
Improved Neural Network
Training: Layer-Parallelism,
Least-squares and Initialization

Nor
I IM

Authors

Eric C. Cyr, Mamikon Gulian, Ravi Patel, Mauro Perego, Nat Trask,
Denis Ridzal (SNL), Stefanie Guenther (LLNL), Lars Ruthotto (Emory),
Jacob B. Schroder (UNM), Nico R. Gauger (TU Kaiserslautern)

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-

NA0003525.

SAND2019-15486C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

What is a neural network?

• A single ResNet layer (for 1 = 0 L — 1):

• We also use ODE Networks:
ax

at
= 6(W (t) x(t) + b(t))

• Apply a NN to a data element xo

g..A1(0) xL where {Wt

yd:

Input Layer 1 Layer 2 Layer 3

Questions for this talk:
1. How do you select an initial set of weights and biases?
2. How do you accelerate the training with parallel computing?

Output

Two Types of problems

Regression

Observations:

rtTu in) E

. N

•N}

Loss: Mean-Square Error

a 11 JOidlL(x)

Classification

Observations:

Rd X

N

Loss: Cross-Entropy
D K

Cd,k

How to select an initial weights and biases?
Problem statement:
1. With ReLU activation functions, does the initial

choice of weights and biases have a strong
impact on training? (yes)

2. Can you improve the training of the network by
carefully selecting weights and biases? (yes)

Previous work (both in TensorFlow and pyTorch):
• Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE international

conference on computer vision, pages 1026-1034,2015.

• Xavier Glorot and Yoshua Bengio. Understanding the difficulty of

training deep feedforward neural networks. Proceedings of the

Thirteenth International Conference on Artificial lntelligence and

Statistics, 9:249-256, 13-15 May 2010.

Ravi Patel

SNL Postdoc

Nat Trask

SNL

Mamikon Gulian

SNL JvN Postdoc

Mauro Perego

SNL

5 1 A View on ReLU Neural Networks
From: "J. He, L. Li, J. Xu, C. Zheng, ReLU deep neural networks

and linear finite elements, arXiv preprint arXiv:1807.03973,

2018."

• ReLUs permit a continuous p-w linear approximation

2.00

1.75

1.50 -

1.25 -

1.00 -

0.75

(W x + b) = max (0 , W x + b)
Build a FEM Basis with ReLU NN

• • •

• • ■

• • •

cr(x - 1)

cr(2(x - 2))
cf(x - 3)
- 1) - cr(2(x - 2))+ cr(x - 3)

•
0.50 •

•
•

0.25
•
•

•

0.00

0 5 1:0 1:5 2:0 2:5

•
•

•

3 5

o
(D

uo
q.

Da
sJ

al
ul

-0

• Training ReLU NN yields an r-ref. like FE method

AFEM, versus DNN-FEM
0.3!:

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

AFEM-soluten
I (.) DNN-solteon

0

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.34

0.33

0.32

031

0.3

0.29

028

026 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

Regression: An Adaptive Basis Viewpoint
in JVAlcil (x)

Neural network:
1. Width d: Input layer
2. Width w: hidden layers define

adaptive basis
3. Linear coefficients: Output layer

• Adaptive viewpoint: references
w

i=1

To train we adopt a hybrid Least-
squares/Gradient descent method (LSGD)
• Look at weight initialization

L

function LSGD

Initialize Weights
= LS(C)

for i = 1 . . . do

G
= LSO)

end for

end function

1
1

He Initialization: Plain Neural Networks

Use "He" initialization on a plain DNN
• He* is a (the) standard techniques (both pytorch and TensorFlow)
• Was designed for ReLU networks with batch normalization
• He does not modify the bias (sets it to zero)

Propagate [0,1]2 through the neural network

x

Plot the image of [0,1 through all layers

L-0 L-1 L-2 L-3 L-4 L-5 L-6 L 7

1.2 2.4 0.73 0.24 0.2 0.2 0.2 0.2

L

Image of layer

Size of hypercube

1

*He, K., Zhang, X., Ren, S., & Sun, J. (2015). In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).

