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2 I High-fidelity simulations are crucial for hypersonic vehicle
analysis and design

Time = 49.910000

Pressurewall
3.5e.03 51XXX, I CCM 1500XI 20X03 251:030 2.9e+05

Mach # and wall pressure contours for HIFIRE-1
obtained from the SPARC CFD solver

•High-fidelity: extreme-scale, nonlinear dynamical system model.
• High cost: An unsteady multi-physics simulation can consume weeks on a supercomputer.

•High cost creates a "computational barrier" to the application of many-query and/or time-critical
problems:
• Many-Query: Design Optimization, Model Calibration, Uncertainty Propagation

• Time-Critical: Path Planning, Model Predictive Control, Health Monitoring

Fluid Temp [K]
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Solid Temp [K]
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1.469e+03
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6.539e+02

2.463e+02

Temperature of a slender body in hypersonic
obtained from the SPARC CFD solver

flow



3 I We use model reduction to break the computational barrier
by exploiting high-fidelity simulation data

1. Acquisition: Run high-fidelity simulation
at a few design points, save simulation data

2. Learning: Use machine learning
techniques to identify low-dimensional
structure in the high-fidelity simulation
data

3. Reduction: Build a reduced order model
(ROM) with extracted data structures,
high-fidelity governing equations

4. Deployment: Use ROM at remaining
design points

.

.

•

.

0 .

.
•

.

.

.

.

D Design space
High-fidelity solution

ROM solution

.

Model Reduction Criteria
1 . Accuracy: achieves less than 1% error
2. Low cost: achieves at least 100x computational savings
3. Property preservation: preserves important physical properties
4. Generalization: should work even in difficult cases and for many application codes
5. Certification: accurately quantify the ROM error



4  There is very little previous work on projection-based model
reduction for Hypersonic Vehicles
•N o projection-based ROMs for hypersonic aerodynamics!

•[Dalle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.

•[Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection RO
finite-element model.

for unsteady heat transfer

•[Falkiewicz et al. 2014 Multi-physics Hypersonic vehicle ROM: coupled heat transfer ROM to
piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal
response structural model.

•[Crowell and McNamara, 2014 kriging-based surrogate model approaches for vehicle surface
pressures and temperatures.

•[Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.



5 I Our research satisfies model reduction
dynamical systems

Our model reduction research at Sandia
• Accuracy

>. LSPG projection: our baseline approach, has been applied to a compressible solver
[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

• Low cost

> Sample mesh: use a fraction of the data for evalutaing nonlinear functions [Carlberg,
Farhat, Cortial, Amsallem, 2013]

> Space—time LSPG projection: learn and exploit structure in spatial and temporal
data [Carlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher,
Haasdonk, Barth, 2017; Choi and Carlberg, 2019]

• Property preserva tion

> Impose additional physical constraints (e.g. conservation) [Carlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

• Generalization

> Projection onto nonlinear manifolds: high capaci0 nonlinear approximation [Lee,
Carlberg, 2018]

> h-adaptivity: trade cost for accurag [Carlberg, 2015; Etter and Carlberg, 2019]

> Pressio software: deploy methods for many application codes

• Certification

> Machine learning error model: quantift reduced model uncertainties [Drohmann
and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Carlberg,
2019; Pagani, Manzoni, Carlberg, 2019]

criteria for nonlinear

Model Reduction Criteria
. Accuracy: achieves less than 1% error
. Low cost: achieves at least 100x

computational savings
3. Property preservation: preserves important

physical properties
4. Generalization: should work even in difficult

cases and for many application codes
5. Certification: accurately quantify the ROM

error



6
Least Squares Petrov—Galerkin (LSPG) for steady systems
[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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Solve at different
design points

•High-fidelity simulation = r(x; it) 0

Number of snapshots, N
1 

Save solution data

2. Learning
Proper Orthogonal Decomposition

(POD):

X ;u z VT

3. Reduction

Reduce the
number of
unknowns

Compute
initial guess
for X(p,):

Minimize the
Residual

X(P) 541-1) = k(iet)

