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The design of wind power plants is a complex engineering task that requires accurate
numerical simulations that include both computational fluid and structural dynamics. The
accurate prediction of the global performance of the plant is therefore based on the possibility to
capture the evolving dynamics for several fluid scales, from local eddies affecting the loading on
the turbine blades up to large eddies that form the interacting wakes downstream with respect
to each rotor. The presence of these complex flow structures and their interactions requires the
use of high-fidelity tools and high resolution grids. At the same time the operative conditions of
the plant are intrinsically stochastic in their nature and uncertainty quantification techniques
are needed to both characterize the sources of uncertainty and propagate them through the
numerical codes. The high computational burden of this task is very often prohibitive for
a single plant configuration and it is exacerbated in the case of a design process in which
an uncertainty quantification propagation is required for each design iteration. In this work
we present and discuss the integration of multilevel uncertainty quantification and design
strategies that have the potential to drastically reduce the overall cost of an optimization under
uncertainty study. The main objective of the multilevel strategy is to combine computational
tools with different accuracy and computational cost such that information from a hierarchy
of resolutions can be efficiently fused to decrease the overall cost without compromising the
overall accuracy. We focus on algorithmic advancements for both the forward uncertainty
quantification step and the optimization step as well. We present multilevel estimators for
higher moments, particularly the variance which is employed in robust optimization problems
and show the advantage compared to standard multilevel estimators. We use simple model
problems to describe the different algorithmic components and their features and performance.
As a final demonstration we consider a wind plant design problem involving two turbines for
which we combine fluid dynamics tools with different numerical accuracy based on Reynolds
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Averaged Navier-Stokes equations. Finally, we compare the performance of the newly developed
multilevel strategies with their single fidelity counterpart.

I. Introduction

The numerical design of wind power plants requires to perform a series of challenging computational tasks that
includes accurate turbulent computational fluid dynamics (CFD) simulations and structural dynamics analyses. Moreover,
wind power plants operate in an environment that is stochastic in nature and thus the accurate quantification of their
performance also requires the characterization and propagation of uncertainty sources through the numerical codes. This
latter tasks concur to define the so called uncertainty quantification (UQ) workflow. It is well known that UQ requires
multiple realizations of the numerical code which correspond to the response of the system for different combinations of
input/uncertain parameters. This process, despite the recent algorithmic advancements, is still computational expensive
especially since it requires a number of system realizations that roughly scales with the number of input parameters.
It is evident that a similar workflow is prohibitively expensive when the system, as in our case, requires high-fidelity
simulations for its accurate characterization. This cost is greatly augmented when the UQ step is encapsulated in an
external loop as for instance the one required by optimization. To overcome this difficulty in recent year the concept
of multilevel and multifidelity UQ has been introduced in a series of papers[1-9] mimicking earlier developments
presented in the optimization literature [10]. These approaches are all based on a similar key concept: whenever several
models with increasing accuracy (and computational cost) are available, it is possible to optimally and efficiently
fuse information from all of them in order to minimize the overall computational cost while preserving the accuracy
requirements.

In this work we are interested in demonstrating how multilevel approaches can be introduced and adapted for the
UQ step in order to greatly reduce the overall computational cost of the optimization under uncertainty (OUU) for wind
plants. In particular, we focus our attention on multifidelity sampling-based approaches as the multilevel Monte Carlo
(MLMCO) [2, 3] to accelerate the UQ propagation step. For the optimization, we base our work on the derivative-free
optimization library SNOWPAC [11]. Our algorithmic contributions are focused on the coupling between SNOWPAC
and the MLMC implementation in Dakota extending what we have presented in [12]. Specifically, we present new
multilevel estimators for higher order moments, namely the variance extending work from [13, 14]. By coupling those
estimators with SNOPWAC, we extend the single fidelity approach to a more efficient multilevel version. We present
numerical tests on a simplified problem to highlight and demonstrate the features of the proposed strategy compared to
its standard single level counterpart.

As a final demonstration of the overall multilevel OUU workflow we focus on a wind power plant design problem
for which we combine computational fluid dynamics tools with increasing computational complexity as a result of a
hierarchy of grid resolutions of Reynolds Averaged Navier Stokes (RANS) equations. The remainder of the paper is
organized as it follows. The wind plant design problem and computational fluid dynamics tools used is described in
Section [I[. The optimization and uncertainty quantification approaches are briefly described in Section [II. Results for
the model and the wind problem are discussed in Section ['V]. Concluding remarks end the paper in Section [V|.

I1. Application description

Wind power plant design can benefit from different strategies in order to maximize the power extraction. However,
for a wind plant that have been already designed and installed, control techniques can be adopted to improve their
performance. One effective controls technique is wake steering in which the turbines are intentionally yawed away
from a perpendicular alignment with the incoming wind. When doing so, the turbines act like flow control devices and
can direct the wake away from downstream rotors and also entrain more momentum from aloft. Obtaining effective
wake steering strategies is complicated by uncertainty in the incoming wind direction, wind intensity, turbulence levels,
etc. Furthermore, noise in wind vane sensors and errors in the yaw control system introduce additional uncertainty in
obtaining optimal wake steering strategies. The complex turbulent flow in the turbine wake, with high-vorticity regions
interacting with other wakes and downstream rotors makes the sensor measurements subject to a significant uncertainty
that obfuscates the actual yaw angle of each turbine.

