

Local Laminar Flow Shear and Heat Transfer Solutions for Reduced Order Reentry Simulation

L. De Chant Ph.D. (ljdecha@sandia.gov)

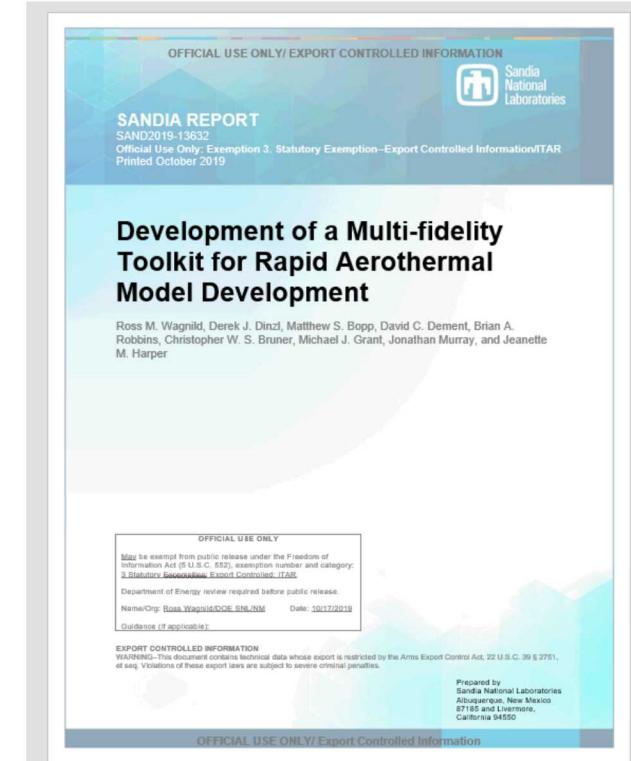
R. Wagnild Ph.D. (rmwagni@sandia.gov)

**Sandia National Laboratories
Aerosciences Dept.**

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Multi-Fidelity Reentry Model

- A multi-fidelity tool kit for reentry flows is under development at Sandia National Laboratories
- Why?
 - Time to build an aerothermal design data set order of years
 - Considerable human intervention required
 - More quantities of interest required
 - Required coupling of trajectory model.. Iterative approach
 - Uncertainty quantification... multiple realizations
- SAND2019-13632

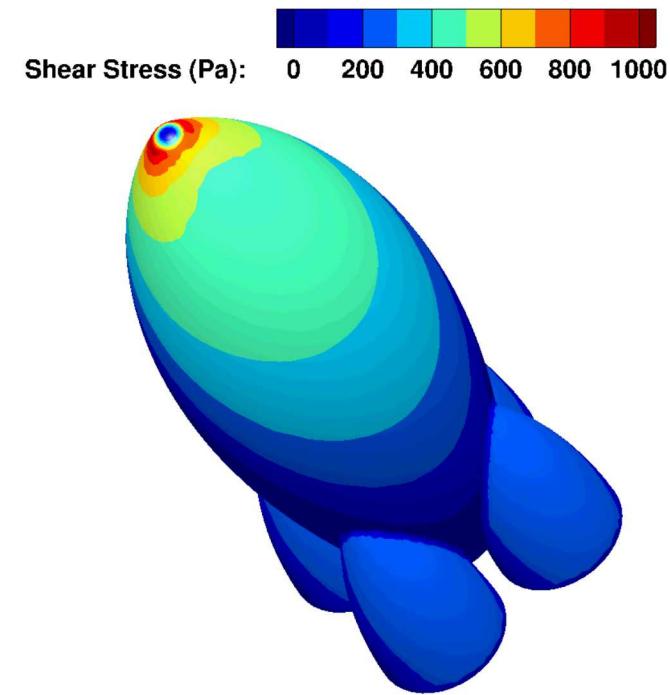


Multi-Fidelity Reentry Model

- A multi-fidelity tool kit
 - High-fidelity=RANS
 - Mid-Fidelity=Euler +Momentum/Energy Integral
 - Low-Fidelity=Modified Newtonian Aerodynamics, **Local boundary layer solution/correlations**
 - Overarching control strategy
 - Solution interpolation: Kriging
 - Body fitted gridding; local streamline field

