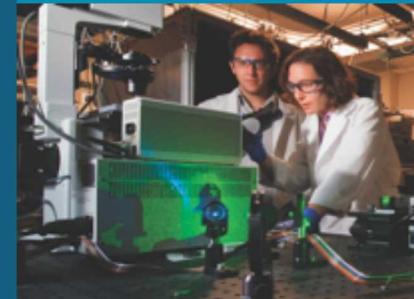


Sandia
National
Laboratories

SAND2019-15478C
QTR 2020

Almost optimal classical approximation algorithms for a quantum generalization of Max Cut



PRESENTED BY

Ojas Parekh with Sevag Gharibian

Anti-ferromagnetic Max Heisenberg Model

Max Cut Hamiltonian:

$$\sum(I - Z_i Z_j)$$

Max Quantum Heisenberg generalization:

$$\sum(I - X_i X_j - Y_i Y_j - Z_i Z_j)$$

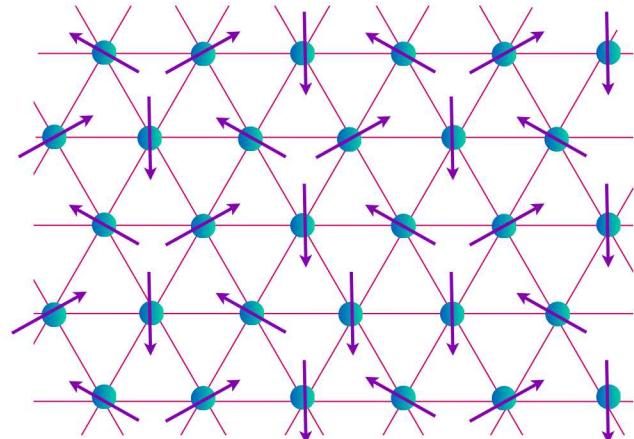
Motivation

The Heisenberg model is fundamental for describing quantum magnetism, superconductivity, and charge density waves. Beyond 1 dimension, the properties of the anti-ferromagnetic Heisenberg model are notoriously difficult to analyze.

Problem

Find max-energy state of $\sum(I - X_i X_j - Y_i Y_j - Z_i Z_j)$

(\equiv Find min-energy state of $\sum(X_i X_j + Y_i Y_j + Z_i Z_j)$,
but different from approximation point of view)



Anti-ferromagnetic Heisenberg model: roughly neighboring quantum particles aim to align in opposite directions. This kind of Hamiltonian appears, for example, as an effective Hamiltonian for so-called Mott insulators.

[Image: Sachdev, <http://arxiv.org/abs/1203.4565>]

Nearly optimal product-state approximation algorithm for this problem:

0.498-approx via a product state, where 1/2 is best possible for product states

(also 0.649-approx for XY model, where 2/3 is best possible for product states, as well as results for some generalizations of the Max Heisenberg Model)

Related Work

Theme: P approximations for QMA-hard local Hamiltonian problems

- PTAS for bounded-degree planar *k-local Hamiltonian* (*k*-LH, sum of *k*-local terms)
[\[Bansal, Bravyi, Terhal '09\]](#)
- PTAS for dense *k*-LH with positive terms
[\[Gharibian, Kempe '12\]](#)
- PTAS for planar, dense, or low threshold-rank *k*-LH
[\[Brandão, Harrow '13\]](#)

QMA-hard 2-LH problem class	NP-hard specialization	P approximation for NP-hard specialization	Product-state approximation for QMA-hard 2-LH problem
Max traceless 2-LH: $\sum_{ij} H_{ij}$, H_{ij} traceless	$\text{Max } -\sum_{ij} z_i z_j, z_i \in \{-1,1\}$	$O(1/\log n)$ [Charikar, Wirth '04]	$O(1/\log n)$ [Bravyi, Gosset, Koenig, Temme '18]
Max positive 2-LH: $\sum_{ij} H_{ij}$, $H_{ij} \geq 0$	Max 2-CSP	0.874 [Lewin, Livnat, Zwick '02]	0.25 [Random assignment] 0.282 [Hallgren, Lee '19] 0.328 [Hallgren, Lee, P '19] 0.5 best possible
Max Heisenberg: $\sum_{ij} I - X_i X_j - Y_i Y_j - Z_i Z_j$	Max Cut: $\text{Max } \sum_{ij} I - z_i z_j, z_i \in \{-1,1\}$	0.878 [Goemans, Williamson '95]	(special case of above) 0.498 [Gharibian, P '19] 0.5 best possible

