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What is a neural network?

• A single ResNet layer (for 1 = 0 L — 1):

• We also use ODE Networks:
ax

at 
= 6(W (t) x(t) + b(t))

• Apply a NN to a data element xo

g..A1( 0) xL where {Wt

yd:

Input Layer 1 Layer 2 Layer 3

Questions for this talk:
1. How do you select an initial set of weights and biases?
2. How do you accelerate the training with parallel computing?

Output



Two Types of problems

Regression 

Observations:
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Loss: Mean-Square Error
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Classification 

Observations:
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Loss: Cross-Entropy
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How to select an initial weights and biases?
Problem statement:
1. With ReLU activation functions, does the initial

choice of weights and biases have a strong
impact on training? (yes)

2. Can you improve the training of the network by
carefully selecting weights and biases? (yes)

Previous work (both in TensorFlow and pyTorch):
• Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving

deep into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE international

conference on computer vision, pages 1026-1034,2015.

• Xavier Glorot and Yoshua Bengio. Understanding the difficulty of

training deep feedforward neural networks. Proceedings of the

Thirteenth International Conference on Artificial lntelligence and

Statistics, 9:249-256, 13-15 May 2010.
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5 1 A View on ReLU Neural Networks
From: "J. He, L. Li, J. Xu, C. Zheng, ReLU deep neural networks

and linear finite elements, arXiv preprint arXiv:1807.03973,

2018."

• ReLUs permit a continuous p-w linear approximation
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• Training ReLU NN yields an r-ref. like FE method

AFEM, versus DNN-FEM
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Regression: An Adaptive Basis Viewpoint
in JVAlcil (x)

Neural network:
1. Width d: Input layer
2. Width w: hidden layers define

adaptive basis
3. Linear coefficients: Output layer

• Adaptive viewpoint: references
w

i=1

To train we adopt a hybrid Least-
squares/Gradient descent method (LSGD)
• Look at weight initialization

L

function LSGD

Initialize Weights
= LS(C)

for i = 1 . . . do

G
= LSO)

end for

end function

1
1



He Initialization: Plain Neural Networks

Use "He" initialization on a plain DNN
• He* is a (the) standard techniques (both pytorch and TensorFlow)
• Was designed for ReLU networks with batch normalization
• He does not modify the bias (sets it to zero)

Propagate [0,1]2 through the neural network

x

Plot the image of [0,1 through all layers

L-0 L-1 L-2 L-3 L-4 L-5 L-6 L 7

1.2 2.4 0.73 0.24 0.2 0.2 0.2 0.2

L

Image of layer

Size of hypercube

1

*He, K., Zhang, X., Ren, S., & Sun, J. (2015). In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).



He Initialization: ResNets
Propagate [0,1]2 through the neural network

L 0 L=2 L=4

I 1 41;
1.2 4.6 7.8

L= 8 L= 16 L= 32 L= 64 L= 128

.0001.1111

110.0 2300.0 7.9e+05 7.1e+11 6.6e+22

• ResNets can get much deeper (128 layers)
• No collapse to a point, but it does collapse to a line
• Really large growth: 1022 (yikes!)

L

z1
Size of hypercube



Our Approach:

Goals:
• Remain Bounded

"Box„ Initialization (x ReLU-ResNets)

• Don't Collapse: Requires growth of cell size
• Keep cut-plane is in cell at each layer

For each row of a layer (I=1...L):
1. Choose a point p E [0, m]w
2. Choose a random normal
3. Select a scaling k such that

max a(k(x — p) • n) = m1,-1
.xe[o,m]''”

Affine trans defined row wise:
wi = knT and bi = kp • n

max (x p) • 7'1
x

(0,0)



Box Initialization: ResNets
Propagate [0,1]2 through the neural network

x

c

y
L=0 L= 2 L= 4 L= 8 L= 16 L= 32

4/'
1.2 4.6 7.8 110.0 2300.0 7.9e+05

•
1.2 1.2 1.2 1.2 1.2 1.3

L= 64 L= 128

7.1e+11 6.6e+22

1.3 1.4

• "Box" prevents, collapse and exponential growth
• [0,1]2 cube maps to nearly a cube after 128 layers
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1 Experiments: Initialization with Box vs. He
[ lc