Multi-Fidelity Reentry Model

- The reduced order capability depends on inviscid Newtonian local **viscous skin friction/heat transfer models**
- Two limiting canonical laminar viscous flows are:
 - Stagnation flow
 - Flat plate (zero pressure gradient)
- Local model should be able to locally blend these solutions
- Concentrate on high altitude/low density laminar flow

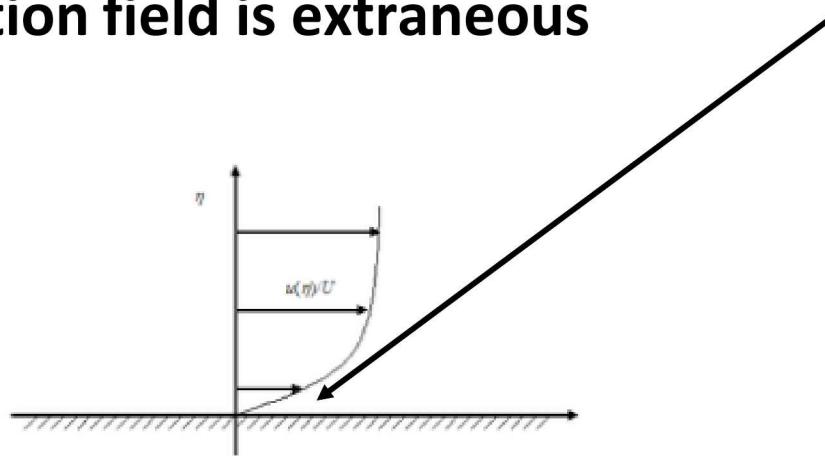


Analytical Solutions

- Self-similar laminar flows (both flat plate and stagnation) are given by:

$$f''' + \alpha f f'' + \beta(1 - f'^2) = 0$$

- Numerical solutions are always possible...
- Finite difference BVP/IVP
- However... we only need near wall information e.g. $f'(0)$ whereby the full solution field is extraneous



Wall Shear/Heat Transfer

- Access to wall velocity gradient $f''(0)$ is directly related to skin friction:

$$C_f = \frac{2\tau_w}{\rho U^2} = \frac{2}{\rho U^2} \left(\frac{\mu U f''(0)}{\left(\frac{2\nu x}{U} \right)^{1/2}} \right) = \sqrt{2} f''(0) \text{Re}_x^{-1/2}$$

- Heat transfer is related through Reynolds analogy

$$Nu_x = \frac{-g'(0)}{\sqrt{2}} \text{Re}_x^{1/2} = 0.332 \text{Re}_x^{1/2} \text{Pr}^{1/3}$$

Solution Parameters

- Previous solution

$$f''' + \alpha f f'' + \beta(1 - f'^2) = 0$$

- Has two parameters, α and β which parameterize several flows:

Blasius Flat Plate: $\alpha=1, \beta=0$

Planar Stagnation: $\alpha=1, \beta=1$

Axisymmetric Stagnation: $\alpha=2, \beta=1$

Faulkner-Skan: $\alpha=1, 0 < \beta < \infty$

Analytical Approximate Solutions; Blasius Example

- Approximate analytical solution to ODE are possible.
- Consider (classical!) Blasius equation solution process (Weyl, Boyd, White):

$$ff'' + f''' = 0$$

- Using $f'' \equiv w$ rewrite as:

$$w' + fw = 0 \rightarrow w = w(0) \exp\left(-\int_0^\eta f(\xi) d\xi\right)$$

- Estimate $f(\xi)$:

$$f(\eta) = f(0) + \eta f'(0) + \frac{1}{2} f''(0) \eta^2 + \dots$$

$$= \frac{1}{2} f''(0) \eta^2 + \dots$$

Analytical Approximate Solutions; Blasius Example

- **Substitute:**

$$1 = f''(0)[f''(0)]^{-1/3} \int_0^\infty \exp(-\frac{1}{6}\bar{\xi}^3) d\bar{\xi}$$

