This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 15486C

Improved Neural Network
Training: Layer-Parallelism,

Least-squares and Initialization

Authors

Eric C. Cyr, Mamikon Gulian, Ravi Patel, Mauro Perego, Nat TraéEm '.""-_ R N
Denis Ridzal (SNL), Stefanie Guenther (LLNL) Lars Ruthotto (Emory‘j | ¥
Jacob B. Schroder (UNM), Nico R. Gauger (TU Kaiserslautern) | ‘;

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525.

What is a neural network?

* Asingle ResNet layer (forl =0..L — 1):

X1l = X1 + @.(Wix; + bl)

Input Layer 1 Layer 2 Layer 3 Output

e We also use ODE Networks:

0x
= =0(W(®) x(t) + b(1)

* Apply a NN to a data element x5 = y;:
NNe(xo) = i, where € = {Wi, bi} =g

Questions for this talk: I
1. How do you select an initial set of weights and biases? |
2. How do you accelerate the training with parallel computing?

Two Types of problems

I
Regression Classification ‘
Observations: Observations:
<y R R ;di : y 1 g md : K
(Yn,un) € RT xR (¥n,Cn) € R? x {0,1} |
n=1...N n=1...N
¥Y={y,:n=1...N} |
Loss: Mean-Square Error Loss: Cross- Entropy

; NN elly . s L

argmin ||u — argmin — Z E ca,i: 10g(N N¢(ya)) I

How to select an initial weights and biases?

Problem statement:
1. With RelLU activation functions, does the initial

choice of weights and biases have a strong
impact on training? (yes)

2. Can you improve the training of the network by

carefully selecting weights and biases? (yes)

Previous work (both in TensorFlow and pyTorch):

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026-1034, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics, 9:249-256, 13—15 May 2010.

SNL Postdoc

Nat Trask
SNL

avi PatI)

Mamikon Gulian
SNL JvN Postdoc

Mauro Perego
SNL

.| A View on RelLU Neural Networks

From: “J. He, L. Li, J. Xu, C. Zheng, ReLU deep neural networks AFEM, versus DNN-FEM
and linear finite elements, arXiv preprint arXiv:1807.03973, N e
2018 ’
 RelUs permit a continuous p-w linear approximation 4
o(Wx +b) = max(0,Wx + b) I 3
- Build a FEM Basis with ReLU NN " o g Y
. ses g(x—1) ...:' g :I_S 0 o® %e
1757 | o & o2(x — 2)) .: S g o
150] === O,(X_3) Y a 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09
o] T ox=1)-o2(x = 2)+alx - 3) a S
' o 6. - ,-***,, »— DNN-solution
1.00 1 -

* Training ReLU NN vyields an r-ref. like FE method

0.26 0.28 03 0.32 0.34 0.36 0.38 04 0.42 0.44

Regression: An Adaptive Basis Viewpoint

argmin [[u — NNe[[3, x, et
£ L1 /// \ \
Neural network: \\ '
1. Width d: Input layer S ey

2. Width w: hidden layers define s
adaptive basis
3. Linear coefficients: Output layer
* Adaptive viewpoint: references

NNe(x) = & i(x; &™)
i=1

To train we adopt a hybrid Least-
squares/Gradient descent method (LSGD) ‘
* Look at weight initialization

He |nitialization: Plain Neural Networks

I
Use “He” initialization on a plain DNN Current level
e He"is a (the) standard techniques (both pytorch and TensorFlow) \ ‘
* Was designed for ReLU networks with batch normalization L —

* He does not modify the bias (sets it to zero)

Image of layer

Propagate [0,1]% through the neural network

(XXX K

Plot the image of [0,1]4 through all layers

L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=17 1.8 I

. \Al : = ’ ’ ’ ’ Size of hypercube ‘

1.2 24 0.23 0.24 0.2 0.2 0.2 0.2

D, (x,y)

D, (x,y)

He

*He, K., Zhang, X., Ren, S., & Sun, J. (2015). In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).

| He |nitialization: ResNets

Propagate [0,1]% through the neural network

Current level I

. ch (x' y) L\:

S

L=0 L=2 L=4 L=8 L=16 L=32 L=64 L=128

D, (x,y) Image of layer

blal |/ I/

1.2 4.6 7.8 110.0 2300.0 7.9e+05 7.le+l1 6.6e+22

* No collapse to a point, but it does collapse to a line _ /
* Really large growth: 1022 (yikes!) Size of hypercube

|
* ResNets can get much deeper (128 layers) 1 . 8 I

Our Approach: “Box” Initialization (retu-resnets)

Goals:

* Remain Bounded

* Don’t Collapse: Requires growth of cell size
* Keep cut-plane isin cell at each layer

For each row of a layer (I=1...L):
1. Choose a pointp € [0, m]"
2. Choose a random normal
3. Select a scaling k such that

— . — -1
xer[r(l)%(]w olk(x—p) -n) =mL

Affine trans defined row wise:
w;=kn"andb; = kp-n

(0,0)

| Box Initialization: ResNets

Propagate [0,1]% through the neural network

SO

He

Box

L=0

L=2

L=4

L=238

L=16

L=32

. q)l(x'y)

5

CI)2 (X, y)

L=64 L=128

3

12

4.6

|

/

_/

7.8

110.0

2300.0

7.9e+05

7.1e+11 6.6e+22

1.2

1.2

1.2

1.2

1.2

1.3

1.3

1.4

Current level

L\

Image of layer

* “Box” prevents, collapse and exponential growth
e [0,1]% cube maps to nearly a cube after 128 layers

Z

Size of hypercube

Experiments: Initialization with Box vs. He

0 He Box
10
s LLLLLILNTTTTLELL
= u % g e § % k
E 1021 y s . 3 X
% 103+ - % § g %
104+ 1
102 T T T T T T T T T
| 4 16 64 256 | 4 16 64 256
Depth Depth

X ResNet M Plain Neural Network

Approximating a discontinuous function composed

of two polynomials (network width is 2)
* Only Box with ResNet (orange crosses) works

well

* Box does better over multiple samples, generally

more robust achieving some convergence on

average

Mean Log;,(Loss)

6He Initialization of width-32 ReLU network

6Box Initialization of width-32 ReLU network

—L=28 —L=38
4 ——L =16 | 4t ——L =16 |
L =32 . L =32
2t —L =64 | % 2t —L =64 |
—L=128|| 3 —1L =128
0+ 1 = g
&
21 — -
,
=
6}
-8 L L o -8 | il -
10° 10! 102 10° 10? 10° 10! 102 10° 10?

Approximating sin(2mx)

Number of training steps (log scale)

Number of training steps (log scale)

Both He and Box work okay for small
numbers of layers
He suffers for large numbers of layers
Box leads to smaller errors, with better
performance for large numbers of layers

How to Accelerate Training With Parallelism?

Training neural networks can be costly (weeks)

* Loads of data to look at

* Lots of weights and features to optimize

* Nonlinear interactions to differentiate through

* Rough objective surface limits current applicability
of optimizers; rely on gradient descent instead

Stefanie Guenther Jacob Schroder
LLNL Postdoc UNM

Can parallel computing in general, and HPC

specifically help here?

* Already multi-GPU codes are helping

* New optimization algorithms less sensitive to
inaccurate gradients being developed

Our G.oaI: Develop a new dimension of parallelism to Lars Ruthotto Nico Gauger
exploit! Emory

TU Kaiserslautern

Parallelization strategies: Data Parallel

Data Parallelism:

* Distribute a batch of
samples over processors

* Replicate neural network
across all processors

Final Layer

Final Layer

Problem: Stochastic gradient
descent performance
degrades with increased data
Size

Final Layer

Parallelization strategies: Model Parallel

Model Parallelism:

* Distribute network across
pProcessors

e Distribute data accordingly

0§ 1]
| LV - |

Problem: Forward and backward

propagation are serial bottlenecks.

Increased depth leads

unreasonable computation times

* Using a bigger computer will
not solve this!