I

N
ilG(11)  RIG Gai),

i=0

c = normalization constant

minimize A
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7 I Conservation can be enforced with additional constraints
[Carlberg, Choi, Sargsyan, 2018]
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•High-fidelity simulation = r(x; it) 0

Number of snapshots, N

Save solution data

2. Learning
Proper Orthogonal Decomposition

(POD):

;u z VT

3. Reduction

Reduce the
number of
unknowns

x(P) 541-1) = k(iet)

I

N 
Compute RIG(p)  RIG Gai),

initial guess i=c) /1/
for X(µ):

c = normalization constant

Minimize the
Residual

minimize 1lAr(Vi; it)1
2
2

s.t. Cr(wv, it) = 0

Enforce conservation over subdomains:

r flArkf
CVW.P/Alk

Aar



8 I We do hyper-reduction with collocation to keep offline costs down

•Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:

LSPG: minimize lAr(41)0;,u,)3
c, A=

Collocation
=

choose rows of A
from identity matrix

>Inexpensive compared to DEEM and GNAT.

•Sample mesh: subset of cells required to compute residual

•We consider random sampling of cells in this study.

(1 0 0 0 ... 0)
(0 0 1 0 ... 0)
(0 0 1 0 0)



9 I Pressio enables deployment of ROM methods to a range of
applications

•Previous ROM methods were implemented directly in
multiple application codes
X Highly intrusive: major changes to application code

XNot generalizable: individual ROM implementation for each
application

X Access requirements: developers need direct access to
application

•Pressio, a software package that addresses all three of
these issues:
VMinimal API method implementation.

VLeverages modern software engineering practices (e.g. C++
template-metaprogramming)
➢ Restricted to practices used by mission application partners

VFacilitates contributions from external partners
➢ Open source

VClear separation between methods and application

Ap
pl
ic
at
io
n 
Si

de
 

mpl utils containers qr svd solvers ode
, 

rom

..

o

int main()

x, t f, JO

Adapter

I-

x,t Tf,J0

Application Core Code

± = f (x,t, µ)

x(0; it) = xo(j-t)

Schematic of Pressio software workflow

https://github.com/Pressio



10  Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

•Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes
• Being developed to run on today's leadership-class supercomputers
and exascale machines.

• Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.
CPU/GPU)

•Physics Capabilities include:
• Navier—Stokes, cell-centered finite volume method

• Reynolds-Averaged Navier—Stokes (RANS) , cell-centered
finite volume method

• Transient Heat Equation, Galerkin finite element method.

• Decomposing and non-decomposing ablation equations, Galerkin
finite element method.

• One and two-way coupling between ablation, heat equation, RANS.

Time = 49.910000
Fluid Temp [K]

2 367e+03

1.846e+03

1.326e+03

8.051e+02

2 844e+02

Solid Temp [K]

1 876e+03

1.469e+03

1.061e+03

6 539e+02

2.463e+02

Temperature of a slender body in
hypersonic flow simulated with SPARC



11 I Test Case: HIFiRE- I flight vehicle

*Flow field:
• Free stream Mach No. = 7.1

• Reynolds No. = 10.0
million/meter

• Angle of Attack = 2 degrees

• Boundary layer transitions to
turbulence (use Spalart-Allmaras
with specified transition location)

•Spatial discretization:
• 2nd-order finite volume

• 2,031,616 cells
• y±<1 near wall

•Solver:
• Pseudo time stepping with
backward Euler, CFL schedule.

Close up of nose:
— 1.8e+07
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12 I Training Data and Model details

*Samples:

• Varied freestream density and velocity

• Training set: 24 sample Latin hypercube

9 Test set: 12 sample Latin hypercube

POD basis:

• Mean flow subtracted from each snapshot.

• Each conserved quantity scaled by its maximum over all
FOM solutions.

• 2,4, and 8 mode basis were considered.

•ROM: LSPG solved with Gauss-Newton iteration

• Initial guess obtained via inverse-distance interpolation of
POD modes.

• Full mesh, two sample meshes considered
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13 I Full Mesh ROM L2 State Error

Parameter Space:
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•State error around 1% or less

•Interpolated state error up to 20%

•Conservation constraint improves accuracy

•Accuracy increases with number of modes

2 Modes

././ I 00 LS::1-: C-L5PG FOM proj.