- **Where the integral yields:**

$$\int_0^\infty \exp(-\frac{1}{6}\bar{\xi}^3) d\bar{\xi} = \frac{2}{9} \frac{6^{1/3} \pi \sqrt{3}}{\Gamma\left(\frac{2}{3}\right)}$$

- **So as to give (within about 3% of exact):**

$$f''(0) = 0.48380$$

$$f''(0) \Big|_{exact} = 0.46960$$

Analytical Approximate Solutions; Heat Transfer

- **Readily compute heat transfer. Energy equation:**

$$g'' + \text{Pr} f g' = 0 \quad g = \frac{T - T_e}{T_w - T_e}$$

- **Which can be written**

$$\int_0^\infty g' d\eta = -1 = g'(0) \int_0^\infty \exp(-\text{Pr} \int_0^\eta f(\xi) d\xi) d\eta$$

- **So as to give (justifying the Reynolds analogy):**

$$Nu_x = \frac{-g'(0)}{\sqrt{2}} \text{Re}_x^{1/2} = 0.332 \text{Re}_x^{1/2} \text{Pr}^{1/3}$$

Analytical Approximate Solutions; General Problem

- Consider full expression:

$$f''' + \alpha f f'' + \beta(1 - f'^2) = 0$$

- Rewrite as:

$$w' + \alpha f w = \beta(f'^2 - 1)$$

Approximate:

$$f' = 1 - \exp(-f''(0)\eta)$$

$$f'' = f''(0) \exp(-f''(0)\eta)$$

- Estimate $f'^2 - 1$...

To give:

$$\begin{aligned} 1 - f'^2 &= [2 - \exp(-f''(0)\eta)] \exp(-f''(0)\eta) \\ &\approx \exp(-f''(0)\eta) \\ &\approx \frac{1}{f''(0)} f'' \end{aligned}$$

$$w' + \left(\alpha f + \frac{\beta}{f''(0)} \right) w = 0$$

Analytical Approximate Solutions; General Problem

- **Solving:**

$$w' + (\alpha f + \frac{\beta}{f''(0)})w = 0 \rightarrow w = w(0) \exp\left(-\alpha \int_0^\eta f(\xi) + \frac{\beta}{f''(0)} d\xi\right)$$

- **To give the expression:**

$$1 = f''(0) \int_0^\infty \exp\left[-\frac{\alpha}{6} f''(0) \eta^3 + \frac{\beta}{f''(0)} \eta\right] d\eta = 0$$

- **Or** $1 = \alpha^{-1/3} (f''(0))^{2/3} \int_0^\infty \exp\left[-\frac{1}{6} \xi^3 - \frac{\beta}{\alpha^{1/3} (f''(0))^{4/3}} \xi\right] d\xi = 0$
- **The integral is possible but complex... consider approximation:**

$$\int_0^\infty \exp\left(-\frac{1}{6} \xi^3 - \xi\right) d\xi \approx \exp(-\xi_0) \int_0^\infty \exp\left(-\frac{1}{6} \xi^3\right) d\xi \quad \xi_0 = 0.74961$$

Analytical Approximate Solutions; General Problem

- **Yields the implicit solution:**

$$1 = 1.62265\alpha^{-1/3}(f''(0))^{2/3} \exp\left(-\frac{\beta}{\alpha^{1/3}(f''(0))^{4/3}} 0.74961\right)$$

- **Or the explicit solution (special function):**

$$f''(0) = 1.35487\alpha^{1/2}\beta^{3/4} \left(\alpha \text{Lambert}W\left(\frac{3.9455\beta}{\alpha}\right) \right)^{-3/4}$$