Max Cut vs Quantum Max Cut

Classical Max Cut

2-variable constraint: $x_i \oplus x_j$

$$\begin{array}{l}
 \begin{array}{cccc} 0,0 & 0,1 & 1,0 & 1,1 \end{array} \\
 \begin{array}{l} x_i, x_j = 0,0 \\ x_i, x_j = 0,1 \\ x_i, x_j = 1,0 \\ x_i, x_j = 1,1 \end{array} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
 \end{array}$$

quantum
generalization

Quantum Max Cut

Max Heisenberg model

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Diagonal matrix

$$1/2(I - Z_i Z_j)$$

Maximum eigenvector:

$$(0, 1, 0, 0) \rightarrow |01\rangle, \text{ with energy 1}$$

Non-diagonal matrix

$$1/4(I - X_i X_j - Y_i Y_j - Z_i Z_j)$$

Maximum eigenvector:

$$\left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right) \rightarrow \frac{1}{\sqrt{2}}|01\rangle - \frac{1}{\sqrt{2}}|10\rangle, \text{ with energy 1}$$

Maximum product state:

$$|01\rangle$$

with energy 1/2

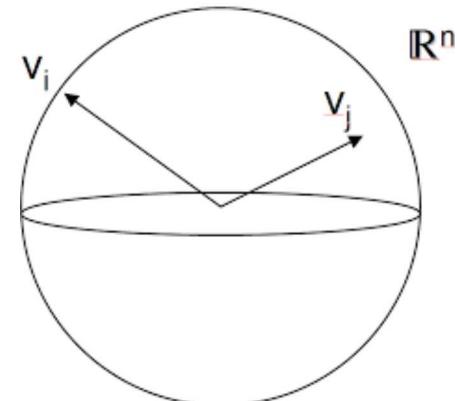
Max Cut Semidefinite Programming Relaxation

$$\text{Max } \sum_{ij \in E} (1 - m_{ij})/2$$

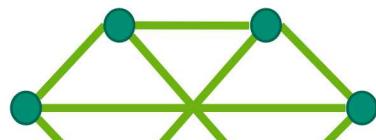
$$\begin{bmatrix} 1 & m_{12} & m_{13} & \cdots \\ m_{12} & 1 & m_{23} & \\ m_{13} & m_{23} & 1 & \\ \vdots & & & \ddots \end{bmatrix} \succeq 0 \quad \equiv$$

$$\text{Max } \sum_{ij \in E} (1 - v_i \cdot v_j)/2$$

$$\begin{aligned} \|v_i\| &= 1, \text{ for all } i \in V \\ (v_i &\in \mathbb{R}^n) \end{aligned}$$

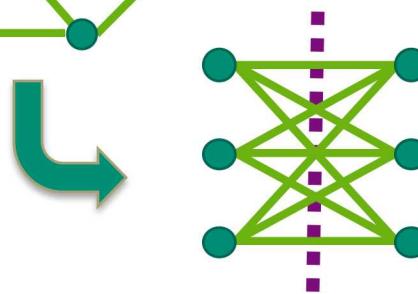


Equivalent perspective: unit vectors v_i , with $m_{ij} = v_i \cdot v_j$



Max Cut

Find cut with max # of crossing edges in graph $G = (V, E)$



Exact solution when $v_i \in \mathbb{R}^1$: $-1 \leftarrow \text{---} \rightarrow +1$

Quantum Moment Matrices are Positive

State on n qubits

$$\langle \psi | \in \mathbb{C}^{2^n}$$

$$V = \begin{bmatrix} \langle x_1 | = \langle \psi | X_1 \\ \langle y_1 | = \langle \psi | Y_1 \\ \langle z_1 | = \langle \psi | Z_1 \\ \vdots \\ \langle x_n | = \langle \psi | X_n \\ \langle y_n | = \langle \psi | Y_n \\ \langle z_n | = \langle \psi | Z_n \end{bmatrix}$$

$$M_{ij} = \begin{bmatrix} \langle \psi | X_i X_j | \psi \rangle & \langle x_i | y_j \rangle & \langle x_i | z_j \rangle \\ \langle y_i | x_j \rangle & \langle y_i | y_j \rangle & \langle y_i | z_j \rangle \\ \langle z_i | x_j \rangle & \langle z_i | y_j \rangle & \langle z_i | z_j \rangle \end{bmatrix}$$

$$X_1 \quad Y_1 \quad Z_1 \quad X_2 \quad Y_2 \quad Z_2 \quad X_3 \quad Y_3 \quad Z_3 \quad \dots$$

