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Multi-Fidelity Reentry Model

= A multi-fidelity tool kit for reentry flows
is under development at Sandia National
Laboratories

= Why?

Time to build an aerothermal design data set
order of years

Considerable human intervention required
More quantities of interest required

Required coupling of trajectory model..
Iterative approach

Uncertainty quantification... multiple
realizations

= SAND2019-13632

Development of a Multi-fidelity
Toolkit for Rapid Aerothermal
Model Development

EXPORT CONTROLLED INFORMATION

Calfornia 84550




Multi-Fidelity Reentry Model

= A multi-fidelity tool kit
= High-fidelity=RANS
= Mid-Fidelity=Euler +Momentum/Energy Integral

= Low-Fidelity=Modified Newtonian Aerodynamics, Local boundary layer
solution/correlations

= Qverarching control strategy
= Solution interpolation: Kriging

= Body fitted gridding; local streamline field




Multi-Fidelity Reentry Model '
= The reduced order capability
depends on inviscid Newtonian local —— |
viscous skin friction/heat transfer Shear Stress (Pa): 0 200 400 600 800 1000

models

= Two limiting canonical laminar
viscous flows are:
= Stagnation flow
= Flat plate (zero pressure gradient)

= Local model should be able to locally
blend these solutions

= Concentrate on high altitude/low
density laminar flow




Analytical Solutions

Self-similar laminar flows (both flat plate and stagnation)
are given by:

freaf s pl-f7)=0

Numerical solutions are always possible...
Finite difference BVP/IVP

However... we only need near wall information e.g. f'(0)
whereby the full solution field is extraneous




Wall Shear/Heat Transfer

= Access to wall velocity gradient f"’(0) is directly related to
skin friction:

C - 2t, 2 (,uUf"(Sz
2vx
(7

f —pU2 _pUZ
= Heat transfer is related through Reynolds analogy

) — \/Ef "(O) Re;l/z
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Solution Parameters

= Previous solution

fvn_l_aﬁfn_l_ﬂ(l_fﬂ):o

= Has two parameters, a and 8 which parameterize several
flows:

Blasius Flat Plate: a=1, =0
Planar Stagnation: a=1, =1
Axisymmetric Stagnation: a=2, =1
Faulkner-Skan: a=1, 0<f§<«




Analytical Approximate Solutions; Blasius Example

= Approximate analytical solution to ODE are possible.

= Consider (classical!) Blasius equation solution process
(Weyl, Boyd, White):

ﬁv|+f||| — O
= Using f"=w rewrite as:
n
Wt fiv =0 w=w(0)exp(-[ £(£)dE)
0
= Estimate f(£):
F@) = FO+1f O+ f (O +..

=%f"(0)772 on




Analytical Approximate Solutions; Blasius Example

= Substitute:

L= L") [exp(- E)ME

= Where the integral yields:

0

J'exp(—é?)dé? = % ° ﬁzﬁ
(3)

0
3

= So as to give (within about 3% of exact):

£"(0) = 0.48380

=0.46960

exact

170)




Analytical Approximate Solutions; Heat Transfer

= Readily compute heat transfer. Energy equation:

T-T
"+Pr fg'=0 g= .
g'+Prfg A

= Which can be written

[ gldn=—1=g(O) [ exp(—Pr [ f(£)dcxn

= So as to give (justifying the Reynolds analogy):

N, =8 D pei2 0 332 R2 Py

/)
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Analytical Approximate Solutions; General Problem

= Consider full expression:

freaf ™+ Bl-f)=0

= Rewrite as: Approximate:
w't+afw=B(f 2 _ 1) J'=1=exp(=71"(0)r)
S "= f"(0)exp(=f"(0)r7)

= Estimate f'2-1... To give:
1- " =[2—exp(~f"(0)m)]exp(—f "(0)7) B

~ exp(— £ "(0)1) wt(af +———)w=0

L /7(0)
o’
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Analytical Approximate Solutions; General Problem

= Solving:
p

Wt (@ f +—L—)w=0—> w=w(0) exp(—az f(&)+ %

17'(0)

= To give the expression:

_ " T _g " 3 ﬂ —
1—f<0>£exp[ 5"’ s =0

_ -1/3 " 2/3oo _l 3 ﬂ =
L A R

= The integral is possible but complex... consider
approximation:

jexp(—ég‘?’ —f)a’f ~ exp(—.;‘fo)_" exp(—éf3 )a’cf &, =0.74961
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Analytical Approximate Solutions; General Problem

= Yijelds the implicit solution:

1=1.62265a""" (£ "(0))*” exp(~ o (]f O 0.74961)

= Or the explicit solution (special function):

a

~3/4
£"(0)=1.35487a"* " (aLambertW(3'9455ﬂD




Solution Parameters

= Previous solution

1=1.62265a""*( £ "(0))** exp(— — (]f e 0.74961)

= Has two parameters, a and 8 which parameterize several
flows:

Blasius Flat Plate: a=1, =0
Planar Stagnation: a=1, =1
Axisymmetric Stagnation: a=2, =1
Faulkner-Skan: a=1, 0<f§<«




Solutions...