Layer 2
Layer X
Layer L
|
\ 4
|

—l
=
()
>
©

—1]

—
(I

Layer L-1
Final Layer

-I-u-l

Our New Approach: Layer-Parallel Training

Input
Final Layer
Output

Proc. 0 Proc. 1 Proc. 2 Proc. P-1 Proc. P

 Distribute layers across multiple processors (a new form of
model parallelism)
* This approach is compatible with data and model parallelism

* Hint: Our approach to making this work is motivated by parallel-
In-time

Wait, what? (Number one response)

Layer-Parallel makes no sense they say:
Gradient Descent Algorithm:

initialize the scolution

y8 = data

for iter in [1,max _iter]:
do forward propagation inference step
X = forward prop(ye,w W,w b)

do backward propogationj to compute the gradient
g W,ge b = backward _prop(x,y@,w W,w b)

update the solution with gradient descent
W W =uwlk- learning_rate * g W
Wb =uwb - learning rate * g b

* Forward and backward propagation are serial!
* Distributing the layers across processors still serializes!
* |t doesn’t make a whole lot of sense does it?

These serialize across the
layers. A forward and
then a backward sweep!
How can you parallelize

Critical Assumption: Exacthess of propagation d

We can relax the exactness of propagation, and trade for parallelism! |

Gradient Descent Algorithm:

Introduce a small error

* |f we can control the error we introduce, we can use it to get
parallelism!

* We introduce this error through a multigrid algorithm, and get
parallelism as a result

Layer-Parallel Algorithm

Takes advantage of recent advances in Multi-grid In Time (MGRIT")

Input

Output

1. Relax on fine

2. Transfer to coarse

3. Coarse correction
4. Transfer to fine

5. Relax on fine

Input

Output

*R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel Time Integration with Multigrid, SIAM J. Sci. Comput., 36 (2014), pp.C635-C661.

Layer-Parallel Algorithm: Details

Uses ODE Networks (time=layers)
 Think ResNet as an ODE

* Theory from multigrid-in-time

* Questions about regularity required

Fine-Coarse-Fine (FCF) relaxation
with FAS multigrid:

1. Relax fine points

2. Relax on coarse points

3. Relax on fine points again

Using one-shot optimization
* No batching like SGD
* Probably suboptimal
* Using L-BFGS Hessian

X+l = Xp T+ AtO’(kak + bk)

I Discretize

d;x(t) = a(W(t)x(t) + b(t))

v 4
dLoss;
dv
with H O @ (L+ Tky = H(y, V)k%)

S S - OH]

Layer Parallel Scaling Results

¢ i FeY/796b¢

- 1 67578 634

217290/ &%

H71 901 ¢ %

T el ¥4 1B

& 169265 % |
A2 222&dD34 Y

‘ a3 $073¢F¢
| Ol ¢y b o 2
2 1 0 1 2 3 7/ 28106498
(a) Peaks (b) Indian Pines (c) MNIST

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes
2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc...
3. MINIST: Handwritten digit classification

A comment on the code:

* Neural network code using Xbraid (LLNL) parallel-in-time library
* Code is not optimized: e.g. MNIST uses hand coded convolutions
* Neural networks architectures not optimized, simple ODENets

R UWhwo sO XA
NOSI OO LV —

training loss

training loss

[S S S S—y

0

0

0.

COOOOOO00

| Layer Parallel Scaling Results

8 . , . , — 100 —
2 LA\ &
e I ; {60 %

u\. ;
AN 440 2
Ll e 2
4 :'Jf‘ \\\ ;\‘\\\ 4 20 E
2 = T ——— "":~:-:—"T‘_—:_____ 5
0 1 1 1 | 1 1 0 -

0 50 100 150 200 250 300
iteration
Indian Pines
Simultaneous layer-parallel ———
Layer-serial reference

{1) k T T T T T T §0§
8 18 oh . P et n=*] { T/
e L ﬁ,ﬂﬂ‘-—,\'rﬁ“""’*"' 4 60 g
6 LW 4 50 =
5 440 2
% i 4 302
22 . 20':_-;
1 4 10.=
0 =

Peaks

Simultaneous layer-parallel
Layer-serial reference

0

I i i t i | O
50 100 150 200 250 300 350

iteration

Weak Scaling

Strong Scaling

1400
1200
1000
2800
600
400
200
0

time (se

time (sec)

Indian Pines

cores
64 128 256 512
' Layer-parallel - +- !
B Layer-serial - -x- - .
- 10X
i o SPEEDUP
[= - L - RS -
T~ 1 + ‘
256 512 1024 2048
layers
I T—T N= 206 —9=
T 7 ; N= 512 --x--]
E N A N - 1024 -
| N T, N = 2048 |
_) et _
ol s
- .. %l o
T4
1 | 1 1 | 1 |
2 4 8 16 32 64 128 256 512
F+ cores

time (sec)

