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Multi-Fidelity Reentry Model

• A multi-fidelity tool kit for reentry flows

is under development at Sandia National
Laboratories

• Why?

• Time to build an aerothermal design data set
order of years

• Considerable human intervention required

• More quantities of interest required

• Required coupling of trajectory model..
Iterative approach

• Uncertainty quantification... multiple
realizations

• SAND2019-13632
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Multi-Fidelity Reentry Model

Sandia
National
Laboratories

■ A multi-fidelity tool kit

■ High-fidelity=RANS

■ Mid-Fidelity=Euler +Momentum/Energy Integral

■ Low-Fidelity=Modified Newtonian Aerodynamics, Local boundary layer
solution/correlations

■ Overarching control strategy

■ Solution interpolation: Kriging

■ Body fitted gridding; local streamline field

3



Multi-Fidelity Reentry Model

• The reduced order capability
depends on inviscid Newtonian local
viscous skin friction/heat transfer
models

• Two limiting canonical laminar
viscous flows are:
• Stagnation flow

• Flat plate (zero pressure gradient)

• Local model should be able to locally
blend these solutions

• Concentrate on high altitude/low
density laminar flow
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Analytical Solutions

• Self-similar laminar flows (both flat plate and stagnation)
are given by:

f "Lk aff "+ fi(1- f '2) = 0

• Numerical solutions are always possible...

• Finite difference BVP/IVP

• However... we only need near wall information e.g. r (0)
whereby the full solution field is extraneous
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Wall Shear/Heat Transfer

• Access to wall velocity gradient r(o) is directly related to
skin friction:

2z- w 2 /4Uf "(0) /—
1 / 2 ) = \ / 2 f "(0) Re-xi/2

pU2 
= 
pU2
 (r 

2vx

U j

• Heat transfer is related through Reynolds analogy

Nu = g ,r) Re1/2 = 0.332 Rexu2 Pr"x
-V2 x
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Solution Parameters

• Previous solution

f m+ a ff "+ /3(1- f '2) 0

• Has two parameters, a and (3 which parameterize several
flows:

Blasius Flat Plate: a 1, 13 0
Planar Stagnation: a 1, 13 1
Axisymmetric Stagnation: a 2, [3 1
Faulkner-Skan: a 1, 0<13<oo
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National
Laboratories

7



Analytical Approximate Solutions; Blasius Example

• Approximate analytical solution to ODE are possible.

• Consider (classical!) Blasius equation solution process
(Weyl, Boyd, White):

ffn+ f"' =0

• Using f"w rewrite as:
ri

w'+ fw=0—>w= w(0) exp(-.17()d)
0

• Estimate f(k):

f (q) = f (0) + i i f '(0) + 1 f "(0)772 + ...

= 
1 
f "(0)772 + ...
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Analytical Approximate Solutions; Blasius Example

• Substitute:

1 = f "(0)[f " (0)I" i exp(— 4 3 )ifi
o 4°

• Where the integral yields:

°) 1 — 2 6"321-
f exp(— 3 )c / =  

' 
„

60 9 
F 

'

0}

• So as to give (within about 3% of exact):

f "(0) = 0.48380

f"(0),,cict =0.46960
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Analytical Approximate Solutions; Heat Transfer

• Readily compute heat transfer. Energy equation:

g"+ Pr fg' = 0 g =  
T —T 

e
T—Tw e

• Which can be written

f g 'dr/ = -1 = g '(0).1. exp(- Pr .1 f ()4)dri
0 0 0

• So as to give (justifying the Reynolds analogy):

Nu g',(0) Re u2 u2 "= 0.332 Re Prx
-N/2 x 

x
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Analytical Approximate Solutions; General Problem

• Consider full expression:

f m+ aff "+ ,8(1— f '2) = 0

• Rewrite as:

w'+ a fw = 18(f 12 - 1)

Approximate:

f ' = 1 — exp(—f "(0)0

f " = f "(0) exp(—f "(0)0

• Estimate P2-1.... To give:

1— f v2 = [2 — exp(—f "(0)77)] exp(—f "(0)77)

,'z,' exp(—f "(0)77)

1
'''' 
f "(0) 

f"

w'+ (a f +  18  )w = 0
f "(0)
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Analytical Approximate Solutions; General Problem

• Solving:

)6 11 )6 w'+ (a f + )w = 0 —> w = w(0) exp( a ff () + ( g)
f "(0) o f "(0)

• To give the expression:

1 = f "(0)1 exp[- (1 f "(0)173 +  13  ri]dri = 0
6 f "(0)0

' 1  fi 
• Or 1 = a' (f "(o))2/3 f expH e 

a
i
l' (f 

"(0))41, = 0
0

• The integral is possible but complex... consider
approximation:

' i 1
f exp -- e -
0 6

.0
zd, exp(- 0 )f exp

0
4 =0.74961
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Analytical Approximate Solutions; General Problem

• Yields the implicit solution:

1 =1.62265a-1/3(f "(0))213 exp( ie 4/3 0.74961)
al/3(f "(0))

• Or the explicit solution (special function):

(
f "(0) =1.354870(112/3314 aLambertW

(3.9455/3 314

a ji



Solution Parameters

• Previous solution

1 =1.62265a-1/3(f "(0))213 exp( 
a"(f " 

18
(0)) 

4/3 0.74961)

• Has two parameters, a and (3 which parameterize several
flows:

Blasius Flat Plate: a 1, 13 0
Planar Stagnation: a 1, 13 1
Axisymmetric Stagnation: a 2, [3 1
Faulkner-Skan: a 1, 0<13<oo
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Solutions...