Solution Parameters

- **Previous solution**

$$1 = 1.62265 \alpha^{-1/3} (f''(0))^{2/3} \exp\left(-\frac{\beta}{\alpha^{1/3} (f''(0))^{4/3}} 0.74961\right)$$

- **Has two parameters, α and β which parameterize several flows:**

Blasius Flat Plate: $\alpha=1, \beta=0$

Planar Stagnation: $\alpha=1, \beta=1$

Axisymmetric Stagnation: $\alpha=2, \beta=1$

Faulkner-Skan: $\alpha=1, 0 < \beta < \infty$

Solutions...

Flow	α	β	$f''(0)$ approx..	$f''(0)$ exact	Rel. err.
Blasius	1	0	0.4838	0.4696	3%
Plane Stag	1	1	1.1856	1.2326	4%
Axi-stag	2	1	1.2909	1.3119	2%
Faulkner-Skan	1	2	1.6037	1.6872	5%
Faulkner-Skan	1	10	3.6300	3.6752	1%

Solution Parameters... relation to flow geometry

- Base parameters on local flow angle:
 $y_p(x)$ function describing body surface

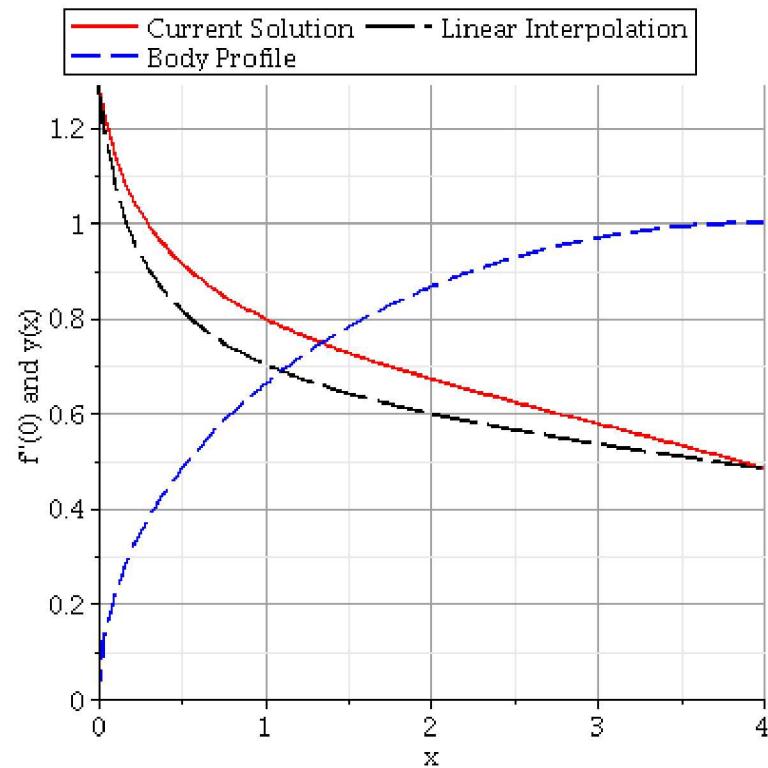
$$\sin \theta = \frac{\frac{dy_p}{dx}}{\sqrt{1 + \left(\frac{dy_p}{dx}\right)^2}} \equiv G(\theta)$$

- Where

$$\alpha = 1 + G(\theta) \quad ; \quad \beta = G(\theta)$$

- And freestream velocity

$$U = U_0(1 - G(\theta)) + BxG(\theta)$$



Compressibility..

- Introduce Chapman-Rubesin parameter

$$C_w = \frac{\rho_w \mu_w}{\rho_e \mu_e} \approx \left(\frac{T_w}{T_e} \right)^{-1/3}$$

- Solution takes form:

$$f''(0) = 1.35487 \alpha^{1/2} \beta^{3/4} C_w^{1/2} \left(\alpha \text{Lambert}W \left(\frac{3.9455 \beta}{\alpha C_w^2} \right) \right)^{-3/4}$$

Comparison to other methods..

