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Kalidindi’s vision for automated data-driven discovery
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High-throughput tensile tests of
additively manufactured materials

>100 tensile tests/hr with minimal operator burde
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Process parameter study
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Threshold [MPa] —

High-throughput data — a Weibull minimum allowable threshold gD
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Connecting the dots... the old fashioned way... @?}Eﬁf@m : f’.sA.amos
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Grain size is not the only factor affecting mechanical response...
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Predicting the microstructure is even more difficult!

Examples of solidification modeling

Grain shape predictions

a) Transverse view
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This is a herculean challenge
Powder packing

Laser/plume interactions

Plasma fluid mechanics

Radiation heat transfer

Laser energy adsorption, radiation
Thermal expansion
Non-equilibrium vapor pressure
Evaporation with latent heat
Pressure-temperature relations
T-dependent heat capacity
Incompressible fluid dynamics
Convective/conductive heat transfer
Capillary forces

Marangoni forces

Hydrodynamic mixing
Multicomponent liquid-solid diffusion
Solidification macrosegregation
Solidification shrinkage

CTE thermal contraction
Thermomechanical deformation
Residual Stress

Solid-state diffusion

Anisotropic crystallization
Solid-state phase transformation

Collaboration with M. Martinez, T. Rodgers, et al. 10



Laboratories

Procgss ~ Structure ﬁ Properties
100+ variables 100+ variables Dozens relevant

Powder packing

The intractability of complete process-structure-property mastery? Nrl=lg=( F) 7122 Atamos
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Over 1000 tensile tests on nominally identical additive material
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Boyce, Salzbrenner, Rodelas, Swiler, Madison, Jared, Shen, Advanced Engineering Materials, 2017



Failure is caused by “lack of fusion” & in N
the worst case, interconnected porosity P i BSOS r Q) iotAlmes
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Representative volume consideration???
Size dependence of effective mechanical properties... M) &, (REY
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No microstructural source of size dependent properties...! (A i i 12 Abme
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Surface topography dominates when features are <2.5 mm! MEs, QOS5 “iaeme:
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Finite element modeling of roughness effect
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1) Collect CT scans 2) Digitize geometry 3) FEA 4) Confirm experimental trends
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AM lattice metamaterials will maximize surface topography effects gl
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Indeed, the effective strength of struts can
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be <50% of the ‘material’ strength
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Process parameter study for a lattice... MEs (GO “oaames
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Deformation Work as a
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Can we ‘predict’ mechanical properties with just scalar measures
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Can machine learning do any better? ()

Convolutional neural network; 16 layers (resnet16 in fastai library);
stratified k-fold training (8 folds / 11% of data held for testing); enriched data by subwindowing

To ‘enrich’ the available data, rather than training on the entire image, we trained on
45 sub-images (windows) of each original image. This takes advantage of the repetitive nature of the lattice.

Garland...Boyce, submitted
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Machine learning’s weakness: ‘explainability’ and extrapolation M) i (|G ﬁ;Alamos
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Summary (i) i i Atamos

Monolithic AM Feature-rich AM

First order influence: microstructure & porosity First order influence: dimensions & surface topography
Complex pathway to prediction Potentially easier to predict
In this presentation, | drew data from ~2000 mechanical tests. High-throughput testing and

machine learning enable us to develop process-structure-property relationships that were
otherwise elusive.
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The Slack Chain Concept: Rapid Sequential Tensile Testing MEs, QOS5 “iaeme:
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Weibull Fit to 1,008 Nominally Identical Tests
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The development of “Alinstante”
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