Flow a
Blasius 1
Plane Stag 1

Axi-stag 2

Faulkner- 1
Skan
Faulkner- 1
Skan

10

f”(O)
approx..
0.4838
1.1856
1.2909
1.6037

3.6300

f’(0) exact Rel. err.

0.4696 3%
1.2326 4%
1.3119 2%
1.6872 5%
3.6752 1%




Solution Parameters... relation to flow geometry

= Base parameters on local flow angle:

— Current Solution = = Linear Interpolation

Y,(X) function describing body — — Boty Profle
surface 12?\\\
dyp 11\ e
7 ) | \\ J"'f-f#.
sin @ = 2 =G(0) gos <
%o AT T
\/1+ ( ) 305- f/ h"‘-—-.%
044~
| 7
= Where 0.2 ;f
|

a=1+GO) ; =GO 3

= And freestream velocity

U =U,(1-G(0)) + BxG(0)




Compressibility..

®= Introduce Chapman-Rubesin parameter

T -1/3
C, = Putl [—WJ
P, \ T,

e

= Solution takes form:

aC?

w

-3/4
£"(0)=1.35487a"* g4 C)? (aLambertW (MD




Comparison to other methods..

= Traditionally, mapping from stagnation to flat plate is

done via:
q _ X J.p*/u*uerzjdx ﬁ — 2X due
qstag p*ﬂ*uerzj ue
= Where:
Flow X Be
Flat plate X 0
Planar stagnation x/2 1
Axisymmetric stagnation x/4 V2

* There a wide range of models /func(X) an asymptotically
correct empirical expression is:

o Xu,

Nu=0.332(1+0.18538.*)Re"*Pr'” Re=

*

)7,
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Comparison to other methods..

= For a known body... we can directly compare these models
= Consider an axi-symmetric spherical body:

2 &,
G(x) = 1—(5] G(0) = ——&

d

r Yp\2

1+ (=%
({x)

= Kemp, Rose, Detra (1959) (empirical)

= We can try the two models

NuRe'"  =0.332[1+0.1853(4G(x))"*1(1+ G(x))"* Pr'”

= Current Model

aC?

w

-3/4
NuRe™ = O P £1(0) = 1354870 f4CL (aLambertW(3'945 P D
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Comparison to other methods..

|—— Current Solution —— - Empirical Function
0.7
= Spherical body
= Solution - =
parameters vary by Ry
body shape § \\
= Agrees well with gos N
empirical approach %
e.g. Kemp, Rose, 5
Detra (1959). e \
0.2




Comparison to other methods..

= Elliptical body

y,(x) = \/1——(36 4)

= Solution based on
parameter variation

= Linear interpolation of
solution

J'0)=71" G+ 7, (01 - G)

£ arnd vz

— Current Solution = = Linear Interpolation
= = Eody Profile
124\\
1 1\\ e —
0.5 M
S
_ s b~
0.5 -~
0.4 /
| 7
f
0.24f
]
0
0 1 3 4




Conclusions...

Simple closed-form method derived to estimate laminar
heat transfer

Solution maps continuously between stagnation and zero
pressure gradient shear (Blasius)

Good agreement in comparison with empirical methods
(Kemp et. al. 1959)

Models implemented in Sandia Multi-Fidelity Aerothermal
Toolkit (2019)




Next Steps...

Examine streamline based
mapping to solution parameters
oand

Consider extension to simplified
turbulent flow behavior with
intermittency parameter
mapping

Connection of approximate
integral solution to other (semi)
analytical methods (Catal 2012),
e.g. Homotopy, Adomian
Decomposition etc.
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Traditional Galerkin Method...

= Traditional Galerkin e.g. Fletcher (1984) and method-
of-weighted residuals

fm_|_]j€"+(1_fv2) =)
= Propose full domain basis function

’ ,,1(0) (exp(=1"(0)m) 1)
f'=1=exp(=f"(0)n)
S "= 1"0)exp(=f"(0)n)
f"==1"(0)" exp(—f"(0)n)

f=n+
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Sandia
Traditional Galerkin Method... ) foor

= Substitute into governing equation to give residual:

—1"(0)* exp(—/"(0)n7) +(f7 + (exp(—f"(0)r7) —1)jf "(0)exp(—f "(0)77) +

1
£"(0)
~(1—exp(~f"(0)n))” +1

= Nonlinear expression for f’(0). Demand satisfaction..

= Near wall result: —f"(0Y +1=0— £"(0)=1
= |ntegrate residual over domain
L 2
SO 2 o | vy -2
/"(0)

= But which is correct? Neither... consider simple
average..
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Traditional Galerkin Method...

7| Netora

= Approximate (average) 2,

f"(0)=%(\/§+1)z1,21 =

: | |
= Exact: -1 _\\ o

£7(0),. =1.23259

fm+ﬂ"+(1—f'2)20