MNIST

cores
64 128 256

"La er—paraﬂ'el s |
ayer-scrial - - x- -

16X |
- SPEEDUP

S *
=
+----- t------ i S &
256 512 1024 2048
1+ layers
T T T T T
N'— 206 — 4
gk N = 5§19 cames |
= o N=1024 s
Nooowe kB N =2048 —5-
\—k X * \]\\ |
\\ E\
SH X\\\:* L B o
\+\ “~§2 s
1 1 1 1 1 1 1
4 8 16 32 64 128 256 512
#£ cores

Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
* |nitialize weights and biases
 [nitialize state and adjoint

To overcome this, we have developed a

nested iteration

e Like full multigrid

* Train on the coarse network first,
then upscale

Well-initialized DNN
with 128 layers

Final trained 128
layer network

]
1
1
1
Nested iteration refinement yields good initial :
network parameters for deeper network p 4

Initial coarse 16

] 7 /

128 layers

64 layers

32 layers

16 layers

layer network A

Layer- paraIIeI multigrid tramlng

| Nested Iteration: Indian Pines and Peaks

* 3 level example with Indian Pines and Peaks data sets
e Work Unit = Average Fine Level forward/adjoint gradient computation

Peaks

Validation Accuracy (%)

100

80 A

60 -

40 A

20 A

Validation Accuracy

W/—_,__,u

—— Nested - Level 2 (200 steps
—— Nested - Level 1 (125 steps
—— Nested - Level 0 | 75 steps
—— Non-nested

0 25 50 75 100 125 150 175

Work Units

Indian Pines

Validation Accuracy (%)

100

80 A

60

40 A

20 A

Validation Accuracy

Non-nested

Nested - Level 2 |200 steps |
Nested - Level 1 |100 steps
Nested - Level 0

50 100 150 200 250
Work Units

Nested iteration yields better validation accuracy in less time

50 steps |
300 |

Nested Iteration: Regularization

To understand the regularization impact of nested

iteration

e 4 different values for hyper parameters, chosen to give
good results

Tikanov Regularization 10~ 107

Initial Weights 0.0 10

* 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than

non-nested iteration

* Promising improvement to robustness (not definitive)

* Hypothesis: nested iteration applies implicit
regularization

Peaks Validation Accuracy

5 Channel
Nested Non-Nested
M ean 86.7% 85.0%
Median 88.0% 88.5%
M ax 97.0% 95.0%
Min 66.0% 20.0%
Std. Dev | 7.69% 11.7%
8 Channel
Nested Non-Nested
M ean 92.3% 90.7%
Median 94.0% 91.8%
M ax 99.0 % 96.5%
Min 72.5 % 57.0%
Std. Dev | 5.18 % 6.08 %

. | Better with Layer-Parallel?

PDE constrained problem:

1
min g(u, 2) {

z€Z

s.t. F(u,z)=0
« “g”is scalar objective function |
 “F”is PDE problem in residual form ,,'.,,ﬂf"'
 “U”is a state variable (solution to PDE) Denis Ridzal (SNL)

oy
YA

is a control variable

Some work in parallel-in-time optimization and applications

* Guenther, Gauger, Schroder, Opt. Methods and SW, 2018

e Gotschel, Minion, preprint arXiv:1901.06850, 2019

e Ulbrich, Real-time PDE-constrained optimization, 2007

* Maday and Turinici, Proceedings of the 41st IEEE Conference on Decision and Control, 2002

PDE Constrained Optimization: The KKT System

The critical points of the Lagrangian
L(u,z,) = g(u, z) + \'' F(u, 2)

are the 1° order necessary conditions:
)L = Oyug(u, z) +)\T ,MF (u z)ﬁ ={)
0.L = F(u, z)w =0

Linearizing these conditions, gives us a matrix with
the celebrated KKT structure

This structure, with minor variations, often appears in
full space optimization algorithms

T T T

Hy Hiz Jy

Hy Ha Ji
Jm Jo

For the Inexact SQP Algorithm we are
pursuing:

* Hyy =Hyp =1

* Hp=Hy; =0

y]1 — auF(u, Z)

y]2 = aZF(u! Z)

| PDE Constrained Optimization: transient kkT systems

Assume a transient constraint

F(u,z) = Oyu + K(u, 2)

Now J;is lower triangular, its transpose is upper

triangular

* Implies a forward-time and backward-time
solve

* The “adjoint problem” is backwards in time

Lower Triangular

Upper Triangular

Forward and Adjoint Solve

Our solution to the serial challenge is to develop a
method based on multigrid in time

e KKT system couples in time!