- Traditionally, mapping from stagnation to flat plate is done via:

$$\frac{q}{q_{stag}} = func(X) \quad X = \frac{\int_0^x \rho^* \mu^* u_e r^{2j} dx}{\rho^* \mu^* u_e r^{2j}} \quad \beta_F = \frac{2X}{u_e} \frac{du_e}{dX}$$

- Where:

Flow	X	β_F
Flat plate	x	0
Planar stagnation	x/2	1
Axisymmetric stagnation	x/4	½

- There a wide range of models $func(X)$ an asymptotically correct empirical expression is:

$$Nu = 0.332(1 + 0.1853\beta_F^{1/2}) \text{Re}^{-1/2} \text{Pr}^{1/3} \quad \text{Re} = \frac{\rho^* X u_e}{\mu^*}$$

Comparison to other methods..

- For a known body... we can directly compare these models
- Consider an axi-symmetric spherical body:

$$G(x) = \sqrt{1 - \left(\frac{x}{r}\right)^2}$$

$$G(\theta) = \frac{\frac{dy_p}{dx}}{\sqrt{1 + \left(\frac{dy_p}{dx}\right)^2}}$$

- We can try the two models
- Kemp, Rose, Detra (1959) (empirical)

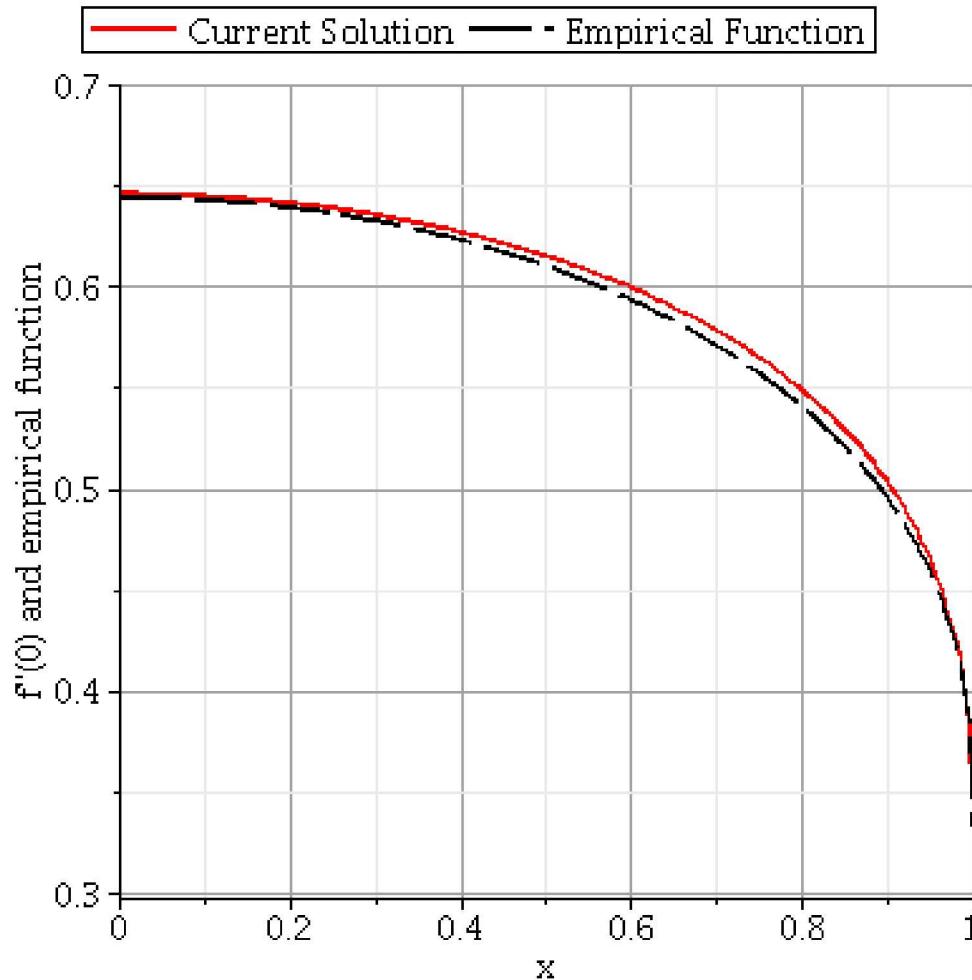
$$Nu \text{Re}^{1/2} = 0.332[1 + 0.1853(4G(x))^{1/2}](1 + G(x))^{1/2} \text{Pr}^{1/3}$$

