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2 Background

• There is renewed interest in supersonic and hypersonic ground-test
facilities

• Cold-flow facilities require measurement of temperature, pressure,
velocity, even thermal distribution functions

• Noninvasive tools for temperature/pressure monitoring
• Laser-induced fluorescence (LIF)
• Filtered Rayleigh scattering

• Two-dimensional imaging

• kHz repetition rate

• May require seed/tracer
molecule (LIF)

• Multi-camera, multi-angle
detection scheme
(Rayleigh)
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3 Coherent anti-Stokes Raman Scattering (nanosecond)

• CARS demonstrations for
simultaneous T/P measurement

• Nanosecond-duration laser pulses

• High spectral resolution to
deconvolve the effects of T and P
• Temperature from line intensity

distribution
• Pressure from collision-

broadened linewidths
(Woodmansee et al., Farrow)

• Density from calibrated signal
amplitude (Grisch et al.)

2500

t: 2000

2 
1500

a

0 1000et

500

1200

1

ri" 800

600

< 400

200

0

I 000

~
~
 

/300

600

400

200

Expertise&
CARSFIT

&Ferment
CARSF1T

v1:1•=1 49

: —1.25 atm

Tens=264 K

(c)

I)  
2322 2324 2326 2328 2330 2332

Raman Shift (cm 4)

Woodmansee et al.,
Appl. Opt. (2000).

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

300

250

/ 200

a 150

100

3

• CARS
CFD

1 2 3 4
Centerline Position (z/t10

5



4 Coherent anti-Stokes Raman Scattering (nanosecond)

• CARS demonstrations for
simultaneous T/P measurement

• Nanosecond-duration laser pulses

• High spectral resolution to
deconvolve the effects of T and P
• Temperature from line intensity

distribution
• Pressure from collision-

broadened linewidths
(Woodmansee et al., Farrow)

• Density from calibrated signal
amplitude (Grisch et al.)

• Spectroscopy of the N2 Q branch
• Overlapping lines
• Doppler contributions at P - 0.1

atm and below
• Limited low-pressure sensitivity in

ground testing
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5 " H yb ri d " time- and frequency domain CARS detection
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6 "Hybrid" time- and frequency domain CARS detection

Air or Nitrogen +300 mm cyl Pump/Stokes

Tirning Diagram

Purnp/Stokes

Probe

Sonic Jet

+300 mm cyl

: fs0n: 

Delay Stage

x=IWJ exp(i exp j t)

Probe
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• Hybrid time/frequency detection
decouples effects of T and P

• Pure-Rotational spectroscopy delays
onset of Doppler effects to much
lower pressure
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7 Temperature and Pressure Sensitivity of Hybrid R-CARS Spectra

Step 1: Thermometry at Early Time Step 2: Sample late-time collisions
for pressure

• "Collision-Free" spectra temperature
sensitive independent of pressure 

• Spectra largely reflect rotational
Boltzmann populations
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8 CARS Optical System and Jet Experiment
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9 One-dimensional R-CARS Imaging: 50-shot averages
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• Pressure challenges
dynamic range

• High-pressure
regions require low r

• Low-pressure
regions require very
long r (ns!)

• Pressure sensitivity
maximized in near-
jet and post-shock
regions at r = 250 ps
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11 Temperature and pressure dependence of CARS spectra

• 50 laser-shot average
spectra

• 1-1 channel (left) indicates
temperature nearly
independent of pressure

• 
T2 = 300 ps delay on
pressure channel

• T2 delay results in
pressure sensitive
intensity to higher cm-1
(shown at right)

• Pressure sensitivity
optimized near P = latm
for 22 = 300 ps

• Improved P sensitivity at
low P for longer T2
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12 Time-mean temperature/pressure results (MEG)

• Profiles spliced together from 4
different 6.7-mm line images

• Each image averaged for 50 laser
shots

• Pressure data reported for r = 300 ps
probe delay

• Dynamic range across the shock
captured using two images with
different filter settings

• Reduced sensitivity at lower
pressures 4 need delays in excess of
1 ns.

• Poor signal at P > 1.2 atm 4 need
delays of 100 ps or less

• Near-jet temperature consistent
with sonic nozzle exit

• T/P across shock consistent with M =
3.8
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13 Single-laser-shot precision:Temperature 0

• Signal-to-noise and measurement
precision are very good for
thermometry at r = 0

• oi-/T evaluated within steady
barrel-shock region upstream of
Mach disk along jet centerline

• crT/T is 1-2% upstream of Mach
disk

• This high precision persists
downstream of Mach disk

• Shock front appears to be resolved
within 130-200 pm (1-3 data pts)
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14 Single-laser-shot precision: Pressure

• Tradeoff between SNR and sensitivity
with increasing probe delay

• "Raman lifetime"

TR = (P R-CF)-1

• Room-temperature data suggest
2.5-32R for optimal precision

• sP/P optimized at 1-3% at
1.7TR in low (T,P) region of jet
• T = 75-100 K, P = 50-75 Torr
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15 Low-temperature Raman Linewidths (motivation)

• The Modified Exponential Gap
(MEG)  model has been used to
compute Raman linewidths

• Developed using Q-branch linewidth
measurements for T = 292-2200 K

• Extrapolation to low-temperatures

is precarious

• Different line-broadening

mechanisms

• Isotropic Q branch

• Anisotropic rotational

transitions

• CARS pressure measurements fall

below isentropic predictions based

on measured T in the near field

®

1.5

• Region 1
Region 2

IIP • Region 3
• Region 3A

lsentropic Calculation
Normal Shock Analysis

•
.