He Initialization: ResNets
Propagate [0,1]2 through the neural network

L 0 L=2 L=4

I 1 41;
1.2 4.6 7.8

L= 8 L= 16 L= 32 L= 64 L= 128

.0001.1111

110.0 2300.0 7.9e+05 7.1e+11 6.6e+22

• ResNets can get much deeper (128 layers)
• No collapse to a point, but it does collapse to a line
• Really large growth: 1022 (yikes!)

L

z1
Size of hypercube

Our Approach:

Goals:
• Remain Bounded

"Box„ Initialization (x ReLU-ResNets)

• Don't Collapse: Requires growth of cell size
• Keep cut-plane is in cell at each layer

For each row of a layer (I=1...L):
1. Choose a point p E [0, m]w
2. Choose a random normal
3. Select a scaling k such that

max a(k(x — p) • n) = m1,-1
.xe[o,m]''”

Affine trans defined row wise:
wi = knT and bi = kp • n

max (x p) • 7'1
x

(0,0)

Box Initialization: ResNets
Propagate [0,1]2 through the neural network

x

c

y
L=0 L= 2 L= 4 L= 8 L= 16 L= 32

4/'
1.2 4.6 7.8 110.0 2300.0 7.9e+05

•
1.2 1.2 1.2 1.2 1.2 1.3

L= 64 L= 128

7.1e+11 6.6e+22

1.3 1.4

• "Box" prevents, collapse and exponential growth
• [0,1]2 cube maps to nearly a cube after 128 layers

L

z1
Size of hypercube

1 Experiments: Initialization with Box vs. He
[lc

.1.0•01111.11
•)E

4 16 64 256

Depth

ResNet

Box

4 16 64 256

Dcpih

Plain Neural Network

Approximating a discontinuous function composed
of two polynomials (network width is 2)
• Only Box with ResNet (orange crosses) works

well

• Box does better over multiple samples, generally

more robust achieving some convergence on
average

He Initialization of width-32 ReLU network

8
—L M
—L = 32
—L = 64
—L = 128

-8
10° 101 102 103 104

Number of training steps (log scale)

•

Box Initialization of width-32 ReLU network
6

4
8

—L
—L = 32
—L = 64
—L = 128

10° 101 102 103 104

Number of training steps (log scale)

Approximating sin(2n-x)
• Both He and Box work okay for small

numbers of layers
• He suffers for large numbers of layers

• Box leads to smaller errors, with better
performance for large numbers of layers

How to Accelerate Training With Parallelism?

Training neural networks can be costly (weeks)
• Loads of data to look at
• Lots of weights and features to optimize
• Nonlinear interactions to differentiate through
• Rough objective surface limits current applicability

of optimizers; rely on gradient descent instead

Can parallel computing in general, and HPC
specifically help here?
• Already multi-GPU codes are helping
• New optimization algorithms less sensitive to

inaccurate gradients being developed

Our Goal: Develop a new dimension of parallelism to
exploit!

Stefanie Guenther

LLNL Postdoc

Lars Ruthotto

Emory

Jacob Schroder

UNM

Nico Gauger

TU Kaiserslautern

Parallelization strategies: Data Parallel

Data Parallelism:
• Distribute a batch of

samples over processors
• Replicate neural network

across all processors

Problem: Stochastic gradient
descent performance
degrades with increased data
size

r
m
u
2
CI_

•
am,

N

(1)
>.
CD
—I

IIIIIIIII.

_,

c>.)
CO
—I

itr
n
L

ho

(>).
co
_1

-1-,m

0_

C

=

ho
—1

>.03_,

=

0-

C

IN

(>).
CD
—I

11111111

J

E

111111111 111111111110 If0 1

Parallelization strategies: Model Parallel

Model Parallelism:
• Distribute network across

processors
• Distribute data accordingly

Problem: Forward and backward
propagation are serial bottlenecks.
Increased depth leads
unreasonable computation times
• Using a bigger computer will

not solve this!

