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.| Why study aluminized propellant burns!?

* Accident scenario with propellant fires
can have extreme heat loading on
components and systems

[ b :
The heat transfer mechanisms are not e ——

currently characterized et v

oy
|

* Current modeling efforts use simplified
boundary conditions to represent these
flames

* Flame characterization 1s very difficult:
* Extreme temperatures (~2800 K)
* Burning liquid metal droplets
* Harsh chemicals

o Cinied] amied | .
Optical emission The goal of this work is to

* Our group has studied these flames charactetize the plume

previously

temperature in aluminized
propellant flames.

* Particle measurements

* Gas phase measurements




3‘ Previous work in other groups:
Bucher et al., Symposium

AlO planar laser induced fluorescence (PLIF) on Combustion, 1998

> Isolated aluminum particles burning in flames R/R,
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Al concentration by laser-induced-breakdown-spectroscopy (LIBS)
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4‘ Previous work in our group:

Nitrogen/Oxygen pure-rotational CARS

o Correlations of rotational temperature and O,/N, concentration
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5‘ Next step: improved thermometry

Switch to vibrational CARS

> Improved temperature sensitivity at high temperatures
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1 -
1 sHBC

231 | T=16pS \)

8

7 05 H

’_Q' -

-

. |

250
Raman shift (cm™!)

Switch from inert gas to fuel detection

150 200

300

H, Q-branch (Av = +1, AJ = 0)
1 —
{ —T=3000K
1—T=2500K
] —T=2000K

0.5 4 Etalon
{7 =2.66 ps

0
3900

4000 4200

4100
Raman shift (cm™!)

> Shouldn’t be plagued by spatial averaging with cold, surrounding gas

° Previous pure-rotational nitrogen, oxygen CARS:
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.| Where does H, come from!?

Composition of the propellant stick

> Ammonium perchlorate oxidizer (AP, 70%)

° NH,CIO,, decomposes to form ammonia and oxidizer species

o

> Hydroxyl terminated polybutadiene binder (HTPB, 10

Decompesed fuel spedes
> C4H; bounded by OH, decomposes into hydrocarbon species and H, (G, G, O, 1, etc)
> Decomposed hydrocarbons react with monopropellant products (1) Monopropeliant Flame
o Primary Diffusion Flame (Flame #2) "?2", msiry Diffusion Blas

> Aluminum (20%)

° Melts at ~933 K, forms agglomerates on the burning surface

> Combustion of any remaining reactive species

3 main sources of H,:
° Thermal decomposition of the binder alone
° HTPB 500 gm/mol = ZHTPBsgy gn/mo T 3C + Hy

> As a product of decomposed binder hydrocarbons and oxidizers from the
monopropellant flame

> HTPByg0 g /mor + 20HCLO, — 8CO + 24CO, + 24H,0 + 20HCL + 5C,H, + CH, + 2H,
o Recombination reactions

> CH, + H— CH, + H, Reaction Mechanisms from

Jeppson et al., AIAA 1997




;| How to model H, CARS?

Time domain model, assuming impulsive preparation of the Raman coherence
o x(t) = induced polarization as a function of time
° Wy,; = weight term for each rotational (]) and vibrational (») state
° wy,; = Q-branch Raman frequencies (Morse potential? Dunham coefficients? Experimental values?)
> H(t) = cohetrence dephasing term (collisional? Dicke? Doppler?)
° Eprope = electric field of the probe pulse at time delay t = 7
> Ecars = CARS electric field, FFT gives the frequency domain spectrum

YO ~ )Y Wyycos(@n O, Fears(t ) ~1O Bprope(t = 7)
Av=1A]=0
Example synthetic coherence gated by an experimental probe profile:
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8‘ How to model H, CARS!?

How well do we know the energy levels of hydrogen?
° Wy,; = Q-branch Raman frequencies (Morse potentials? Dunham coefficients? Experimental values?)

x(t) ~ Z 2 Wv,]cos(wv,]t)H(t) ) Ecars(t;T) "’X(t)Eprobe (t—1)

Av=1A]=0

Not well if using Morse Potential (i.e. Sandia CARSFT)

> Energy level spacing is so large for hydrogen that using the Morse Potential to predict energy levels outside
the range used to generate the diatomic constants leads to erroneous values
T, 4200
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Better if using Dunham coefficients

> Power series approach to rotational energy levels = ——CARSFT/Morse Potentials
g 6 ===Power Series, Popovas et al.
1\2 ;i i =4 Exp, Veirs et al. [36]
Frot(vt]) = Z Yl,i(v + j) ] (] + 1) _'g 2 O Exp, Dabrowski [41]
Li E 0
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9‘ How to model H, CARS!?

What about the dephasing mechanisms?
o H(t) = coherence dephasing term (collisional? Dicke? Doppler?)