- Current Model

$$Nu \text{Re}^{1/2} = \frac{1}{2} f''(0) \text{Pr}^{1/3} \quad f''(0) = 1.35487 \alpha^{1/2} \beta^{3/4} C_w^{1/2} \left(\alpha \text{LambertW} \left(\frac{3.9455 \beta}{\alpha C_w^2} \right) \right)^{-3/4}$$

Comparison to other methods..

- **Spherical body**
- **Solution**
parameters vary by
body shape
- **Agrees well with**
empirical approach
e.g. Kemp, Rose,
Detra (1959).



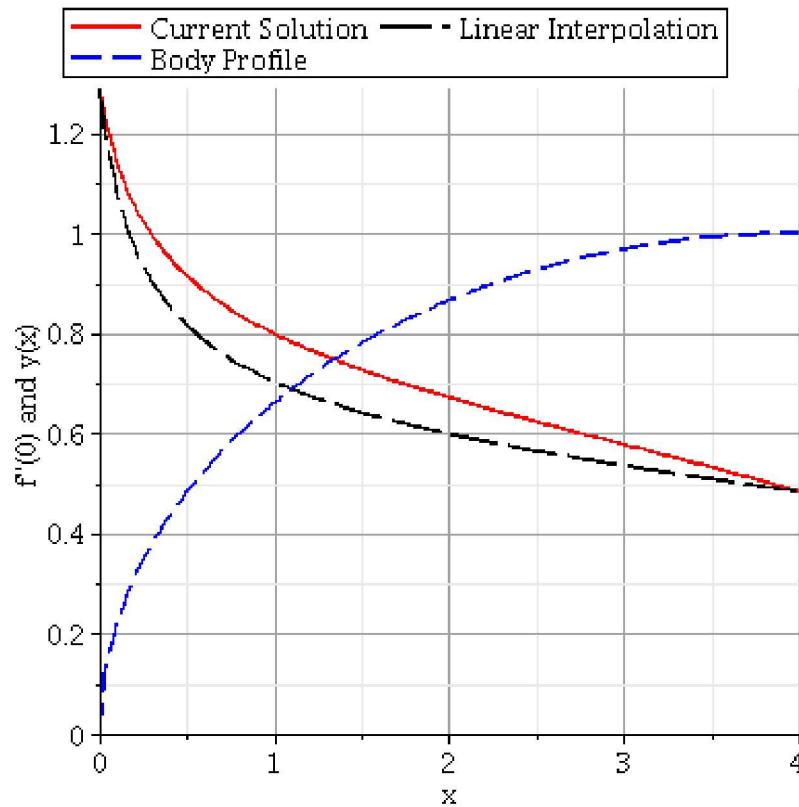
Comparison to other methods..