11-)77/77.7727/77/77,77
\\_‘‘‘‘‘‘..\\\_‘‘‘‘‘',...N.N._

10 -

9 -

8

df df dr Ar ,F ,F ,f ,f dr dr dr dr ,r ,r dr ,f

NI. \ N.1. NI. N. N. N. \ N. N

d. af ,r ,r dr dr

n.

‘‘‘‘‘'......\\%N.A.\\\‘‘XN

7-1
Fdr111.ordrF)drdr.ordr.e.ordrdrdr-7=7"1

* ‘‘\‘‘‘‘‘4i6 _ 
drdrdr.ordrdfdfdrdr drdrdrdfdfdfdfdr.rdrdrdrdrdrdrdrdr

0 5 N. N. N, N. N. NI. N. N. N. N. NI. NI. NI 

U

N. N. N. N. N, N,  N. N, N, N, N. N. 

\\.\\\\\,..\\.\\.\\:\-\\.\.\\
3

2 "‘\\ \-"."" \ "N  
de de de de de .0e .0" er dr de .0e .0" de. .0," ir if .0" dr de de de

N' N' N' 

VVIV,771(//1WV,77/

2

State L2 Error



1 4 I Full Mesh ROM L2 State Error

Parameter Space:
0.070 -

0.068

0.066 -
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•State error around 1% or less

•Interpolated state error up to 20%

•Conservation constraint improves accuracy

•Accuracy increases with number of modes

4 Modes
// I :: <X) = FOlv pl C...

11 9.9.99Y/Y///).")..,,,,,,..ez....".
10

F">.'Y>WYY/YYYYYYYYYYYYJe
4„.\\\„1/4„1/4„.,‘,,

9 '71 Ycz Kix/ x/f/ /x/x///x/ ”
'N'NcN...\\\\N‘Qm)Imi

• 8 929 9 9(19 97/19 929 97)292'z z z

7  

b /!%../AeYYYYY/AeWYY/Ym/W%/ / /

5 7////7/7.17 4/////' ////7/
\

4 77/7/7/7M/717., z

" " "

‘‘‘\\\2  "NYc/w/k/w/k/W>W1/4/1/4/1/4/k/W/YVYYY5

-'727/777719977.,xix/77/V./
N, , , , , N, ,

\ N. N. N. N. N. 
o -97,XXYYYXXXXXYYYXYAYX,

10 -3 10 -2

State L2 Error
10c



15 I Full Mesh ROM L2 State Error

Parameter Space:
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•State error around 1% or less

•Interpolated state error up to 20%

•Conservation constraint improves accuracy

•Accuracy increases with number of modes
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16 I Full Mesh ROM Wall Heat Flux Error

Parameter Space:
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•Wall heat flux error around 1-3%

*Wall heat flux from initial guess varies widely

•Conservation constraint improves accuracy

•Accuracy increases with number of modes
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17 I Sample Meshes

Sample Mesh A

•2032 Random cells (0.1% of full mesh)

•49467 cells (2.4% of full mesh)

Sample Mesh B

•813 Random cells (0.04% of full mesh)

•19901 cells (0.98% of full mesh)



1 8 I Sample Mesh ROM L2 State Error

Parameter Space:
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•State error around 1% or less

•Interpolated state error up to 20%

•Conservation constraint improves accuracy
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19 I Sample Mesh ROM L2 State Error

Parameter Space:
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•State error around 1% or less

•Interpolated state error up to 20%

•Conservation constraint improves accuracy
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20 I Sample Mesh ROM Heat Flux Error

Parameter Space:
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•Wall heat flux error around 1-3%

•Conservation constraint improves accuracy

*Sample mesh can be more accurate than full
mesh!