.1.0•01111.11
• )E

4 16 64 256

Depth

ResNet

Box

4 16 64 256

Dcpih

Plain Neural Network

Approximating a discontinuous function composed
of two polynomials (network width is 2)
• Only Box with ResNet (orange crosses) works

well

• Box does better over multiple samples, generally

more robust achieving some convergence on
average

He Initialization of width-32 ReLU network

8
—L M
—L = 32
—L = 64
—L = 128

-8  
10° 101 102 103 104

Number of training steps (log scale)

•

Box Initialization of width-32 ReLU network
6

4
8

—L
—L = 32
—L = 64
—L = 128

10° 101 102 103 104

Number of training steps (log scale)

Approximating sin(2n-x)
• Both He and Box work okay for small

numbers of layers
• He suffers for large numbers of layers

• Box leads to smaller errors, with better
performance for large numbers of layers



How to Accelerate Training With Parallelism?

Training neural networks can be costly (weeks)
• Loads of data to look at
• Lots of weights and features to optimize
• Nonlinear interactions to differentiate through
• Rough objective surface limits current applicability

of optimizers; rely on gradient descent instead

Can parallel computing in general, and HPC
specifically help here?
• Already multi-GPU codes are helping
• New optimization algorithms less sensitive to

inaccurate gradients being developed

Our Goal: Develop a new dimension of parallelism to
exploit!
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Parallelization strategies: Data Parallel

Data Parallelism:
• Distribute a batch of

samples over processors
• Replicate neural network

across all processors

Problem: Stochastic gradient
descent performance
degrades with increased data
size
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Parallelization strategies: Model Parallel

Model Parallelism:
• Distribute network across

processors
• Distribute data accordingly

Problem: Forward and backward
propagation are serial bottlenecks.
Increased depth leads
unreasonable computation times
• Using a bigger computer will

not solve this!

1
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Our New Approach: Layer-Parallel Training

Proc. 0 Proc. 1 Proc. Proc. P-1 II Proc. P

• Distribute layers across multiple processors (a new form of
model parallelism)

• This approach is compatible with data and model parallelism
• Hint: Our approach to making this work is motivated by parallel-

in-time



Wait, what? (Number one response)
Layer-Parallel makes no sense they say:

Gradient Descent Algorithm:

# initialize the solution
w W =
w b = initialize_b()

= data
for iter in [1,max_iter]:
# do forward propagation inference step
x = forward_prop(y0,w_W,w_b)

# do backward propogationj to compute the gradient
g_W, g_b = backward_prop(x,y0,w_W,w_b)

# update the solution with gradient descent
w W = w W - learning_rate * g_W
w b=wb- learning_rate * E_5

• Forward and backward propagation are serial!
• Distributing the layers across processors still serializes!
• It doesn't make a whole lot of sense does it?

These serialize across the
layers. A forward and
then a backward sweep!
How can you parallelize



Critical Assumption: Exactness of propagation
We can relax the exactness of propagation, and trade for parallelism!

Gradient Descent Algorithm:

Introduce a small error

• If we can control the error we introduce, we can use it to get
parallelism!

• We introduce this error through a multigrid algorithm, and get
parallelism as a result



Layer-Parallel Algorithm
Takes advantage of recent advances in Multi-grid In Time (MGRIT*)

1. Relax on fine

2. Transfer to coarse

3. Coarse correction

4. Transfer to fine

5. Relax on fine
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*R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel Time Integration with Multigrid, SIAM J. Sci. Comput., 36 (2014), pp.C635-C661.