- **Elliptical body**

$$y_p(x) = \sqrt{1 - \frac{1}{16}(x-4)^2}$$

- **Solution based on parameter variation**
- **Linear interpolation of solution**

$$f''(0) = f''_{stag}(0)G + f''_{plate}(0)(1-G)$$

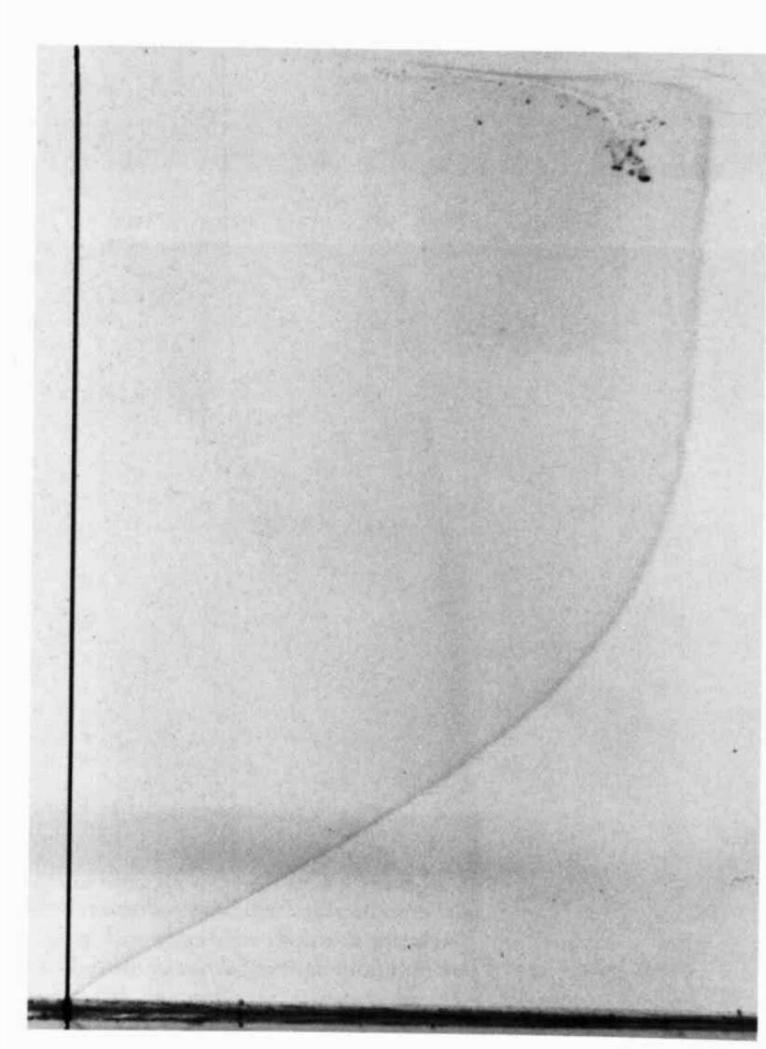


Conclusions...

- **Simple closed-form method derived to estimate laminar heat transfer**
- **Solution maps continuously between stagnation and zero pressure gradient shear (Blasius)**
- **Good agreement in comparison with empirical methods (Kemp et. al. 1959)**
- **Models implemented in Sandia Multi-Fidelity Aerothermal Toolkit (2019)**

Next Steps...

- Examine streamline based mapping to solution parameters α and β
- Consider extension to simplified turbulent flow behavior with intermittency parameter mapping
- Connection of approximate integral solution to other (semi) analytical methods (Catal 2012), e.g. Homotopy, Adomian Decomposition etc.



Traditional Galerkin Method...

- Traditional Galerkin e.g. Fletcher (1984) and method-of-weighted residuals

$$f'''' + ff'' + (1 - f')^2 = 0$$

- Propose full domain basis function

$$f = \eta + \frac{1}{f''(0)} (\exp(-f''(0)\eta) - 1)$$

$$f' = 1 - \exp(-f''(0)\eta)$$

$$f'' = f''(0) \exp(-f''(0)\eta)$$

$$f''' = -f''(0)^2 \exp(-f''(0)\eta)$$

Traditional Galerkin Method...