 The optimal solution does not couple in time
 The path to the optimal solution couples in time

D

Nonlinear optimization algorithms do repeated
sequences of forward then adjoint solves

Examine the Optimization Problem

Solve the quadratic problem: Optimality conditions for quadratic problem:
d T
1 X 1 ———w—-—K'w+u—1u=20
min _[lu— a@|]? + 3 2| di
: g s—Gtw=0
s.t. —u=Ku+ Gz d
dt —u—Ku—Gz=0
dt
Eliminating ‘u” and ‘Z’ yields the elliptic in time equation:
i + (K — K1) d + (KK 4+ GG") d i Ki
———Ww — — W w=—u—
dt? dt dt

For related observations

* Lewis, Nash. SIAM Journal on Scientific Computing, 26(6), 2005.

* Gander, Kwok. Domain Decomposition Methods in Science and Engineering
XXII. 2016

Introduction of Coupling Constraints

We introduce coupling constraints between time steps
* Motivated directly by:
o Heinkenschloss, J. Comp. Appl. Math., 2005.
o Comas Ph.D. Thesis, Rice University, 2006.
e Similar to multiple shooting
* Thus the time coupling will be resolved by the nonlinear solver

For instance, a PDE constrained Burger’s example:

min —/ / u(z,t) — i(z,t)? + az(z,t)? dedt

subject to Opu(w,t) — VO u(z,t) + Op(u(x,)?) = 2(x, t)
u(0,t) = u(l,t) =0, u(x,0) = ug(x)

Next slide shows how we discretize and introduce coupling constraints

e D (D
Model Problem
Discretize with the theta method:

N+1 N+1

. Ati_1+Ati 1 T T Ati_l—l—Ati OIS
i 3 S (g e) ¢ 3 ST (370x)

subject to (M + 0At; A)u;1 + OAL; N (149) 4 (M + (1 — @)Dt Ay
(1 — O)AL; N (w;) + D;Bz; =0
U; —U; — 0

I”

Expose time continuity coupling constraint by introducing “virtua
the optimization problem

variables v, into

Explicit exposure of these temporal constraints makes the development of a time
domain decomposition approach straightforward.

Explicitly expose coupling in time

Introducing the coupling constraints changes the structure of the matrix

Ingredients to Multigrid

We have explained the structure of the operator:
* Introduced coupling constraints
* Depends on number of time steps

We want to develop solver that:
* Allows decomposition over time steps (and space)
e (Can use a matrix free approach

We will develop a multigrid-in-time scheme to solve the linear problem
1. We need coarsening and restriction schemes in time
2. We need a scalable smoother

| Restriction and Prolongation

m For states and adjoints, we define restriction as point injection (copy).

R S

o+——9

m For controls, we define restriction as a weighted 2-interval average.

NS NS NS

m For states and adjoints, we define prolongation via linear interpolation.

L]

m For controls, we define prolongation as interval injection (copy).

I D s | S

Scalable Smoother

Reordering of unknowns creates a interesting structure:

KKT Ordering

Block Tridiagonal Ordering

New structure has KKT systems for each time step on the block
diagonal, with temporal continuity constraints on the off diagonals

Scalable Smoother: Block Jacobi

Relax coupling between blocks by removing continuity condition:

Relaxation scheme to solve Ax=b:

Tir1 = x5 + M (b — Ax;)
* Block Jacobi “smoothing” over each time step
* Blocks are approximately inverted in parallel

Scalable Smoother: Solving the local KKT system

Each subdomain must solve a local KKT system:

* Following the work of Wathen and others”, we will
use a block LU factorization

* Upper blocks are trivially invertible

e Schur complement of KKT must be approximated

[gLl | [1 Jﬂ]
Jo P|~ 'l S
where
P=—JiJi, — Jindi, — Jody
S =—JnJi,

* Applied as a smoother with residual correction

“T Rees, HS Dollar, and A Wathen. "Optimal solvers for PDE-constrained optimization." SISC 32, 2010.
M Stoll, and A Wathen. "All-at-once solution of time-dependent Stokes control." Journal of Computational Physics 232, 2013