C-LSPG
Z./ I G Mesh .A Ivesh B I mesh

11 
Jaaaaaii
YXYXY/M77-yyYX,YyyYyyyz z z z /

', N. Ns, N. N. Ns, N% ', N. N. N. Ns, N. N. \ 

1 ° -Y>''YYYYYYY1 5/1> ir
'N. Ns, Ns, \ '‘ N,

(7"x;c7/777,W—Kivicivz

8 -99299999999992997z
\\‘‘‘‘‘‘‘‘\‘‘‘N

7 - 
_

N.. N. N. N. N. r 
5 ..',///////7/7/15',7/7"7/

4 -)227/7.47/72`77/..77217.77„, „, „, „,
,1/4

"

2 -
N. N. N. \ N. N. N. 

„7,11/1/4./5"///5.1,1/4/1/4„,7%/71/4./5"/....
\\‘‘‘‘‘.\\-\-‘‘‘

-(M77771c1777/Vicic77..K X X X :

° -(>777)e).7e/Y /y)997)e)c „ z

10-4 10-3 10-2 10- -
Wall Heat Flux L2 Error



21 I Performance of ROM with conservation constraint

Parameter Space:
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•Could run hundreds or thousands of ROMs
in the same CPU time as one FOM!

*Full mesh ROM is at least 400X faster than
the corresponding FOM run.

*Hyper-reduced ROMs are 2,000-10,000X
faster than the corresponding FOM run.
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22 I Increasing ROM robustness with nonlinear mapping of POD basis

*Failed cases shown earlier are due to small regions of negative temperature.

•States with non-physical features are encountered by ROM solver more often as basis is
made smaller and/or parameter space is increased in size.

•Solution: nonlinear mapping of POD modes to remove non-physical features from
approx. state vector:

minimize 11 Ar(41:010;P)fl minimize lAr(g(41:0110,iii)fli?
Where g transforms the conserved quantities in each cell as follows:

lii = max(ei, iti)

'4'2 = fi2
ii3 = ii3

ii4 = 1714

1



23 I Training Data and Model details

*Samples:

• Varied freestream density and velocity

• Training set: Mach Numbers [4.97, 5.40, 5.83, 6.25, 6.68, 7.10]

• Test set: Mach Numbers [5.19, 5.61, 6.04, 6.46, 6.89]

POD basis:

• Mean flow subtracted from each snapshot.

• Each conserved quantity scaled by its maximum over all FOM solutions.

• Basis truncated to 4 modes, capturing 99.98% of statistical energy.

•ROM: LSPG solved with Gauss-Newton iteration

• Initial guess obtained via inverse-distance interpolation of POD modes.

• Simple Armijo rule line search OR nonlinear mapping used to avoid non-
physical solutions

• Hyper-reduction not tested for this case.



24 I Nonlinear mapping vastly improves robustness and accuracy of ROM
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25 I Conclusions

•High-fidelity simulations are crucial, but
expensive for hypersonic vehicles

*Model reduction of hypersonic flows with
LSPG shows promise:
>Pressio-SPARC adapter enables minimally
intrusive ROM implementation.

>Results for HIFiRE show low cost and accuracy
of LSPG.

> Global conservation constraint improves ROM
accuracy considerably

>Nonlinear mapping of POD modes improves
ROM robustness, allows for less snapshots
and/or larger parameter range.
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26 I Future Work

•Sample mesh/hyper-reduction algorithms

•Consider larger parameter variations and multiple parameters

•Efficient M-ROM implementation, extension to non-
equilibrium chemistry

•New cases

>Double cone with non-equilibrium chemistry.

>Thermal and Ablation model ROMs

•Goal: apply ROM to physically relevant parameter space,
such as a range of flight conditions

Time = 49.910000
Flud Temp [K]

2.367e+03

1.846e+03

1.326e+03

8.051e+02

2.844e+02

Solid Temp [K]

1.876e+03

1.469e+03

1.061e+03

6.539e+02

2463e+02

Temperature of a slender body in
hypersonic flow simulated with SPARC

4
3
2

Double cone Mach contours
courtesy J. Ray, Sandia
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29 I Convergence for Full Mesh ROMs

LSPG, 4 Modes
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30 I Convergence for HROM, Sample Mesh A

LSPG, 4 Modes
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31 I Convergence for line search and nonlinear mapping ROMs

LSPG with line search LSPG with nonlinear mapping
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