- Substitute into governing equation to give residual:

$$\begin{aligned}
 & -f''(0)^2 \exp(-f''(0)\eta) + \left(\eta + \frac{1}{f''(0)} (\exp(-f''(0)\eta) - 1) \right) f''(0) \exp(-f''(0)\eta) + \\
 & - (1 - \exp(-f''(0)\eta))^2 + 1
 \end{aligned}$$

- Nonlinear expression for $f''(0)$. Demand satisfaction..
- Near wall result: $-f''(0)^2 + 1 = 0 \rightarrow f''(0) = 1$
- Integrate residual over domain

$$\frac{-f''(0)^2 + 2}{f''(0)} = 0 \rightarrow f''(0) = \sqrt{2}$$

- But which is correct? Neither... consider simple average..

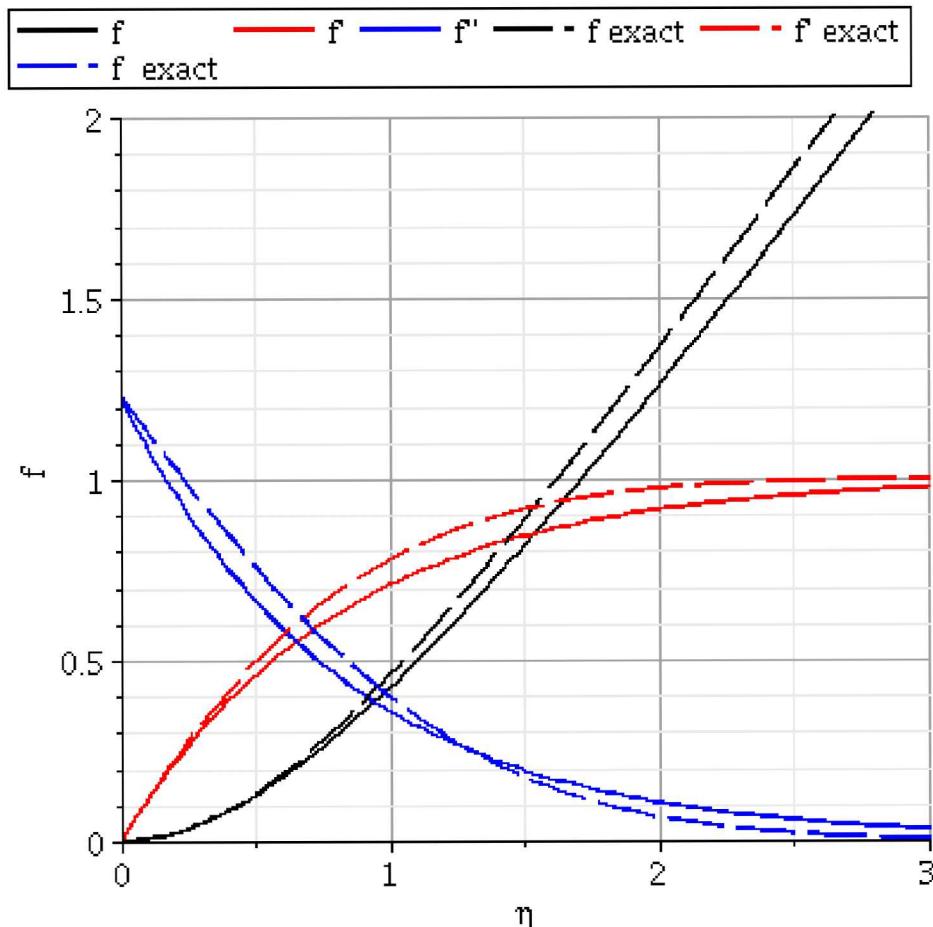
Traditional Galerkin Method...

- **Approximate (average)**

$$f''(0) = \frac{1}{2}(\sqrt{2} + 1) \approx 1.21$$

- **Exact:**

$$f''(0)_{\text{exact}} = 1.23259$$



$$f''' + f f'' + (1 - f'^2) = 0$$