1 Layer-Parallel Algorithm: Details

Uses ODE Networks (time=layers)

• Think ResNet as an ODE
• Theory from multigrid-in-time

• Questions about regularity required

2 Fine-Coarse-Fine (FCF) relaxation

with FAS multigrid:

1. Relax fine points
2. Relax on coarse points
3. Relax on fine points again

3 Using one-shot optimization

• No batching like SGD

• Probably suboptimal
• Using L-BFGS Hessian

(I)

Xk+1 = Xk + A, Cr(WkXk + bk)

i Discretize

atx(t) = a (W (t)x(t) + b(t))

(I) (1)

11114)1111
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Layer Parallel Scaling Results

a

a

a

(a) Peaks (b) Indian Pines

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes
2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc...
3. MNIST: Handwritten digit classification

A comment on the code:
• Neural network code using Xbraid (LLNL) parallel-in-time library

• Code is not optimized: e.g. MNIST uses hand coded convolutions
• Neural networks architectures not optimized, simple ODENets

NilLB'lliAto )
ii, .-...." .1
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Layer Parallel Scaling Results
Peaks
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Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
• Initialize weights and biases
• Initialize state and adjoint

To overcome this, we have developed a
nested iteration
• Like full multigrid
• Train on the coarse network first,

then upscale

Well-initialized DNN
with 128 layers

Nested iteration refinement yields good initial
network parameters for deeper network

Initial coarse 16
layer network

-->

-*11

L

Final trained 128
layer network

Layer-parallel multigrid training

128 layers

64 layers

32 layers

 1 16 layers



23
Nested Iteration: Indian Pines and Peaks
• 3 level example with Indian Pines and Peaks data sets

• Work Unit = Average Fine Level forward/adjoint gradient computation
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100

0

Validation Accuracy

Nested - Level 2

Nested - Level 1

Nested - Level 0

Non-nested

75 100

Work Units

150 175

200 steps

125 steps

75 steps

100

80 -

20 -

0

Validation Accuracy

Nested - Level 2

Nested - Level 1

Nested - Level 0

Non-nested

'0 100 150 205 0 250

Work Units

Nested iteration yields better validation accuracy in less tinil

200 steps
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Nested Iteration: Regularization
To understand the regularization impact of nested
iteration
• 4 different values for hyper parameters, chosen to give

good results

Tikanov Regularization

Initial Weights

10-5

0.0

10-7

10-6

• 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than
non-nested iteration
• Promising improvement to robustness (not definitive)
• Hypothesis: nested iteration applies implicit

regularization

Peaks Validation Accuracy

5 Channel
Nested Non-Nested

Mean
Median
Max
Min
Std. Dev

86.7%
88.0%
97.0%
66.0%
7.69%

85.0%
88.5%
95.0%
20.0%
11.7%

8 Channel
Nested Non-Nested

Mean 92.3%
Median 94.0%
Max 99.0 %
Min 72.5 %
Std. Dev 5.18 %

90.7%
91.8%
96.5%
57.0%
6.08 %



25 Better with Layer-Parallel?

PDE constrained problem:
.

min g (u, z)
zEZ

s.t. F (u, z) = 0

• "g" is scalar objective function

• "F" is PDE problem in residual form

• "u" is a state variable (solution to PDE)

• "z" is a control variable

Denis Ridzal (SNL)

Some work in parallel-in-time optimization and applications
• Guenther, Gauger, Schroder, Opt. Methods and SW, 2018

• Götschel, Minion, preprint arXiv:1901.06850, 2019

• Ulbrich, Real-time PDE-constrained optimization, 2007

• Maday and Turinici, Proceedings of the 41st IEEE Conference on Decision and Control, 2002



PDE Constrained Optimization: The KKT System

The critical points of the Lagrangian

COLL7 z, g (u z) + A F u, z)
are the 1st order necessary conditions:

OuL = Oug(u7 ATOuFfu z

Oz,C, z g (u z) AT 0 z —

8z,C) z)

Linearizing these conditions, gives us a matrix with

the celebrated KKT structure

This structure, with minor variations, often appears in

full space optimization algorithms

12

22

For the Inexact SQP Algorithm we are
pursuing:
• Hil = H22 =

• H12 = H21 =

• ji = duF(u,z)

• J2 = dzF(u,z)



