset of cells required to compute residual

*We consider random sampling of cells in this study.

Sample Mesh:

Full Mesh:




9 I Pressio enables deployment of ROM methods to a range of

applications

*Previous ROM methods were implemented directly in
multiple application codes

X Highly intrusive: major changes to application code

XNot generalizable: individual ROM implementation for each
application

X Access requitements: developers need direct access to
application

*Pressio, a software package that addresses all three of
these issues:
v’ Minimal APT method implementation.

v'Leverages modern software engineering practices (e.g. C++
template-metaprogramming)
> Restricted to practices used by mission application partners
v'Facilitates contributions from external partners

» Open soutce

v'Clear separation between methods and application

rom }

Adapter

: int main() lﬁﬂ,t Tf,ng

Application Core Code
T = f(ma t; IJ’)
z(0; p) = @o(p)

......................................................................

Application Side

Schematic of Pressio software workflow

https://github.com/Pressio



0 | Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

*Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes

* Being developed to run on today’s leadership-class supercomputers _
and exascale machines. Time =49.910000

* Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.

Fluid Temp [K]
2.367e+03

1.846e+03

CPU/GPU) 1.3266+03

. g @ o 8.051e+02

*Physics Capabilities include: | A
* Navier—Stokes, cell-centered finite volume method

Solid Temp [K]

* Reynolds-Averaged Navier—Stokes (RANS) , cell-centered 1 8766+03

finite volume method | 1.469e+03

1.061e+03

* Transient Heat Equation, Galerkin finite element method.  s0mren

* Decomposing and non-decomposing ablation equations, Galerkin 2.4630+02
finite element method.

Temperature of a slender body in |

* One and two-way coupling between ablation, heat equation, RANS.
hypersonic flow simulated with SPARC



Test Case: HIFiRE-1 flight vehicle

O
*Flow tield:

* Free stream Mach No. = 7.1
* Reynolds No. = 10.0

million/meter
* Angle of Attack = 2 degrees
* Boundary layer transitions to

turbulence (use Spalart-Allmaras

with specified transition location)

*Spatial discretization: Close up of nose: I

= le+/
5e+6

2e+6
le+6
500000

wall-heat-flux
|
s
Ma

200000 )

100000 [ ]
— 3.6e+04 1.7e-03

o 20d_prder finite volume  1.86407
* 2,031,616 cells
* y"<1 near wall
*Solver:
* Pseudo time stepping with
backward Euler, CFL schedule.




2 | Training Data and Model details

*Samples:
* Varied freestream density and velocity
* Training set: 24 sample Latin hypercube
* Test set: 12 sample Latin hypercube

*POD basts:
* Mean flow subtracted from each snapshot.

* Hach conserved quantity scaled by its maximum over all
FOM solutions.

* 2,4, and 8 mode basis were considered.

*ROM: LSPG solved with Gauss-Newton iteration

* Initial guess obtained via inverse-distance interpolation of
POD modes.

* Full mesh, two sample meshes considered
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i3 | Full Mesh ROM L2 State Error

Parameter Space:

2 Modes
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*State error around 1% or less

*Interpolated state error up to 20%

*Conservation constraint improves accuracy

104 103 102 101
State LZ Error

*Accuracy increases with number of modes



14 | Full Mesh ROM L2 State Error

Density (kg/m?3)

*State error around 1% or less

Parameter Space:

8 .
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*Interpolated state error up to 20%

*Conservation constraint improves accuracy

*Accuracy increases with number of modes
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s | Full Mesh ROM L2 State Error

Density (kg/m?3)

Parameter Space:
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*State error around 1% or less

*Interpolated state error up to 20%

*Conservation constraint improves accuracy

*Accuracy increases with number of modes

Case #

11
10

8 Modes

|G R LSPG B C-L5PG

Bl FOM proj.

| w

9
8
7
6
3
2
1
0

104 103 102
State LZ Error

10°



Full Mesh ROM Wall Heat Flux Error
4 Modes
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*Wall heat flux error around 1-3% B-----—------—-——---{"

*Wall heat flux from 1nitial guess varies widely

*Conservation constraint improves accuracy

* Accuracy increases with number of modes W wms | 10 R
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17 I Sample Meshes

Sample Mesh A
2032 Random cells (0.1% of full mesh)
49467 cells (2.4% of full mesh)

Sample Mesh B
*813 Random cells (0.04% of full mesh)
*19901 cells (0.98% of full mesh)




18 I Sample Mesh ROM L2 State Error

Parameter Space:
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19 I Sample Mesh ROM L2 State Error

Parameter Space:
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20 I Sample Mesh ROM Heat Flux Error