1

1

O

O

(NI

O

•

Our New Approach: Layer-Parallel Training

Proc. 0 Proc. 1 Proc. Proc. P-1 II Proc. P

• Distribute layers across multiple processors (a new form of
model parallelism)

• This approach is compatible with data and model parallelism
• Hint: Our approach to making this work is motivated by parallel-

in-time

Wait, what? (Number one response)
Layer-Parallel makes no sense they say:

Gradient Descent Algorithm:

initialize the solution
w W =
w b = initialize_b()

= data
for iter in [1,max_iter]:
do forward propagation inference step
x = forward_prop(y0,w_W,w_b)

do backward propogationj to compute the gradient
g_W, g_b = backward_prop(x,y0,w_W,w_b)

update the solution with gradient descent
w W = w W - learning_rate * g_W
w b=wb- learning_rate * E_5

• Forward and backward propagation are serial!
• Distributing the layers across processors still serializes!
• It doesn't make a whole lot of sense does it?

These serialize across the
layers. A forward and
then a backward sweep!
How can you parallelize

Critical Assumption: Exactness of propagation
We can relax the exactness of propagation, and trade for parallelism!

Gradient Descent Algorithm:

Introduce a small error

• If we can control the error we introduce, we can use it to get
parallelism!

• We introduce this error through a multigrid algorithm, and get
parallelism as a result

Layer-Parallel Algorithm
Takes advantage of recent advances in Multi-grid In Time (MGRIT*)

1. Relax on fine

2. Transfer to coarse

3. Coarse correction

4. Transfer to fine

5. Relax on fine

NI

CID
>-
CO
_I

Proc. 0

1
Proc. 1

.10 -'

u-)

lo7)
>,-
co_1

Proc. 2

N....

Proc. P
1 0

 .To
c
iZ

1111111111110

•

*R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel Time Integration with Multigrid, SIAM J. Sci. Comput., 36 (2014), pp.C635-C661.

1 Layer-Parallel Algorithm: Details

Uses ODE Networks (time=layers)

• Think ResNet as an ODE
• Theory from multigrid-in-time

• Questions about regularity required

2 Fine-Coarse-Fine (FCF) relaxation

with FAS multigrid:

1. Relax fine points
2. Relax on coarse points
3. Relax on fine points again

3 Using one-shot optimization

• No batching like SGD

• Probably suboptimal
• Using L-BFGS Hessian

(I)

Xk+1 = Xk + A, Cr(WkXk + bk)

i Discretize

atx(t) = a (W (t)x(t) + b(t))

(I) (1)

11114)1111

-

with H (L

•
H_ 1 d Lossk

k dvn

ky - H(y, k2)

Layer Parallel Scaling Results

a

a

a

(a) Peaks (b) Indian Pines

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes
2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc...
3. MNIST: Handwritten digit classification

A comment on the code:
• Neural network code using Xbraid (LLNL) parallel-in-time library

• Code is not optimized: e.g. MNIST uses hand coded convolutions
• Neural networks architectures not optimized, simple ODENets

NilLB'lliAto)
ii, .-...." .1

1.8
1.6
1.4

8 1.2
bo 1
5 0 8•
-a 0.6
11 0.4

0.2 -
0
o

tr
ai

ni
ng

 l
os

s

Layer Parallel Scaling Results
Peaks

Simultaneous layer-parallel
Layer-serial reference

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

50 100 150 200
iteration

250

Indian Pines
Simultaneous layer-parallel

Layer-serial reference

300

50 100 150 200 250 300

1 00.."..

80 >,

60

40

20 'c-e

o

350

80-
70,
60
50 :=
40 Fe:
30
20%;i:
10:12.
0 >

etO
1400

1200
•
CO 1000

(f)

p
% 800

600

CD .473 400
0:1)

200

1)

Indian Pines
cores

64 128 256

MNIST
cores

512
2500

64 128 256

¡ La er-paraliel -
Layer-senal - -

1OX -
SPEEDU

512 1024
layers

2000

I 1500

1000

P 500

0
2048 256 512 1024

if laycrs

bD 1024 _

512
CD 17)
U
(i) = 256

bD
128

0
L-

64
V) 2

I 1_ I
= 2t6 - -

N = 512 - -
N = 1024

 ccL N = 2048
N :

Els

_

1024

512

0 256

128

64
4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512

I Layer-paraliel — -
Layer-serial - - x- -

512

16X
------- SPEEDU

----- ------ t ----- —h
2048

,
N— 256 -4-
N = 512 x

\
N
El,

N =
N =

1024
2048

-- -

—13- -

cores # cores

iteration

Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
• Initialize weights and biases
• Initialize state and adjoint

