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Anti-ferromagnetic Max Heisenberg Model

Max Cut Hamiltonian: Max Quantum Heisenberg generalization:
2 = ZiZj) :'; XU =X X; =YY, - Z,Z;)

Motivation

The Heisenberg model is fundamental for describing
guantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of
the anti-ferromagnetic Heisenberg model are
notoriously difficult to analyze.

Problem

g . —Y.Y. - V.V._7.7. Anti-ferromagnetic Heisenberg model: roughly
Find max-energy state of 2(1 XlX] Yl Y] ZlZ]) neighboring quantum particles aim to align in

(E Find min_energy state of Z(XLX] + YlY] + ZiZj)r opposite directions. This kind of Hamiltonian

. ] . . . appears, for example, as an effective Hamiltonian
but different from approximation point of view) fior so-eallad Mott ingulators.

[Image: Sachdey, http://arxiv.org/abs/1203.4565]

Nearly optimal product-state approximation algorithm for this problem:
0.498-approx via a product state, where 1/2 is best possible for product states

(also 0.649-approx for XY model, where 2/3 is best possible for product states, as
well as results for some generalizations of the Max Heisenberg Model)




Related Work

Theme: P approximations for QMA-hard local Hamiltonian problems

PTAS for bounded-degree planar k-local Hamiltonian (k-LH, sum of k-local terms)
[Bansal, Bravyi, Terhal ‘09]

PTAS for dense k-LH with positive terms

[Gharibian, Kempe ‘12]

PTAS for planar, dense, or low threshold-rank k-LH

[Brandao, Harrow ‘13]

QMA-hard 2-LH NP-hard P approximation for Product-state approximation for
problem class specialization NP-hard specialization QMA-hard 2-LH problem

Max traceless 2-LH: Max -¥;; ziz; O(1/log n) O(1/log n)
i Hij, zi € {—1,1} [Charikar, Wirth ‘04] [Bravyi,Gosset,Koenig, Temme ‘18]
H;j traceless

Max positive 2-LH: Max 2-CSP 0.874 0.25 [Random assignment]
2 Hij [Lewin, Livnat, Zwick ’02] 0.282 [Hallgren, Lee ‘19]
H;; >0 0.328 [Hallgren, Lee, P ‘19]
0.5 best possible

Max Heisenberg: Max Cut: 0.878 (special case of above)
Yijl =X X; =YY, —Z;Z; Max Y;;I—zz, [Goemans, Williamson ‘95] 0.498 [Gharibian, P ‘19]
z; € {—1,1} 0.5 best possible




Max Cut vs Quantum Max Cut

Classical Max Cut Quantum Max Cut
2-variable constraint: x; @ x; Max Heisenberg model

00011011 ]
Xi, xj — O;O -O 0 O O- quantum O O O
xi,xj = 0,1 generalization 1/2 -1/2 0

Xi, Xj = 1,0 :IJ> —1/2 1/2 0
xi,xj = 1,1 i ] L 0 0 0.

Diagonal matrix Non-diagonal matrix
1/2(I — Z;Z;) 1/4( - X;X; = Y)Y, — Z2,Z;)

Maximum eigenvector: Maximum eigenvector:

1 1 1 1
(O; 1.7 O, 0) - |01>’ (O,_,__; 0) — _|01> __llo)l
with energy 1 V2 V2 V2

with energy 1

Maximum product state:
|01)
with energy 1/2




Max Cut Semidefinite Programming Relaxation

Max 2;jeg(1 —v; - v;)/2

lv;|| =1, foralli €V
(v; € R™)

Rn

Equivalent perspective: unit vectors v;, withm;; = v; - v;

Max Cut
Find cut with max # of crossing

edgesin graph G = (V,E) l

Exact solution when v; € R: -1«




Quantum Moment Matrices are Positive

(x| = (Y[ X7
State on n qubits 8’11|| _ (<$||2 WIXiXi [Py  (xly;)  (xilz)
w| € ¢ |:> V= : M= ilx)y il (ilz)
(Xn| = (Y| Xn (zilx;)  (zily;)  (zilz))

(Il = W|Y,
(Zn| = (Y12

X1 h 72y X, Y, Z, X3 Y3 Zj Entries of this 3nx3n

moment matrix are
M3 expectation values of
all 2-local Pauli terms

=VVt > 0= Re(VVT) =0




Quantum Max Cut SDP Relaxation

Y, % E L X B I

0 Xi*Xj Xi*Yj Xi'Zj
M= |(Yi~% Yi'Vj Vi %

Zi'x]' Zi'Yj Zl'.Zj

T
M23

Real part of moment matrix

Max Cut vector relaxation Quantum Max Cut vector relaxation
Max Xjep(1 —v; - vj) Max Xjep(1 —x; - X — ¥i - ¥j — 2; - )

lvill = 1, foralli € V i 11, ;s 11zl = 1, for all i € V
(v; €R™) X;*Vi=Xx;-2;=y;-z;=0,foralli eV
(vi € IRSn)




Approximating Quantum Max Cut

We use hyperplane rounding generalization by Briét, de Oliveira Filho, and Vallentin
[arXiv 1011.1754] to round the vectors x;, y;, z; to scalars «;, ;,y; to obtain:

1
P = 2_"1—[(1 +a;X; + BiY; +viZ), a; +B; +vi =1
i

Classical rounding (R — R1) Product-state rounding (R°" —

S ki ( ) € RO — (a;, Bi, ¥1) R v
v —_— A = — v = x., ',Z' —_— a,, V) BS—————
l l |,rTvl| l l yl l l l yl " RT vl ”

RTNN(0,1)3X9n




Open questions

= |s a tight ratio of 1/2 possible within P? Is it NP-hard?
(such a product state always exists by [Gharibian, Kempe “12])

= SDP gap? Unigue games hardness?

= New analysis techniques for more general qguantum CSPs (e.g. Quantum k-SAT)?

= BQP approximation algorithms (i.e., guantum approximation algorithms)? Can we
find problems with provably better quantum approximation ratios?

| This work was sponsored by the U.S. Department of Energy, Office of
@ ENERGY sio.  Science, Office of Advanced Scientific Computing Research, Quantum
Algorithm Teams program.
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Quantum Optimization and Learning and Simulation

@ QOALAS

Goal: New quantum techniques and algorithms from the interplay of
quantum simulation, optimization, and machine learning

Optimization

Approxim remal ener : .
ki PTER A EXTREITEL BlRerEy-STales Convex and gradient-based optimization

of physically-inspired Hamiltonians
Variational approaches and QAOA , \ convex/semiderinite refaxations
Adiabatic quantum evolution New ML-inspired optimization problems

Quantum Machine
Simulation Learning

Sampling from max-entropy distributions

Hamiltonian simulation
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