X_1
 Y_1
 Z_1
 X_2
 Y_2
 Z_2
 X_3
 Y_3
 Z_3

$$\begin{bmatrix} & M_{11} & M_{12} & M_{13} & \dots \\ M_{11} & & & & \\ & M_{12} & & & \\ & & M_{22} & & \\ M_{12} & & & & \\ & M_{23} & & & \\ & & M_{23}^\dagger & & \\ M_{13} & & & & \\ & M_{33} & & & \\ & & & M_{33}^\dagger & \\ & & & & \ddots \end{bmatrix}$$

Entries of this $3n \times 3n$ moment matrix are expectation values of all 2-local Pauli terms

$$= VV^\dagger \geq 0 \Rightarrow \text{Re}(VV^\dagger) \geq 0$$

Quantum Max Cut SDP Relaxation

$$\begin{array}{cccccccccc}
 & X_1 & Y_1 & Z_1 & X_2 & Y_2 & Z_2 & X_3 & Y_3 & Z_3 \\
 \begin{matrix} X_1 \\ Y_1 \\ Z_1 \\ X_2 \\ Y_2 \\ Z_2 \\ X_3 \\ Y_3 \\ Z_3 \\ \vdots \end{matrix} & \left[\begin{array}{ccccccccc}
 1 & 0 & 0 & & & & & & \cdots \\
 0 & 1 & 0 & M_{12} & & & M_{13} & & \\
 0 & 0 & 1 & & & & & & \\
 & & & 1 & 0 & 0 & & & \\
 & M_{12}^T & & 0 & 1 & 0 & M_{23} & & \\
 & & & 0 & 0 & 1 & & & \\
 & M_{13}^T & & M_{23}^T & & & 1 & 0 & 0 \\
 & & & & & & 0 & 1 & 0 \\
 & & & & & & 0 & 0 & 1 \\
 & & & & & & & & \ddots
 \end{array} \right] & M_{ij} = \begin{bmatrix} x_i \cdot x_j & x_i \cdot y_j & x_i \cdot z_j \\ y_i \cdot x_j & y_i \cdot y_j & y_i \cdot z_j \\ z_i \cdot x_j & z_i \cdot y_j & z_i \cdot z_j \end{bmatrix} \\
 & & \geq 0
 \end{array}$$

Real part of moment matrix

Max Cut vector relaxation

$$\text{Max } \sum_{ij \in E} (1 - v_i \cdot v_j)$$

$$\|v_i\| = 1, \text{ for all } i \in V \\ (v_i \in \mathbb{R}^n)$$

Quantum Max Cut vector relaxation

$$\text{Max } \sum_{ij \in E} (1 - x_i \cdot x_j - y_i \cdot y_j - z_i \cdot z_j)$$

$$\|x_i\|, \|y_i\|, \|z_i\| = 1, \text{ for all } i \in V \\ x_i \cdot y_i = x_i \cdot z_i = y_i \cdot z_i = 0, \text{ for all } i \in V \\ (v_i \in \mathbb{R}^{3n})$$

Approximating Quantum Max Cut

We use hyperplane rounding generalization by Briët, de Oliveira Filho, and Vallentin [arXiv 1011.1754] to round the vectors x_i, y_i, z_i to scalars $\alpha_i, \beta_i, \gamma_i$ to obtain:

$$\rho = \frac{1}{2^n} \prod_i (I + \alpha_i X_i + \beta_i Y_i + \gamma_i Z_i), \alpha_i^2 + \beta_i^2 + \gamma_i^2 = 1$$

Classical rounding ($\mathbb{R}^n \rightarrow \mathbb{R}^1$)