To overcome this, we have developed a
nested iteration
• Like full multigrid
• Train on the coarse network first,

then upscale

Well-initialized DNN
with 128 layers

Nested iteration refinement yields good initial
network parameters for deeper network

Initial coarse 16
layer network

-->

-*11

L

Final trained 128
layer network

Layer-parallel multigrid training

128 layers

64 layers

32 layers

 1 16 layers

23
Nested Iteration: Indian Pines and Peaks
• 3 level example with Indian Pines and Peaks data sets

• Work Unit = Average Fine Level forward/adjoint gradient computation

Va
li
da
ti
on
 A
c
c
u
r
a
c
y
 (
%
)

100

0

Validation Accuracy

Nested - Level 2

Nested - Level 1

Nested - Level 0

Non-nested

75 100

Work Units

150 175

200 steps

125 steps

75 steps

100

80 -

20 -

0

Validation Accuracy

Nested - Level 2

Nested - Level 1

Nested - Level 0

Non-nested

'0 100 150 205 0 250

Work Units

Nested iteration yields better validation accuracy in less tinil

200 steps

100 steps

50 steps

300

Nested Iteration: Regularization
To understand the regularization impact of nested
iteration
• 4 different values for hyper parameters, chosen to give

good results

Tikanov Regularization

Initial Weights

10-5

0.0

10-7

10-6

• 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than
non-nested iteration
• Promising improvement to robustness (not definitive)
• Hypothesis: nested iteration applies implicit

regularization

Peaks Validation Accuracy

5 Channel
Nested Non-Nested

Mean
Median
Max
Min
Std. Dev

86.7%
88.0%
97.0%
66.0%
7.69%

85.0%
88.5%
95.0%
20.0%
11.7%

8 Channel
Nested Non-Nested

Mean 92.3%
Median 94.0%
Max 99.0 %
Min 72.5 %
Std. Dev 5.18 %

90.7%
91.8%
96.5%
57.0%
6.08 %

25 Better with Layer-Parallel?

PDE constrained problem:
.

min g (u, z)
zEZ

s.t. F (u, z) = 0

• "g" is scalar objective function

• "F" is PDE problem in residual form

• "u" is a state variable (solution to PDE)

• "z" is a control variable

Denis Ridzal (SNL)

Some work in parallel-in-time optimization and applications
• Guenther, Gauger, Schroder, Opt. Methods and SW, 2018

• Götschel, Minion, preprint arXiv:1901.06850, 2019

• Ulbrich, Real-time PDE-constrained optimization, 2007

• Maday and Turinici, Proceedings of the 41st IEEE Conference on Decision and Control, 2002

PDE Constrained Optimization: The KKT System

The critical points of the Lagrangian

COLL7 z, g (u z) + A F u, z)
are the 1st order necessary conditions:

OuL = Oug(u7 ATOuFfu z

Oz,C, z g (u z) AT 0 z —

8z,C) z)

Linearizing these conditions, gives us a matrix with

the celebrated KKT structure

This structure, with minor variations, often appears in

full space optimization algorithms

12

22

For the Inexact SQP Algorithm we are
pursuing:
• Hil = H22 =

• H12 = H21 =

• ji = duF(u,z)

• J2 = dzF(u,z)

PDE Constrained Optimization: Transient KKT Systems
Upper Triangular

Assume a transient constraint

Nowhis lower triangular, its transpose is upper
triangular
• Implies a forward-time and backward-time

solve
• The "adjoint problem" is backwards in time

I C
II I

l

I

I
I

I

I
I
I

I :

1

Lower Triangular

[H11 /112 J17.7

H21 -H22 E i I
Jil J2

1
1

Forward and Adjoint Solve
Our solution to the serial challenge is to develop a
method based on multigrid in time
• KKT system couples in time!
• The optimal solution does not couple in time
• The path to the optimal solution couples in time

to tl)t2 t

IIIPPPPROPPWI
to tl t2 t3

Nonlinear optimization algorithms do repeated
sequences of forward then adjoint solves

•

:Eliiii i II1.
I M

I

I

I

I

I. l

I l
I

II
I
I
I

I
I
I
I
I

mi

-
-
-

_ Examine the Optimization Problem

Solve the quadratic problem: Optimality conditions for quadratic problem:

d

min
z

1
42 + —2M2 dt

s.t.

