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Kalidindi's vision for automated data-driven discovery
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High-throughput tensile tests of
additively manufactured materials

>100 tensile tests/hr with minimal operator bur• en



E



Process parameter study
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High-throughput data —> a Weibull minimum allowable threshold
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Connecting the dots... the old fashioned way...

Weibull threshold
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Grain size is not the only factor affecting mechanical response...
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Predicting the microstructure is even more difficult!

Examples of solidification modeling
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This is a herculean challenge 
Powder packing
Laser/plume interactions
Plasma fluid mechanics
Radiation heat transfer
Laser energy adsorption, radiation
Thermal expansion
Non-equilibrium vapor pressure
Evaporation with latent heat
Pressure-temperature relations
T-dependent heat capacity
Incompressible fluid dynamics
Convective/conductive heat transfer
Capillary forces
Marangoni forces
Hydrodynamic mixing
Multicomponent liquid-solid diffusion
Solidification macrosegregation
Solidification shrinkage
CTE thermal contraction
Thermomechanical deformation
Residual Stress
Solid-state diffusion
Anisotropic crystallization
Solid-state phase transformation
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The intractability of complete process-structure-property mastery.

Process 
100+ variables

Powder packing
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Properties 
Dozens relevant

Modulus
Yield-strength
Work Hardening
Fracture Toughness
Ductility
Fatigue life
Wear resistance
Temp-dependence / Creep
Strain-rate dependence
Corrosion resistance

How does the  process  affect the  MAUI e  and ultimately control  property
11



Over 1000 tensile tests on nominally identical additive material 0 Sandia
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Failure is caused by "lack of fusion" & in
the worst case, interconnected porosity
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Representative volume consideration???
Size dependence of effective mechanical properties...
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No microstructural source of size dependent properties...!
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Surface topography dominates when features are <2.5 mm!
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Finite element modeling of roughness effect
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4) Confirm experimental trends
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AM lattice metamaterials will maximize surface topography effects

Lightweight, stiff
structures

c)

Schaedler...Carter, Science, 2011
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Indeed, the effective strength of struts can
be <50% of the 'material' strength
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Process parameter study for a lattice...
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Can we 'predict' mechanical properties with just scalar measures

o
on

Oc
te

t 
tr
us
s 

• ai_ 
•

120

100 •1 
• • "%A*

-, ---).-.
.. 

ss
•-•
• 

--7; 100

0,- 80 -
te 

▪ 80

0 60 
r 2 = 0.27g 60 • 

z

173' 
• „
• 

-z-.

40- P  • 40o 0
4--- .4-.
CD • 1:13
O 20 • Q 20

•
0 ..,. i ... '1 ,,, II , IIII   III 

0  41ak 
1 I I • • I

0.5 0.55 0.6 0.65 0.7 0.75 0.01 0.02 0.03 0.04 0.05 0.06

Thickness linm] SA frnm]

0 Sandia
National
Labolatories

50

30-
.0

20

0
1̀) • 10

0-

•

N jar

r2 = 0.56 •1 z 30-
.0

. VT • 1.1:1 20-

•01' 
,.....o
t-:

8 10-
,14 •

i° ••• •• Excluded
i 0 • 0

50

0.4 0.45 0.5 0.55 0.6 0.65

Thickness linm]

• Excluded

•

•in •

441 
•

•

S.•• •
.'' ' 0.02 0.04 0.06 0.08 0.1 0.12

SA [rnm]

1
• Los Alamos

NATIONAL

„ 

LABORATORY

Garland...Boyce, submitted
22



Can machine learning do any better? 0 Sandia
National
Laboratories

Convolutional neural network; 16 layers (resnetl6 in fastai library);
stratified k-fold training (8 folds / 11% of data held for testing); enriched data by subwindowing
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To 'enrich' the available data, rather than training on the entire image, we trained on
45 sub-images (windows) of each original image. This takes advantage of the repetitive nature of the lattice.

Garland...Boyce, submitted



Can machine learning do any better?
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Machine learning's weakness:`explainability' and extrapolation
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Summary

Monolithic AM Feature-rich AM

1,7511,1N/9171AT

  57.1 9 03  

First order influence: microstructure Et porosity First order influence: dimensions Et surface topography

Complex pathway to prediction Potentially easier to predict

In this presentation, I drew data from -2000 mechanical tests. High-throughput testing and
machine learning enable us to develop process-structure-property relationships that were

otherwise elusive.
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Slack Concept: Rapid Sequential Tensile Testing

4#17,11,11
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The Slack Chain Concept: Rapid Sequential Tensile Testing 0 Sandia
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Weibull Fit to 1,008 Nominally Identical Tests
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Actions

Import Part File

Scan Part

Auto Points I

Chem Sample

Mech Sample

Thermal Sample

Electric Sampl

Slide 31

Show Layer(s)

Part
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Tool

0 Path Plan

0 Geometry Diff
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0Thermal Layer
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Export to CSV

Properties Alinstante Sandia
National

An Aspirational Goal: Laboratories

Can we reduce materials science evaluation
from months to hours?

(design-build-test loop in a day?)

Geometric metrology probe

Surface roughness probe

Mechanical properties probe

Compositional probe

Phase probe

Thermal probe

Electrical probe

Tribology probe

Resonance probe
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The development of "Alinstante"

Reachability Analysis

Workcell with part handling

Sample handling tray

Modules such as the GOM
Atos Core 3D Scanner
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