Flow

Blasius

Plane Stag

Axi-stag

Faulkner-
Skan
Faulkner-
Skan

a R f"(0)
approx..

f"(0) exact
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Rel. err.

1 0 0.4838 0.4696 3%

1 1 1.1856 1.2326 4%

2 1 1.2909 1.3119 2%

1 2 1.6037 1.6872 5%

1 10 3.6300 3.6752 1%
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Solution Parameters... relation to flow geometry

• Base parameters on local flow angle:
yp(x) function describing body
surface

sin 9 =

• Where

dy ,

dx
d n

1+ ( 

y 
P Y

dx

— G(9)
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Current Solution — - Linear Interpolation
— — Body Profile
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Compressibility..

• Introduce Chapman-Rubesin parameter

( v1/3
p p T

C = w w

w PePe 7-7e

• Solution takes form:

( 3/4

f "(0) =1.35487a1/2,8314Clw/2 aLambertW
r 
3.9455,8

ac2„
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Comparison to other methods..

• Traditionally, mapping from stagnation to flat plate is
done via:

 = func(X)
qct„

fp* ,u*uer2- dx

X =  ° * *p ,u uer2,

• Where:
Flow X PF
Flat plate x 0

Planar stagnation x/2 1

Axisymmetric stagnation x/4 1/2

F
u e dX

2X du e

• There a wide range of models func(X) an asymptotically
correct empirical expression is:

*Xu
Nu = 0.332(1+ 0.1853K/2) Re-1/2 Pr" Re =  * e

Sandia
National
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Comparison to other methods..

• For a known body... we can directly compare these models

• Consider an axi-symmetric spherical body:

dy,

G(x) = 1-
7 2
' x dx G(9) =
0 , • } ± (dy, )2

dx

• We can try the two models

• Kemp, Rose, Detra (1959) (empirical)

Nu Re1/2 = 0.332[1 + 0.1853(4G(x))1/2](1 + G(x))1/2 Pr1/3

• Current Model

Sandia
National
Laboratories

i i 
—3/4

1
3.9455,8

Nu Reu2 = f "(0) Pr" f "(0) = 1.35487a1/2,83142 aLambertW  
ac24, ) )
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Comparison to other methods..

auTent Solution — - Empirical Function

0.7

• Spherical body

• Solution
parameters vary by
body shape

• Agrees well with
empirical approach
e.g. Kemp, Rose,
Detra (1959).

-N,,
N.
\

0.4 0 6 0 8 1
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Comparison to other methods..

• Elliptical body

yp 1
(x) = 1— 

16 
(x — 4)2

• Solution based on
parameter variation

• Linear interpolation of
solution

f "(0) = f " stag (0)G + f " plate (0)(1 — G)

Current S olution — - Linear Interpolation
— — Body Profile

1.2 -

0.8 -

a 0.6 -
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0 4
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Conclusions...

■ Simple closed-form method derived to estimate laminar
heat transfer

■ Solution maps continuously between stagnation and zero
pressure gradient shear (Blasius)

■ Good agreement in comparison with empirical methods
(Kemp et. al. 1959)

■ Models implemented in Sandia Multi-Fidelity Aerothermal
Toolkit (2019)
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Next Steps...

■ Examine streamline based
mapping to solution parameters
a and (3

■ Consider extension to simplified
turbulent flow behavior with
intermittency parameter
mapping

■ Connection of approximate
integral solution to other (semi)
analytical methods (Catal 2012),
e.g. Homotopy, Adomian
Decomposition etc.

ai
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Traditional Galerkin Method...

• Traditional Galerkin e.g. Fletcher (1984) and method-
of-weighted residuals

f '" + ff "+ (1 - f 12 ) = 0

• Propose full domain basis function

1

(0)
f = ri +

f " 
(exp(-f "(0)0 -1)

f ' = 1 - exp(- ) "(0)0

f " = f "(0) exp(-f "(0)0

f "' = - f "(0)2 exp(-f "MO

Sandia
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Traditional Galerkin Method...

• Substitute into governing equation to give residual:

r 1
— f "(0)2 exp(—f "(0)77) + ri + ( exp(—f "(OM —1) f "(0) exp(—f "(0)0 +

f "(0) i

— (1 — exp(—f "(0)77))2 +1

• Nonlinear expression for no). Demand satisfaction..
• Near wall result: — f " (0)2 +1 = 0 —> f " (0) =1

• Integrate residual over domain

-f "(0)2 + 2 0 _> f Ito) .\/

f " (0)

• But which is correct? Neither... consider simple
average..

Sandia
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Traditional Galerkin Method...

• Approximate (average)

1
v2f " 

2
(0) = —( +1) zd 1.2 1

• Exact:

f"(0),„,„ =1.23259
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f exact
- - f exact — - f exact

1.5

0.5

0

f ff '+ (1- f '2) = 0
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