2 2 1111

d

dtu
Ku + Gz

w — KT rw + u u 0

z G7 1 w 0

Ku — Gz 0
d

dtu

Eliminating ̀ u' and 'z' yields the elliptic in time equation:

dd2
 w + (K — KT

d
) —w + (K KT + GGT)w = —it — Ku
dt dtdt2

For related observations
• Lewis, Nash. SIAM Journal on Scientific Computing, 26(6), 2005.
• Gander, Kwok. Domain Decomposition Methods in Science and Engineering

XXII. 2016

1
1

I

I

Introduction of Coupling Constraints

We introduce coupling constraints between time steps
• Motivated directly by:

o Heinkenschloss, J. Comp. Appl. Math., 2005.
o Comas Ph.D. Thesis, Rice University, 2006.

• Similar to multiple shooting
• Thus the time coupling will be resolved by the nonlinear solver

For instance, a PDE constrained Burger's example:

. 1
min —
u,z 2

T

0

i
(u(x, t) — fi,(x , t))2 + a z (x , t)2 dxdt

0

subject to atu(x, t) — v0xxu(x, t) + 0 x (u (x , t)2) = z (x , t)

u(O, t) = u(1, t) = 0, u(x, 0) = u0(x)

Next slide shows how we discretize and introduce coupling constraints

Model Problem

Discretize with the theta method:

min
u,z

Nt.,1 Ati pti luTmui g(ti)T
>_J 2 2
i- 1

N+1
Ati_i Ati (a

2 2
i-O

subject to (M+61Atiii*+1 eAtiN(ui+4+01/+01-0Wiii*1112
+((1-691A437((iz))+A\,Itzu

=

Expose time continuity coupling constraint by introducing "virtual" variables into
the optimization problem

Explicit exposure of these temporal constraints makes the development of a time
domain decomposition approach straightforward.

Explicitly expose coupling in time

Introducing the coupling constraints changes the structure of the matrix

Introduce Constraint 111.

I
: NMI

I I MI

M .
I I

I

I

I

1

I

1

MI

M .
I 1

I I MI

I 1

■ 1.1

Ingredients to Multigrid

We have explained the structure of the operator:
• Introduced coupling constraints
• Depends on number of time steps

We want to develop solver that:
• Allows decomposition over time steps (and space)
• Can use a matrix free approach

We will develop a multigrid-in-time scheme to solve the linear problem
1. We need coarsening and restriction schemes in time
2. We need a scalable smoother

Restriction and Prolongation

r.] For states and adjoints, we define restriction as point injection (copy).

r.] For controls, we define restriction as a weighted 2-interval average.
-.-

NA/ \A7 N/,_

r.i For states and adjoints, we define prolongation via linear interpolation.

T —2—

r.i For controls, we define prolongation as interval injection (copy).

Scalable Smoother
Reordering of unknowns creates a interesting structure:

KKT Ordering

oupling ConstraV

Block Tridiagonal Ordering

l ..1 . NI N i

Ri_l___ - El - -

1
■

.1:
1

1
• M

1
I

.:

1 .1
I i
I i
I i
I i
I i .
I i

I

.
I
I
I
I
I
r

•

New structure has KKT systems for each time step on the block
diagonal, with temporal continuity constraints on the off diagonals

Scalable Smoother: Block Jacobi
Relax coupling between blocks by removing continuity condition:

I
I
I

A M

Relaxation scheme to solve Ax=b:

xi±i = xi ± M-1 (b Axi)

• Block Jacobi "smoothing" over each time step
• Blocks are approximately inverted in parallel

Scalable Smoother: Solving the local KKT system
Each subdomain must solve a local KKT system:

• Following the work of Wathen and others*, we will
use a block LU factorization

• Upper blocks are trivially invertible
• Schur complement of KKT must be approximated

• [
where

lo

• Applied as a smoother with residual correction

*T Rees, HS Dollar, and A Wathen. "Optimal solvers for PDE-constrained optimization." SISC 32, 2010.

