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21 Anti-ferromagnetic Max Heisenberg Model

Max Cut Hamiltonian:

EU — Z,Z1) 1 > Max Quantum Heisenberg generalization:
E(/ — XiXj — KYJ — Z,Zi)

Motivation
The Heisenberg model is fundamental for describing
quantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of

the anti-ferromagnetic Heisenberg model are
notoriously difficult to analyze.

Problem
Find max-energy state of E (i — xix; — yiy; — zizi)

(E Find min-energy state of E(XiX1 + KY; + ziz1),

but different from approximation point of view)

A V
• A
A V
V A

Anti-ferromagnetic Heisenberg model: roughly

neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian

for so-called Mott insulators.
[Image: Sachdev, http://arxiv.org/abs/1203.4565]

Nearly optimal product-state approximation algorithm for this problem:
0.498-approx via a product state, where 1/2 is best possible for product states

(also 0.649-approx for XY model, where 2/3 is best possible for product states, as
well as results for some generalizations of the Max Heisenberg Model)



Related Work

Theme: P approximations for QMA-hard local Hamiltonian problems

• PTAS for bounded-degree planar k-local Hamiltonian (k-LH, sum of k-local terms)

[Bansal, Bravyi, Terhal '09]
• PTAS for dense k-LH with positive terms

[Gharibian, Kempe '12]

• PTAS for planar, dense, or low threshold-rank k-LH

[Brandão, Harrow '13]

QMA-hard 2-LH
roblem class

NP-hard
s• ecialization

P approximation for
NP-hard specialization

Product-state approximation for
QMA-hard 2-LH problem

Max traceless 2-LH:
Eij Hij ,

Hij traceless

Max positive 2-LH:
Eii

Hij 0

Max Heisenberg:
E111 — XiX1 — — ZiZj

Max -Euzizi,

zi E

Max 2-CSP

0(1/log n)
[Charikar, Wirth '04]

0.874
[Lewin, Livnat, Zwick '02]

0(1/log n)
[Bravyi,Gosset, Koenig,Temme '18]

0.25 [Random assignment]
0.282 [Hallgren, Lee '19]

0.328 [Hallgren, Lee, P '19]
0.5 best possible

Max Cut:
Max Eli / — zizi ,

zi E {—LI}

0.878
[Goemans, Williamson '95]

(special case of above)
0.498 [Gharibian, P '19]

0.5 best possible



41 Max Cut vs Quantum Max Cut

Classical Max Cut

2-variable constraint: xi ED xj,

0,0 0,1 1,0 1,1
xi, xi = 0,0 0 0 0 0

xi, xi = 0,1 0 1 0 0

xi,xj=1,0 0 0 1 0

xi,xj=1,1 0 0 0 0

Diagonal matrix

1/2(1 — ZiZi)

Maximum eigenvector:

(0,1, 0, 0) 101),

with energy 1

quantum
generalization

>

loo
o
Lo

Quantum Max Cut
Max Heisenberg model

0 0 0
1/2 -1/2 0
-1/2 1/2 0

0 0 0

Non-diagonal matrix

1/4(1 — XiXj — Yiri — ZiZj)

Maximum eigenvector:
(0, 1 , _ 1 , 0) 1 1

In) --IA),
-\/2 -\/2 ) -\/2 -\/2

with energy 1

Maximum product state:
101)

with energy 1/2



5 Max Cut Semidefinite Programming Relaxation

Max EiJEE(1 mii)/2

1

[m12

m13

•

m12 m13

m23

m23 1

1
> 0

Equivalent perspective: unit vectors vi, with mij = vi • vj

Max h-XiJEE(1- vi • v1)/2

II~iII= 1,foralliEV
(vi E Rn)

Max Cut

Find cut with max # of crossing

edges in graph G = (V, E)

Exact solution when vi E Ri: -14-0 ►+1



6 I Quantum Moment Matrices are Positive

State on n qubits

OM E C2n

x1

xi.

Y1

Z1

x2

Y2

Z2

x,
Y3
Z3

 1\ v

Y1 Z1 X2 Y2 Z2 X3 Y3 Z3

M11 M12 M13

M1t2

ML

M22

M2-3

M23

M33

,
Mil

• • •

I

(11)1xix;11P) (xilyi) (xill
(yilx;) (YilYj) (yilzi) I
(zilxj) (zilYj) (zilzj)

I

Entries of this 3nx 3n
moment matrix are
expectation values of
all 2-local Pauli terms

= VVt > 0 Re(VVt) > 0

I



71 Quantum Max Cut SDP Relaxation

X1

Y1
Z1
X2

Y2
Z2

x1 y1 Z1

1 0 0
0 1 0

0 0 1

ltir2

X2 Y2 Z2 X3 Y3 Z3

M12 M13

1 0 0
0 1 0 M23
0 0 1

X3 1 0 0
Y3 M13 143 0 1 0

0 0 1

Real part of moment matrix

Max Cut vector relaxation Quantum Max Cut vector relaxation
Max EiiEE(1 — vi • vj) Max 7,_,ijeE(1 — xi • xj — yi • yj — zi • zj)

Z3

•.

• • • xi • xi xi • yj xi • zi

Mij = Yi • xj Yi • Yj Yi • zj
zi • xj zi • yi zi • zj

> 0

...

Pill = 1_, for all i E V llxill, llYill, Pill = 1, for all i E V
(vi E IV) xi • yi = xi • zi = yi • zi = 0, for all i E V

(vi E "[en)



81 Approximating Quantum Max Cut

We use hyperplane rounding generalization by Bria, de Oliveira Filho, and Vallentin
Lamy 1u11.1 / D4, to round the vectors xi, yi, zi to scalars ai, fli,yi to obtain:

n2 + _2 _p = if1( aiXi+ 13iYi + yiZi) , ai2 +pi yi - 1

Classical rounding (IfRn —> R1) Product-state rounding (R9n —> R3 )

rT •
vi E —> ai =

IrTvil
vi yi) zi) E iik9n

RTvi
(at, fli)Yi) = 

11 RT vi 11

r-N(0,1)n RT N (0 ,1)3x9n



91 Open questions

Is a tight ratio of 1/2 possible within P? Is it NP-hard?
(such a product state always exists by [Gharibian, Kempe '12])

SDP gap? Unique games hardness?

New analysis techniques for more general quantum CSPs (e.g. Quantum k-SAT)?

BQP approximation algorithms (i.e., quantum approximation algorithms)? Can we
find problems with provably better quantum approximation ratios?

This work was sponsored by the U.S. Department of Energy, Office of

g 
Office of 
Science Science, Office of Advanced Scientific Computing Research, Quantum

Algorithm Teams program.
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Q OA LAS r,,n
Quantum Optimization and Learning and Simulation

Goal: New quantum techniques and algorithms from the interplay of
quantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states
of physically-inspired Hamiltonians

Variational approaches and QAOA

Adiabatic quantum evolution

Quantum
Simulation 4

Convex and gradient-based optimization

Convex/semidefinite relaxations

New ML-inspired optimization problems

Machine
Learning

Sampling from max-entropy distributions

Hamiltonian simulation
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