PDE Constrained Optimization: Transient KKT Systems
Upper Triangular

Assume a transient constraint

Nowhis lower triangular, its transpose is upper
triangular
• Implies a forward-time and backward-time

solve
• The "adjoint problem" is backwards in time

I C
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Lower Triangular

[H11 /112 J17.7

H21 -H22 E i I
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Forward and Adjoint Solve
Our solution to the serial challenge is to develop a
method based on multigrid in time
• KKT system couples in time!
• The optimal solution does not couple in time
• The path to the optimal solution couples in time

to tl  )t2 t 

IIIPPPPROPPWI
to tl t2 t3

Nonlinear optimization algorithms do repeated
sequences of forward then adjoint solves

•

:Eliiii i  II1.
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_ Examine the Optimization Problem

Solve the quadratic problem: Optimality conditions for quadratic problem:

d

min
z 

1 
42 + —2M2 dt

s.t.

2 2 1111

d

dtu
Ku + Gz

w — KT rw + u u 0

z G7 1 w 0

Ku — Gz 0
d

dtu

Eliminating ̀ u' and 'z' yields the elliptic in time equation:

dd2
 w + (K — KT 

d 
) —w + (K KT + GGT)w = —it — Ku
dt dtdt2

For related observations
• Lewis, Nash. SIAM Journal on Scientific Computing, 26(6), 2005.
• Gander, Kwok. Domain Decomposition Methods in Science and Engineering

XXII. 2016
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Introduction of Coupling Constraints

We introduce coupling constraints between time steps
• Motivated directly by:

o Heinkenschloss, J. Comp. Appl. Math., 2005.
o Comas Ph.D. Thesis, Rice University, 2006.

• Similar to multiple shooting
• Thus the time coupling will be resolved by the nonlinear solver

For instance, a PDE constrained Burger's example:

. 1
min —
u,z 2

T 

0

i
(u(x, t) — fi,(x , t))2 + a z (x , t)2 dxdt

0 

subject to atu(x, t) — v0xxu(x, t) + 0 x (u (x , t)2) = z (x , t)

u(O, t) = u(1, t) = 0, u(x, 0) = u0(x)

Next slide shows how we discretize and introduce coupling constraints



Model Problem

Discretize with the theta method:

min
u,z

Nt.,1 Ati pti luTmui g(ti)T
>_J 2 2
i- 1

N+1
Ati_i Ati (a

2 2
i-O

subject to (M+61Atiii*+1 eAtiN(ui+4+01/+01-0Wiii*1112
+((1-691A437(( iz))+A\,Itzu

=

Expose time continuity coupling constraint by introducing "virtual" variables into
the optimization problem

Explicit exposure of these temporal constraints makes the development of a time
domain decomposition approach straightforward.



Explicitly expose coupling in time

Introducing the coupling constraints changes the structure of the matrix

Introduce Constraint 111.

I 
: NMI

I I MI

M .
I I

I

I

I 
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MI
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Ingredients to Multigrid

We have explained the structure of the operator:
• Introduced coupling constraints
• Depends on number of time steps

We want to develop solver that:
• Allows decomposition over time steps (and space)
• Can use a matrix free approach

We will develop a multigrid-in-time scheme to solve the linear problem
1. We need coarsening and restriction schemes in time
2. We need a scalable smoother



Restriction and Prolongation

r.] For states and adjoints, we define restriction as point injection (copy).

r.] For controls, we define restriction as a weighted 2-interval average.
-.-

NA/ \A7 N/,_

r.i For states and adjoints, we define prolongation via linear interpolation.

T —2—

r.i For controls, we define prolongation as interval injection (copy).