M Stoll, and A Wathen. "All-at-once solution of time-dependent Stokes control." Journal of Computational Physics 232, 2013

Coarse Grid Correction

• •

•
MI

• On coarse grid we revert to the KKT form
• Assume control contributions are zero
• Solve this system again using Wathen style

preconditioner
• Again use a residual correction, now on

coarse grid
• This couples across time steps, and

effectively serializes

Results: 1D Burgers Control

1D viscous Burgers control

1
min
u,z 2fol fo

1
(u (x , t) — ft(x , t))2 + az (x , t)2 dxdt

subject to Otu(x, t) — v0xxu(x,t) + Ox(u(x, t)2) = z(x, t)

u(O, t) = u(1, t) = 0, u(x, 0) = uo(x)

• Will use an inexact SQP algorithm, that requires KKT solves in the form

discussed previously
• MATLAB implementation will demonstrate scalability
• We use "exact" KKT subdomain solves for this problem (not Wathen)

1D Burgers Control: SQP iterations

Li
ne

ar
 I
te
ra
ti
on
s

100

80

60

40

20

PinT Optimization Algorithmic Scaling

4—* tol = O. 9

4—* tol = 10-2

4—* tol = 10-8

A.
AA,

A.
le`

,p•--' *--------"-"------

oo
.....

,
i
,

A
 A

0'

-.,

*

•

Linear Iterations

- - Nonlinear Iterations

..,
.4.

.4.
•••

••••
s.

.4.
.4.
•
•
•
•

4.,
•

10

8

6

4

2

0 0
0 200 400 600 800 1000 1200 1400 1600 1800

Timesteps

No
nl

in
ea

r
It

er
at

io
ns

Flat linear iteration counts, combined with flat optimization iteration counts with
respect to time step size leads to a scalable method*

*Caveat: This examples uses a direct solve for the KKT matrix, in general we are abusing the approximate
block factorization preconditioner, as a smoother

Results: Control of the heat equation

Optimal control of the heat equation on a rectangular domain
• Finite element discretization in space: 60x20 mesh
• We focus on a single augmented system with appropriate right-hand side
• Serial baseline: GMRES with Stoll, Wathen (2013) approximate Schur

preconditioner.
• Parallel results all use a 4-level multigrid solver

Implementation
• Rapid Optimization Library (ROL) in Trilinos.
• Developed an interface for dynamic optimization
• Example implemented by Drew Kouri.

Optimal control of the heat equation
First the good news, real speedups!

• Need to improve parallel distribution to go to more processors

Run Time: 1025 Tirnesteps

101
Processors

100

80

60

E

c

40

20

Run Time: 4097 Timesteps

.—. Parallel

- - Serial

10.26x

10° 101
Processors

102 103

450

400

350

300

Run Time: 16385 Timesteps

Processors

Note: We benefit heavily from the parallel distribution of the forward operator!

Optimal control of the heat equation

Now the bad news, iterations don't scale with processor count
• Glass half full perspective: Opportunity for more speedups!
• Appears scalable with respect to number of time steps

Iterations: 1025 Timesteps

Serial

101

Processors

102

Iterations: 4097 Timesteps

101

Processors

102

Currently working on why this isn't scaling
• Evidence from other problems suggests it is our smoother

Iterations: 16385 Timesteps

101

Processors

102

Closing Thoughts
Developed a new "Box" initialization scheme
• Good initialization can improve the training algorithm
• Prevents collapse by allowing growth of feature space
• Limits growth to prevent blow up
• "Box" ReLU-ResNet models get convergence with depth

Developed a Layer-Parallel algorithm for training very deep NNs
• Parallelism is exposed by permitting inexact propagation
• We can take advantage of that with multigrid algorithms: achieve 10x speedup!
• Increases available parallelism and achieves 10x speedups
• More speedup possible, improve implementation, new multi-grid solvers (elliptic in time)

Papers:
• Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, Accepted to SIMODs, 2019

• Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Submitted to PinT Proceedings, 2019

• Cyr, Gulian, Patel, Perego, Trask, Training and Initializing DNNs, Submitted MSML, 2019

