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Background ®

There is renewed interest in supersonic and hypersonic ground-test
facilities

Cold-flow facilities require measurement of temperature, pressure,
velocity, even thermal distribution functions

Noninvasive tools for temperature/pressure monitoring
» Laser-induced fluorescence (LIF)
* Filtered Rayleigh scattering

kHz repetition rate
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May require seed/tracer
molecule (LIF)
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Multi-camera, multi-angle

detection scheme Time-scanned FRS detection of T,P,V
(Rayleigh) Boguszko and Elliott, AIAA J. (2005)



31 Coherent anti-Stokes Raman Scattering (nanosecond) ® I

* CARS demonstrations for
simultaneous T/P measurement

z/d =0.0

Prygs=3.33 atm
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« Nanosecond-duration laser pulses

« High spectral resolution to

deconvolve the effects of T and P

- Temperature from line intensity [T
distribution

* Pressure from collision-
broadened linewidths |
(Woodmansee et al., Farrow)

- Density from calibrated signal S wof Toweiry | .
amplitude (Grisch et al.) S o} ,Unf\fJV"J\

Raman Shift (cm ')

Woodmansee et al., Xﬂ R
Appl. Opt. (2000). L

Centerline Position (z/dj)




4 | Coherent anti-Stokes Raman Scattering (nanosecond) ®

* CARS demonstrations for
simultaneous T/P measurement

« Nanosecond-duration laser pulses

» High spectral resolution to
deconvolve the effects of T and P
» Temperature from line intensity
distribution
* Pressure from collision-
broadened linewidths
(Woodmansee et al., Farrow)
» Density from calibrated signal _
amplitude (Grisch et al.) Transducer Pressure (atm)
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. Spectroscopy of the N, Q branch Woodmansee et al., Appl. Opt. (2000).
Overlapping lines

» Doppler contributions at P ~ 0.1
atm and below

« Limited low-pressure sensitivity in
ground testing
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“Hybrid” time- and frequency domain CARS detection

Air or Nitrogen §§ Pump/Stokes

800 nm, 35 fs

§ +300 mm cyl

Timing Diagram
Pump/Stokes Probe

532 nm, 60 ps
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6 | “Hybrid” time- and frequency domain CARS detection

Air or Nitrogen +300 mm cyl  Pump/Stokes
! 800 nm, 35 fs
Timing Diagram

Pump/Stokes
e sy %3 f\prt:.’ne
L

J
Sonic Jet

Delay Stage
+300 mm cyl

x=> Wyexp(iw;t)exp(-T,t)
J

Hybrid time/frequency detection
decouples effects of T and P

Pure-Rotational spectroscopy delays
onset of Doppler effects to much
lower pressure
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Step 1: Thermometry at Early Time

Temperature and Pressure Sensitivity of Hybrid R-CARS Spectra

« “Collision-Free” spectra temperature

sensitive independent of pressure
« Spectra largely reflect rotational
Boltzmann populations
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Step 2: Sample late-time collisions

for pressure
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+ * High energy
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201 * Spectra look
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8 | CARS Optical System and Jet Experiment ® I

6.35 mm underexpanded sonic I
jet

e Po=7.62atm, To=292K

» Working fluid = air |

28 IYAG « 3 independent ROIs required to
E P~ semrock fiters : span jet exit past Mach disk

i JET

N * 50-laser-shot ensembles at »

WALL U, e  —
f= 300 mm | = 300 mm probe delay
cylmlimigllrl‘gnsa

beam-crossing and collimating
cylindrical lenses

* 1D imaging scheme developed by Bohlin
and Kliewer

-—
)]

» Two independent detection channels for
early (T) and late (P) measurements

* 50-fs pump, ~250 cm-! bandwidth, 4 mJ
* 60-ps probe near transform limit, 50 mJ

Reflected
hock =
f |

Mach Disk

Axial Position (mm)

Barrel Shock .

 6-mm long measurement line

* 1000 g4m X 67 pm X 30 um resolution . 5 ‘

Radial Position (mm)



9 | One-dimensional R-CARS Imaging: 50-shot averages I

H ’ ’ ‘ f ‘ ’ * Pressure challenges

1A Temperature | Pressure dynamic range ]
Channel Channel . High-pressure

regions require low 7

« Low-pressure
regions require very
long 7 (ns!)