Coarse Grid Correction

On coarse grid we revert to the KKT form
Assume control contributions are zero
Solve this system again using Wathen style
preconditioner

Again use a residual correction, now on
coarse grid

This couples across time steps, and
effectively serializes

Results: 1D Burgers Control

1D viscous Burgers control

min —/ / u(z,t) — a(z,t))? + az(z, t)? dedt

subject to Opu(w,t) — vdppu(z,t) + O (u(x,t)?) = 2(x,t)
u(0,t) = u(l,t) =0, u(x,0) = up(z)

* Will use an inexact SQP algorithm, that requires KKT solves in the form
discussed previously

 MATLAB implementation will demonstrate scalability

* We use “exact” KKT subdomain solves for this problem (not Wathen)

| 1D Burgers Control: SQP iterations

PinT Optimization Algorithmic Scaling
| | | | | |

10
100 +— tol=0.9 | = Linear Iterations
— tol=10"2 - - Nonlinear Iterations
~ tol=10"% — |8
80

SN
o
|

Linear Iterations
(@)]
o
|
\
i 3
y
V4
V4
V4
V4
V4
V4
}
|
(@)]
Nonlinear lterations

20— = —2

0
0O 200 400 600 800 1000 1200 1400 1600 1800
Timesteps

Flat linear iteration counts, combined with flat optimization iteration counts with

respect to time step size leads to a scalable method”

"Caveat: This examples uses a direct solve for the KKT matrix, in general we are abusing the approximate
block factorization preconditioner, as a smoother

Results: Control of the heat equation

Optimal control of the heat equation on a rectangular domain

* Finite element discretization in space: 60x20 mesh

* We focus on a single augmented system with appropriate right-hand side

* Serial baseline: GMRES with Stoll, Wathen (2013) approximate Schur
preconditioner.

e Parallel results all use a 4-level multigrid solver

Implementation

* Rapid Optimization Library (ROL) in Trilinos.

* Developed an interface for dynamic optimization
* Example implemented by Drew Kouri.

Optimal control of the heat equation

First the good news, real speedups!

* Need to improve parallel distribution to go to more processors ‘
25 Run Time: 1_025 Timesteps _ 100 Run Time: 4097 Timesteps 450 _ R_urll Time: 16385 Timeslteps .
=—a Parallel =—a Parallel =—a Parallel
- Serial - Serial 400 - Serial [
20} 80} 3501
300F
3 60 w
© o 250}
£ E
F [
c < 200+
& 40 &
150}
5} 20} 100f
50}
?00 161 162 163 ?00 161 162 1(‘)3 05 %)]
10 10 10

Note: We benefit heavily from the parallel distribution of the forward operator! ‘

Iterations

10

Optimal control of the heat equation

Now the bad news, iterations don’t scale with processor count

* Glass half full perspective: Opportunity for more speedups!

* Appears scalable with respect to number of time steps

Iterations: 1025 Timesteps 10 Iterations: 4097 Timesteps

Serial Serial

Iterations
Iterations

100 10" 102 10° 101 102
Processors Processors

Currently working on why this isn’t scaling
* Evidence from other problems suggests it is our smoother

10

Iterations: 16385 Timesteps

Serial

10°

10! 10?
Processors

Closing Thoughts

Developed a new “Box” initialization scheme

* Good initialization can improve the training algorithm

* Prevents collapse by allowing growth of feature space ‘
* Limits growth to prevent blow up

* “Box” ReLU-ResNet models get convergence with depth

Developed a Layer-Parallel algorithm for training very deep NNs

* Parallelism is exposed by permitting inexact propagation

* We can take advantage of that with multigrid algorithms: achieve 10x speedup!

* Increases available parallelism and achieves 10x speedups

* More speedup possible, improve implementation, new multi-grid solvers (elliptic in time)

Papers: |
* Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, Accepted to SIMODs, 2019

* Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Submitted to PinT Proceedings, 2019

* Cyr, Gulian, Patel, Perego, Trask, Training and Initializing DNNs, Submitted MSML, 2019