YO ~ Y ) Wyscos(0u)H®,  Eears(t ) ~XO Bprope(t = 7)

Av=1A]=0

(1) Collisional, H(t) = exp(—F o ]t), where I}, ; = ¥, ; = HWHM linewidth (cm™'atm™)

> Dominant effect at the highest densities ) = ¢, 5100 coefficient 5(0) transition at 296 K
> Lorentzian lineshape, exponential decay ¢ = speed of light —
. . , ZnDOwIZ,, ] N
(2) Dicke, same as collisional, now with [}, ; = T + Yy, P ]
-4 -

> Motional narrowing of the linewidth from velocity changing collisions
> Important when the mean free path becomes comparable to the
wavelength of radiation [Murray et al., J. of Mol. Spectroscopy, 1972]

> Modeled as a Lorentzian linewidth and an exponential decay

(3 Doppler, H(t) = exp{~k3t307[*/z, = 1 +exp("/z,)]} \ ~e |
> Gaussian decay of the coherence k, = transition wavenumber 18 % ) cheey et AL,

Ig(Wa(t)/Wp"o™M)
3

J. Raman Spectrosc.
2003; 34: 977-982

¢ Collection angle dependent T, = velocity correlation time

° Important at low densities 0, = dispersion of thermal velocities

T v T . T W 1
5 10 15 20
delay time t/ns

o



)

Linewidth HWHM (cm™

10‘ How to model H, CARS?

Now plotting these relations in comparison to our regime in the propellant fires

(1) Collisional, H(t) = eXp(—F v, ]t), where [}, ; = ¥, ; = HWHM linewidth (cm™'atm™)
2nDow§, ]

(2) Dicke, same as collisional, now with [}, ; = ”
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Mitigation effort: etalon probe pulse

Uncertainties in Raman frequencies and dephasing mechanisms nearly eliminated with a
short probe pulse at a short delay

YO ~ ) Wyscos(@, OHW®),  Eears(t; D) ~x(OFprope(t = )

Av=1AJ=0
Density range approaching 0.07 amagat at 3000 K, dephasing is negligible at early times

At 2.66 ps, the difference in the gated response in negligible (delay used in the experiment)
At 30 ps, the difference is significant
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12‘ Experimental Setup

3-beam vibrational hydrogen CARS
> Nominally 50 fs preparation beams
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13‘ Experimental Setup

3-beam vibrational hydrogen CARS
> Nominally 50 fs preparation beams
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14‘ Hencken Burner Measurements

Average fitted temperature from single shots and 100 shot means
° Instrument accuracy and precision as a function of signal-to-noise ratio (SNR)
> Results converge for higher equivalence ratio (higher signal-to-noise)
Systematically low fitted temperature
° Likely from the burner deviating from the adiabatic assumption
Instrument precision approaches 3% (~6-7% for SNRs in the propellant burns)
° Limited by the use of a Stokes pulse originating from an OPA
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15‘ Propellant Burn Timeline

Photographs, detector images, and cartoons of the measurement timeline

> Results converge for higher equivalence ratio (higher signal-to-noise)
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Arb. Intensity
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° Required to avoid broadband emission

> Linear fits to background pixels
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> 1D temperature library for a fixed probe delay

> Use experimentally determined probe profile to gate the coherence
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7 ‘ Spectral Fitting
—— Experiment - - - - Theoretical Residual
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5 ‘ Results

. 0.8
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»| Comparison to previous work

Nitrogen and oxygen CARS, fuel CARS, and particle pyrometry

Kearney et al., Applied Optics, 2016
> Rotational temperatures from nitrogen and oxygen
° Temperature, O,/N, correlations
° Low-temperature wing not seen in the H, CARS or

particle temperatures

Chen et al., similar to Combustion and Flame, 2017
° 2-color pyrometry of aluminum particles

> Particulate temperature is comparable to the gas phase
° Peak in histogram in between the O, N, and H, CARS

This work

> Rotational temperatures from hydrogen

Probability

> Highest mean temperature from all three techniques
> Improved understanding of the gas-phase burning

environment of the aluminum particles

0.17 EZPyrometry

Il rotational O, N, CARS
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»1 Summary and Conclusions

1) Developed a vibrational CARS instrument to probe hydrogen
2) Discussed some discrepancies in the literature with H, CARS modeling

3) (Once again) demonstrated the effectiveness 3087 n—
of probe delayed hybrid CARS in these extreme | i=n=200¢ —f
scattering environments

] Mean = 2562 K

Count

4) Measured rotational temperatures in the plume '

of a burning propellant

0 i
é 5 % 1500 2000 2500 3000
5) Future work could involve parametric studies Temperature (K)

to examine 1f these temperatures scale with physical size of the propellant
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