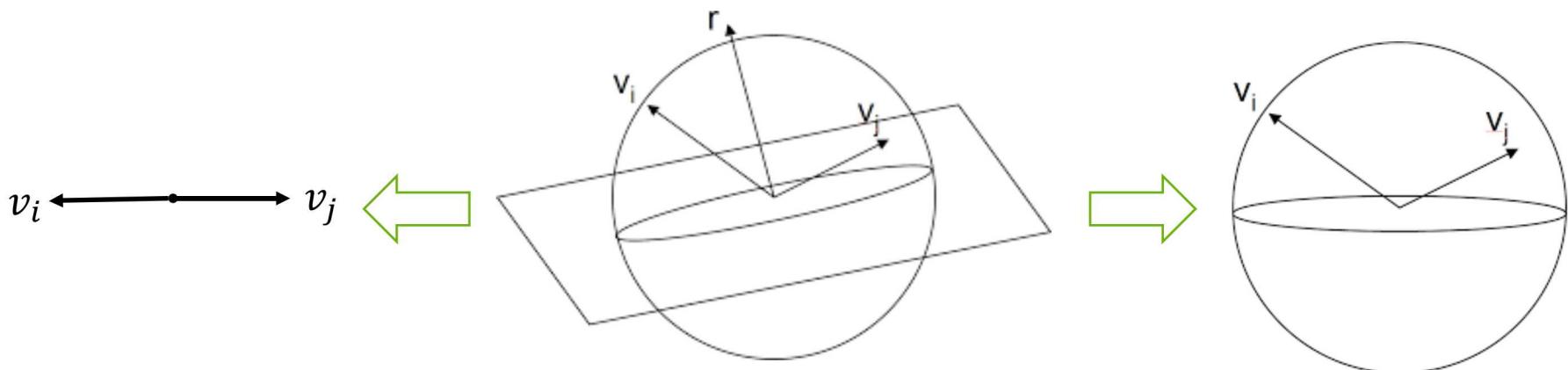
$$v_i \in \mathbb{R}^n \rightarrow \alpha_i = \frac{r^T v_i}{|r^T v_i|}$$

$$r \sim N(0,1)^n$$

Product-state rounding ($\mathbb{R}^{9n} \rightarrow \mathbb{R}^3$)

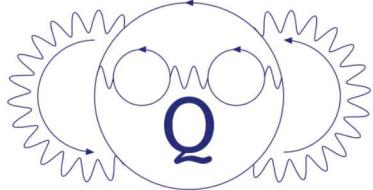
$$v_i = (x_i, y_i, z_i) \in \mathbb{R}^{9n} \rightarrow (\alpha_i, \beta_i, \gamma_i) = \frac{R^T v_i}{\|R^T v_i\|}$$

$$R^T \sim N(0,1)^{3 \times 9n}$$



9 | Open questions

- Is a tight ratio of $1/2$ possible within P? Is it NP-hard?
(such a product state always exists by [Gharibian, Kempe '12])
- SDP gap? Unique games hardness?
- New analysis techniques for more general quantum CSPs (e.g. Quantum k-SAT)?
- BQP approximation algorithms (i.e., quantum approximation algorithms)? Can we find problems with provably better quantum approximation ratios?



QOALAS

Quantum Optimization and Learning and Simulation

Sandia National Laboratories

- Ojas Parekh
- Andrew Baczewski
- Matthew Grace
- Kenneth Rudinger
- Mohan Sarovar

Quantum approaches to discrete optimization, Theoretical computer science, Quantum and classical simulation of many-body quantum systems, QCVV, Quantum dynamics and Control

Sandia
National
Laboratories

University of Maryland, College Park

- Andrew Childs
- Stephen Jordan
(also Microsoft Research)
- Yi-Kai Liu (also NIST)
- Brian Swingle
- Jacob Taylor (also NIST)
- Xiaodi Wu

Quantum computing, Quantum algorithms, Quantum complexity theory, Machine learning, Quantum many-body physics, Quantum gravity, Quantum machine learning, Optimization

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

Los Alamos National Laboratory

- Rolando Somma
- Yigit Subasi

Quantum computing,
Condensed matter theory

California Institute of Technology

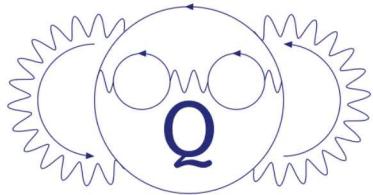
- John Preskill

Quantum computing, High-energy physics, Quantum error correction and fault tolerance

Affiliate:

- Sevag Gharibian
(Universität Paderborn, Germany)

Quantum algorithms and complexity theory



QOALAS

Quantum Optimization and Learning and Simulation

Goal: New quantum techniques and algorithms from the interplay of quantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states
of physically-inspired Hamiltonians

Variational approaches and QAOA

Adiabatic quantum evolution

Convex and gradient-based optimization

Convex/semidefinite relaxations

New ML-inspired optimization problems

Quantum Simulation

Machine Learning

Sampling from max-entropy distributions

Hamiltonian simulation

Thanks!

Full paper: <https://arxiv.org/abs/1909.08846>

We're hiring: <https://qoalas.sandia.gov>