Scalable Smoother
Reordering of unknowns creates a interesting structure:

KKT Ordering

oupling ConstraV

Block Tridiagonal Ordering

l ..1 . NI N i
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New structure has KKT systems for each time step on the block
diagonal, with temporal continuity constraints on the off diagonals



Scalable Smoother: Block Jacobi
Relax coupling between blocks by removing continuity condition:

I
I
I

A M

Relaxation scheme to solve Ax=b:

xi±i = xi ± M-1 (b Axi)

• Block Jacobi "smoothing" over each time step
• Blocks are approximately inverted in parallel



Scalable Smoother: Solving the local KKT system
Each subdomain must solve a local KKT system:

• Following the work of Wathen and others*, we will
use a block LU factorization

• Upper blocks are trivially invertible
• Schur complement of KKT must be approximated

• [
where

lo

• Applied as a smoother with residual correction

*T Rees, HS Dollar, and A Wathen. "Optimal solvers for PDE-constrained optimization." SISC 32, 2010.

M Stoll, and A Wathen. "All-at-once solution of time-dependent Stokes control." Journal of Computational Physics 232, 2013



Coarse Grid Correction

• •

•
MI

• On coarse grid we revert to the KKT form
• Assume control contributions are zero
• Solve this system again using Wathen style

preconditioner
• Again use a residual correction, now on

coarse grid
• This couples across time steps, and

effectively serializes



Results: 1D Burgers Control

1D viscous Burgers control

1
min
u,z 2fol fo

1
(u (x , t) — ft(x , t))2 + az (x , t)2 dxdt

subject to Otu(x, t) — v0xxu(x,t) + Ox(u(x, t)2) = z(x, t)

u(O, t) = u(1, t) = 0, u(x, 0) = uo(x)

• Will use an inexact SQP algorithm, that requires KKT solves in the form

discussed previously
• MATLAB implementation will demonstrate scalability
• We use "exact" KKT subdomain solves for this problem (not Wathen)



1D Burgers Control: SQP iterations
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Flat linear iteration counts, combined with flat optimization iteration counts with
respect to time step size leads to a scalable method*

*Caveat: This examples uses a direct solve for the KKT matrix, in general we are abusing the approximate
block factorization preconditioner, as a smoother



Results: Control of the heat equation

Optimal control of the heat equation on a rectangular domain
• Finite element discretization in space: 60x20 mesh
• We focus on a single augmented system with appropriate right-hand side
• Serial baseline: GMRES with Stoll, Wathen (2013) approximate Schur

preconditioner.
• Parallel results all use a 4-level multigrid solver

Implementation
• Rapid Optimization Library (ROL) in Trilinos.
• Developed an interface for dynamic optimization
• Example implemented by Drew Kouri.



Optimal control of the heat equation
First the good news, real speedups!

• Need to improve parallel distribution to go to more processors

Run Time: 1025 Tirnesteps

101
Processors

100

80

60

E

c

40

20

Run Time: 4097 Timesteps

.—. Parallel

- - Serial

10.26x

10° 101
Processors

102 103

450

400

350

300

Run Time: 16385 Timesteps

Processors

Note: We benefit heavily from the parallel distribution of the forward operator!



Optimal control of the heat equation

Now the bad news, iterations don't scale with processor count
• Glass half full perspective: Opportunity for more speedups!
• Appears scalable with respect to number of time steps

Iterations: 1025 Timesteps

Serial

101

Processors

102

Iterations: 4097 Timesteps

101

Processors

102

Currently working on why this isn't scaling
• Evidence from other problems suggests it is our smoother

Iterations: 16385 Timesteps

101

Processors

102



Closing Thoughts
Developed a new "Box" initialization scheme
• Good initialization can improve the training algorithm
• Prevents collapse by allowing growth of feature space
• Limits growth to prevent blow up
• "Box" ReLU-ResNet models get convergence with depth

Developed a Layer-Parallel algorithm for training very deep NNs
• Parallelism is exposed by permitting inexact propagation
• We can take advantage of that with multigrid algorithms: achieve 10x speedup!
• Increases available parallelism and achieves 10x speedups
• More speedup possible, improve implementation, new multi-grid solvers (elliptic in time)

Papers:
• Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, Accepted to SIMODs, 2019

• Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Submitted to PinT Proceedings, 2019

• Cyr, Gulian, Patel, Perego, Trask, Training and Initializing DNNs, Submitted MSML, 2019