A

5 1 0
Distance from Nozzle (mm)

■

15

Solution 
• Use (collision-free) CARS-

measured temperatures on jet

centerline

• Compute piso = P0 (T/T0)7/(7-1)
• Measure the lifetime, T-CARS,J =

2R/2, via probe delay scans

• Compute T- and J-dependent

linewidths, Fj = (27CCTCARS,J)-1



16 Low-temperature Raman Linewidths (apparatus and methods)

Air or Nitrogen

Timing Diagram

Pump/Stokes

Sonic Jet

+300 mm cyl

+300 mm cyl Pump/Stokes
800 nm, 35 fs

Ae"..

Delay Stage

Probe
532 mu, 60 ps

• Probe time-delay
mechanically scanned

• Jet centerline measurements
within barrel shock region

• Decay of N2 examined in both
air and pure N2
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17 Low temperature Raman Linewidths (time-domain fits)

N2 self-broadening N2 broadened in air
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18 Low temperature Raman Linewidths (time-domain fits)

N2 self-broadening N2 broadened in air

77 K, 0.077 atm 119 K, 0.39 atlu
103 K. 0.21 atm 14.3 Ii. 0.61 atii,

197
220 h. '2.1) ;t1111

T = 200 ps

= 233 ps

r —

• 20 40 60 80 100 cm

76 K,_0.064 atm
90.2 K, 0.12 atnl

7 — 71 p.
12 ps

110 K. 0.33 atnt
137 K. 0.59 atIr

0 100

C111-1

T = 215 ps

T = 126 ps

20 40 60 80 100

cm-1

7 — 243 ps

= 141 ps

12'. IN., 3.3 atm

20 40 60 80 100

• N2 Coherence decay
shown for T = 77-220 K,
P = 0.08-2.6 atm

• Rotational levels up to J
= 10 measured at low-T

• Results for 02
complicated by 3E
ground state (not shown
here)

Slower decay times with
increasing J

N2 dephases more
rapidly in air below T =
292 K

1

0.7

0.6

0.5

0.4
0

- • • 414. • a •
• • • .O.
e o's

• 
 OS,

0 
SO 

II\

•• 0611
7 • 000

0 • • e•

0

I,:s. 
********* .• *„..ss. 

• 
 •••... 0 •*********.... 

..0 ... >94 k: .........o ...... ..

° 0

- .1 

J = 8
I ' " 1 I 0.b83 at:II I

..... 
•0•••• 

...... 
est/0

• N2-air

• N2-N2

100 200 300
Tilne (ps)

400 500 600



19 Low-temperature Raman linewidths: Results l
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20 Low-temperature Raman linewidths: Results l
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21 Impact on CARS spectra and pressure measurements

MEG Measured Residual
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22 Impact on CARS spectra and pressure measurements

MEG Measured Residual
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23 Addition of FLEET Velocimetry

iXon Exposure

IRO Gates

— Its

Lens system to correct
for astigmatism

+300 mm cyl

-100 mm cyl

Sonic Jet

Recycle the
Pump/Stokes Pulse
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Spectrometer

time

ANN 11•0
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Early Probe
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System
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• CARS pump beam "recycled"
for FLEET molecular-tagging
measurement

• FLEET line oriented radially
across the jet

• Simultaneous CARS/FLEET for
T/P/V measurement

• FLEET "t = 0" line written
coincident with CARS beam
crossing



24 Addition of FLEET Velocimetry

iXon Exposure
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• FLEET "t = 0" line written
coincident with CARS beam
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25 Average T/P/V Radial Profiles

• FLEET velocimetry acquired in
multiple segments

• Three axial locations

' mrr (across slin line)
• z = 19 mm (turbulent?)
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26 P,T,V Correlations (400 um radial domain)
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27 Summary and Conclusion

• Hybrid fs/ps rotational  CARS can be deployed in
compressible flows for simultaneous
temperature/pressure measurement

• Signal strengths in a sonic jet are sufficient for
1D line imaging on single laser shot

• T = 75-300 K

• P = 50-800 Torr

• Good dynamic range for thermometry

• Pressure measurements exhibit reduced
dynamic range

• Jet measurements exhibit high single-shot
precision of 1-3% in both T and P

• Extrapolation of high-temperature MEG
linewidths results in underestimated pressure at
low T

• New low-temperature S-branch linewidths
provided based on isentropic jet assumption

• Combination with FLEET velocimetry
demonstrated
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