* Pressure sensitivity
maximized in near-
jet and post-shock I
regions at = 250 ps
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Single-laser-shot imaging (20 Hz)
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Temperature and pressure dependence of CARS spectra ®

——Experiment —-—Theory ——Residual

z=20mm

50 laser-shot average | T 027K
spectra

71 channel (left) indicates
temperature nearly
independent of pressure : | T iaK

P =0.298 atm
1, =300 ps

7 = 300 ps delay on
pressure channel

7 delay results in i I
pressure sensitive | T=706K Tk
intensity to higher cm

(shown at right)

Pressure sensitivity _
optimized near P = 1atm ; | S Jea
fOr ) = 300 pS t, =300 ps
Improved P sensitivity at

7] HE A T 0 i I | e AP P S e
low P for longer (%) : 80 100 120 140 40 B0 80 100 120 140
Raman Shift (cm™) Raman Shift (cm™)




12 | Time-mean temperature/pressure results (MEG) ®

» Profiles spliced together from 4
different 6.7-mm line images

« Each image averaged for 50 laser Reoers
shots

Region 3
Region 3A
Collision-Free Result

» Pressure data reported for = 300 ps
probe delay

Temperature (K)
o
o

100

» Dynamic range across the shock
captured using two images with
different filter settings

Region 1

* Reduced sensitivity at lower Rogon2
pressures - need delays in excess of Region 3A
1 ns.

Isentropic Calculation
Normal Shock Analysis-

Pressure (atm)

» Poor signal at P > 1.2 atm - need
delays of 100 ps or less

* Near-jet temperature consistent i
with sonic nozzle exit Distar?ce from Nozzleo(mm)

« T/P across shock consistent with M =
3.8

Pressures consistently lower than isentropic predictions!
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Single-laser-shot precision: Temperature

Signal-to-noise and measurement
precision are very good for
thermometry at z=0

or/ T evaluated within steady
barrel-shock region upstream of
Mach disk along jet centerline

or/ T is 1—2% upstream of Mach
disk

This high precision persists
downstream of Mach disk

Shock front appears to be resolved
within 130—-200 u«m (1—3 data pts)

10 1 12 13
Distance From Nozzle (mm)

-—Experiment;
- = Theoretical
—Residual |

T=78.6107K

T=0Dps

CARS Intensity

60 70
Raman Shift (cm™!)

10 11 12 13
Distance From Nozzle (mm)



14 | Single-laser-shot precision: Pressure

(%)

P =1.07 atm

P =0.41 atm
P =1.41atm I

» Tradeoff between SNR and sensitivity
with increasing probe delay

P

P =2.14 atm
P =3.03 atm

Precision, o /P

« “Raman lifetime”
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* Room-temperature data suggest
T~ 2.5—3 i for optimal precision
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The Modified Exponential Gap
(MEG) model has been used to
compute Raman linewidths

Developed using Q-branch linewidth

measurements for T = 292—2200 K

Extrapolation to low-temperatures
is precarious

Different line-broadening
mechanisms
» |sotropic Q branch
» Anisotropic rotational
transitions

CARS pressure measurements fall
below isentropic predictions based
on measured T in the near field
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Low-temperature Raman Linewidths (motivation)

Region 1

Region 2

Region 3

Region 3A

Isentropic Calculation
Normal Shock Analysis.

—_

5 10
Distance from Nozzle (mm)

Solution
Use (collision-free) CARS-
measured temperatures on jet
centerline

Compute Piso= P, (T/To)7/(r - 1)

Measure the lifetime, 7cprs =
/2, via probe delay scans

Compute T- and J-dependent
linewidths, I;= (ZﬂCTCARS’J)_1
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Low-temperature Raman Linewidths (apparatus and methods)

; °
Air or Nitrogen @888 +300 mm cyl Pump/Stokes
¢ ' 800 nm, 35 fs
Timing Diagram
Pump/Stokes
-
°

Delay Stage
+300 mm cyl

Probe Time Delay Scan in Air Jet

t =-13.4 ps

Arb. Intensity
o
1)) =

o

-

o
o

Intensity

Arb.

o

-100 -50 0 50
Raman Shift (cm™!)

Probe time-delay
mechanically scanned

Jet centerline measurements
within barrel shock region

Decay of N, examined in both
air and pure N,

@



17 | Low temperature Raman Linewidths (time-domain fits) ®

N, self-broadening N, broadened in air

76 K, 0.064 atm
250 a 90.2 K, 0.12 atm J =
7 S

77 K, 0.077 atm 119 K, 0.39 a
103 K, 0.21 atm

vilil. e

=661
20 40 60 80 100 cm’’

* N; Coherence decay
shown for T = 77—220 K,
P=0.08—-2.6 atm

» Rotational levels up to J
= 10 measured at low-T

* Results for O,
complicated by 3%
ground state (not shown
here)

—
>
=
wn
cC
)
-
=
[e]))]
(@)
—

» Slower decay times with
increasing J




18 | Low temperature Raman Linewidths (time-domain fits) ®

N, self-broadening N, broadened in air

77 K, 0.077 atm 119 K, 0.39 at 76 K, 0.064 atm l l
103 K, 0.21 atm { 280 o 90.2 K, 0.12 atm J=¢
/ L e e, N, Coherence decay

| o3 R e shown for T = 77—220 K,
20 40 60 8;)] _100 em™! AT 8 iy P = 0‘08_2'6 atm

Rotational levels up to J
= 10 measured at low-T

Results for O,
complicated by 3%
ground state (not shown
here)
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80 K. 0.083 atm Slower decay times with
200 K. 2 atm increasing J