Density (kg/m?3)

Parameter Space:
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*Wall heat flux error around 1-3%

*Conservation constraint Improves accuracy

*Sample mesh can be more accurate than full

mesh!
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21 | Performance of ROM with conservation constraint

Parameter Space:

0.070

0.068

0.066

0.064

Density (kg/m?3)

0.062

0.060 -

0.058

0.056

¢ " g ¢ training set
o8 » e testset
i . 0 N
¢
..1 .10
. ]
3 .0
™ " .7
L]
.
011 ¢ ¢
4
¢ .2
¢ ¢
.5
¢
.4 ¢
58 60 62 64 66 68 70

Mach Number

*Could run hundreds or thousands of ROMs
in the same CPU time as one FOM!

*Full mesh ROM is at least 400X faster than

the corresponding FOM run.

*Hyper-reduced ROMs are 2,000-10,000X
faster than the corresponding FOM run.
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2 | Increasing ROM robustness with nonlinear mapping of POD basis

*FFailed cases shown earlier are due to small regions of negative temperature.

*States with non-physical features are encountered by ROM solver more often as basis is
made smaller and/or parameter space is increased in size.

*Solution: nonlinear mapping of POD modes to remove non-physical features from
approx. state vector:

minimize ||Ar(®U; )]|5 mmm) minimize [Ar(g(®0); w)]|5

Where g transforms the conserved quantities in each cell as follows:

U2 — U2
Us = U3
Ug = Uy




23 I Training Data and Model details

*Samples:

* Varied freestream density and velocity
* Training set: Mach Numbers [4.97, 5.40, 5.83, 6.25, 6.68, 7.10]
* Test set: Mach Numbers [5.19, 5.61, 6.04, 6.46, 6.89]

*POD basis:

* Mean flow subtracted from each snapshot.
* FHach conserved quantity scaled by its maximum over all FOM solutions.

* Basis truncated to 4 modes, capturing 99.98% of statistical energy.

*ROM: LSPG solved with Gauss-Newton iteration
* Initial guess obtained via inverse-distance interpolation of POD modes.

* Simple Armijo rule line search OR nonlinear mapping used to avoid non-
physical solutions

* Hyper-reduction not tested for this case.




Mach Number

Nonlinear mapping vastly improves robustness and accuracy of ROML_IE

6.89 6.890
6.46 6.46
G
[ MEA LSPG
6.04 e 6.04
s FOM proj.
5.6] P— 5.61
> 19 =LI 219
104 103 10— 101 109 104 103 1ijj|—E 1(}—1 1009
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*Without nonlinear mapping or line search, only the Ma=5.19 case converges.

*Nonlinear mapping is more accurate than line search for higher Mach numbers

H



25 | Conclusions

*High-fidelity simulations are crucial, but
expensive for hypersonic vehicles

*Model reduction of hypersonic flows with
LSPG shows promise:

» Pressio-SPARC adapter enables minimally
intrusive ROM implementation.

» Results for HIFIRE show low cost and accuracy
of LSPG.

» Global conservation constraint improves ROM
accuracy considerably

»Nonlinear mapping of POD modes improves
ROM robustness, allows for less snapshots
and/or larger parameter range.

FOM
2:02:57, 128 cores

— 1.1e+07 6.8e+00

= 5e+6

2e+6

lo+6 § -4 - ROM
o0z -3 = 0:00:04, 16 cores
200000 ° |2 0
>1% error
100000 I:1
L 5.0e+04 1.4e-03

https://github.com/Pressio



Time = 49.910000

26 | Future Work

2.367e+03

1.846e+03
1.326e+03
8.051e+02

*Sample mesh/hyper-reduction algorithms L‘ N

1.469e+03

*Consider larger parameter variations and multiple parameters ' i

6.539e+02

2.463e+02

*Efficient M-ROM implementation, extension to non- 2
equilibrium chemistry Temperature of a slender body in

hypersonic flow simulated with SPARC
*New cases

»Double cone with non-equilibrium chemistry. o
»Thermal and Ablation model ROMs

12
11
o 10

*Goal: apply ROM to physically relevant parameter space,
such as a range of flight conditions

== fol L8 B LR O ~d D6

Double cone Mach contours
courtesy J. Ray, Sandia
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Upcoming: a paper on Pressio (https://github.com/Pressio)
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29 I Convergence for Full Mesh ROMs

Relative Residual L2 Norm
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30 I Convergence for HROM, Sample Mesh A
LSPG, 4 Modes

Relative Residual L2 Norm
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31 | Convergence for line search and nonlinear mapping ROMs

Relative Residual L2 Norm
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