294 K, 0.82 atm

N, dephases more
rapidly in air below T =
292 K
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19 | Low-temperature Raman linewidths: Results | ®

- = MEG 294 K
— MEG 294 K with Eq. (1)

S-branch, Kliewer et al. [2]
S-branch, Miller et al. [39]
S-branch, Meifiner et al. [40]
Q-branch, Rahn et al. [20]
S-branch, this work

. \J
Compare to existing "8

data @ 292 K

Ji=
A=
Je=
=
Ji=
=
A=

2
4
5
6
7
8
1

Current facility provides data consistent
with previous measurements at T = 292 K
Measured linewidths depart significantly
from MEG at low T

Pressure measurements are sensitive to the
J dependence of '—not the magnitude

° Nz-air o N2-N2

80 K
120 K



20 | Low-temperature Raman linewidths: Results | ®

R e i Current facility provides data consistent

S-branch, Kliewer et al. [2]

S-branch, Millr et al. [39] with previous measurements at T = 292 K

S-branch, Meifiner et al. [40] . . . ..

Q@ branc, Rabw et . 20 Measured linewidths depart significantly
from MEG at low T
Pressure measurements are sensitive to the

J dependence of '—not the magnitude

: Compare to existi

[ data @ 292 K
[ T dependence of

o Hpdt NN " correlated by
0B power-law
expression

200 K

y = mz+b

b = 0.111

| S S SO S | O X
1 I | 1 | Y | O | I |
- 00 N O BN

g &)
EG Extrapolated

100 150 200 250
T (K)




21 | Impact on CARS spectra and pressure measurements

MEG Measured  Residual
50 K, 0.01 atm 100 K, 0.1 atm 150 K, 0.5 atm 200 K, 0.82 atm
1 - -

'm"“ 'm 'm
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
. cm ! cm_1 cm L
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——MEG Model —Measured Linewidths —Experimental Spectrum Residual

0 ps
80 K
0.08 atm T
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2 | Impact on CARS spectra and pressure measurements

MEG Measured Residual

50 K, 0.01 atm 100 K, 0.1 atm
1 -

I

150 K, 0.5 atm 200 K, 0.82 atm

50 100 150 200 150 50 100 150 200

cm ! cm ! cm !

] New Linewidths
200 ps ] , -
MEG | 2007 : 600 bs
600 ps ] 800 ps
R 1000 ps
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1000 ps
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23 | Addition of FLEET Velocimetry

iXon Exposure

—m FLEET

Lens system to correct Imaging
for astigmatism System
+300 mm cyl
-100mmeyl [T

-

Sonic Jet

+300 mm cyl
Recycle the

Pump/Stokes Pulse ‘ ‘ G R Vrrrtrlct Exhaust

To CARS Early
Spectrometer

@

CARS pump beam “recycled”
for FLEET molecular-tagging
measurement

FLEET line oriented radially
across the jet

Simultaneous CARS/FLEET for
T/P/V measurement

FLEET “t = 0” line written
coincident with CARS beam
crossing



4| Addition of FLEET Velocimetry ®

« CARS pump beam “recycled”
y for FLEET molecular-tagging
—m - measurement

Lens system to correct Imaging

for atigmatiom gy « FLEET line oriented radially
across the jet

r Sonc Jet 8 . e Simultaneous CARS/FLEET for
Pump/Stokes Pulse e T/P/V measurement

« FLEET “t = 0” line written
coincident with CARS beam

r (mm)
r (mm)

Sample
i) - instantaneous
- Snge s CARS/FLEET
LR acquisition and
processed T/P/V0
results

Pressure
7 = 400 ps

Temperature 4
T=0ps
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* Average
* Single Shot

+ Average
+ Single Shot

50 100 150 100 200 300 50 100 150 . . 3 200 400 600 800
Raman Shift (cm™') T (K) Raman Shift (em ™! > (atm z (mm) V (m/s)
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| Average T/P/V Radial Profiles

« FLEET velocimetry acquired in
multiple segments
« Three axial locations

« 7z =19 mm (turbulent?)
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«| PT,V Correlations (400 um radial domain)

15 mm

Temperature

P-P,,, (atm)

Radial Position (mm)

P-P,., (atm)
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-100 0
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Summary and Conclusion

Hybrid fs/ps rotational CARS can be deployed in
compressible flows for simultaneous
temperature/pressure measurement

Signal strengths in a sonic jet are sufficient for
1D line imaging on single laser shot

e T=75-300K
« P = 50-800 Torr
Good dynamic range for thermometry

Pressure measurements exhibit reduced
dynamic range

Jet measurements exhibit high single-shot
precision of 1—3% in both T and P

Extrapolation of high-temperature MEG
linewidths results in underestimated pressure at
low T

New low-temperature S-branch linewidths
provided based on isentropic jet assumption

Combination with FLEET velocimetry
demonstrated
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