In this work we are interested in formulating and solving an OUU problem for finding the optimal wake steering
strategy inspired by the work presented in [15]. In this previous work, the authors formulated an OUU problem with the
expected annual energy production (AEP) as the quantity of interest. The authors focused on a two-turbine case with
different level of the uncertainty for the yaw angle as well as the Princess Amalia wind farm. For both cases the authors



were able to show the advantage of a OUU formulation with respect to a deterministic optimization (which assumes
perfect knowledge of the yaw misalignment).

We study a similar OUU problem to maximize the total power production of two turbines subject to a set of box
constraints on yaw angles. However, we consider a situation with partial wake overlap that commonly occurs within a
wind farm. Futhermore, we demonstrate that better results can be achieved by employing a multilevel OUU strategy
leveraging a hierarchy of resolutions of RANS equations while the costs are equal to a standard Monte Carlo strategy.

Regarding the underlying flow model and solver we are using Reynolds-averaged Navier Stokes (RANS) codes to
solve for ensemble averaged flow fields with a turbulence closure for the Reynolds stress and which provide a mid-fidelity
representation of wake interactions and intra-farm turbulent flow. WindSE [16] is a RANS code with actuator disk
turbine representation and automatic differentiation for high dimensional gradients that is intended for optimization
and UQ studies. Additionally, it offers automatic and parametrized meshing which allows the construction of different
resolutions levels. Finally, computational cost for a high resolution mesh is large enough to show the effectiveness of
multilevel approaches while still being feasible for a test environment.

I11. Multilevel Monte Carlo for OUU
In this section we briefly describe the main components of our OUU approach: the library SNOWPAC for the
derivative-free optimization solver and the multilevel Monte Carlo capabilities implemented in DAKOTA which is also
tasked with managing the overall UQ workflow.

A. OUU formulation
In the following we summarize the OUU formulation for a generic quantity of interest that we want to solve. Given a
stochastic optimization problem with objective function f and inequality constraints ¢

min  f(x,6),

(D
s.t. ¢(x,0)<0

where x € R is the design variable and 6 := (04, ...,6,) : (Q, F, P) — (O, B(®), w) is a stochastic parameters mapping
from probability space (€, F, P) to (®, B(®), u),® c R™. Here, B(®) denotes the standard Borel o-field. The
uncertain parameters 6 represents the uncertainty in measured quantities or may model a lack of knowledge about
process parameters.

Next, we reformulate (T)) into a robust optimization problem using measures of robustness and risk R

min Rf(x, 9),
. _ (2
s.t. R(x,0)<0

and we are interested in optimal designs x which are robust with respect to the introduced uncertainty by 6. Typical
examples for those measures given a general function b € {f, c} are expected value, RY (x,0) := E[b(x, 0)], a linear
combination with the standard deviation, R?(x, ) := E[b(x, 0)] + aV[b(x, 9)]%, or—more specifically—chance
constraints, R (x, 8) := E[1(c(x,0) > 0)] — (1 — B), given a probability level g €]0, 1[.

B. (SYNOWPAC

We use the derivative-free constrained stochastic optimization method SNOWPAC [11] for solving the resulting
robust optimization problem given in Eq. (2). The method is an extension of the deterministic derivative-free method
NOWPAC [17] which employs an inner boundary path to ensure feasible trial points. Furthermore, it uses a trust region
approach to approximate the objective f and constraint c locally around the current optimal design employing minimum
Frobenius norm surrogate models (see [18]) m/ and m¢, respectively. Next, classical quadratic optimization algorithms
can be used on the surrogate to find the best optimization step. For NOWPAC, the authors in [17] show that the method
is globally convergent to a feasible local optimum.

SNOWPAC extends NOWPAC for robust optimization problems which requires multiple adaptations to the algorithm.
It introduces Monte Carlo sampling estimators to evaluate the robustness measures R” = R? + g;,. This, however,
introduces an error &, restricting the approximation quality of the surrogates m/ and m¢ in the trust region. The authors



show that the minimal possible trust region radius pi at a given optimization step k is restricted by the maximal noise

‘9]r<nax = MaXpe(f,c} €
EmaxPr. S A5 TSP Pk = AiyEhax = max A&}, 3)

where A, is a safety parameter. Thus, progress of the algorithm is only achieved if the noise can be reduced.

Therefore, Gaussian process surrogates (see [19] for an introduction) are utilized additionally to bias the evaluations
and to reduce the noise. They are built over all previous evaluations using a squared exponential kernel and maximum
likelihood hyperparameter optimization. Smoothened evaluations RII: and noise estimates éf are constructed via a
convex sum

RY = yiGr(xp) + (1 - y)R, 4)
&0 = y20p(xp) + (1 - yp)ed,

where g;; (xx) denotes the Gaussian process estimate and o, (xx) denotes the standard deviation of g,’; at point xx. The
weight factor y; := e~“»*%) is chosen to approach 1 following the approximation quality of the Gaussian process. The
corrected evaluations Rf{’ at the local interpolation points are then used to build local surrogates and the associated
reduced noise level &” allows a reduction in the trust region radius py.

In summary, SNOWPAC takes two sources of error into account with the use of those two surrogate models. While
the Gaussian process surrogate is built over a larger domain and, therefore, holds more global information, the minimum
Frobenius norm surrogate models are built locally in the trust region. Through the combination following Eq. (4) we
balance the error in the surrogate model via the lower bound on the trust region with the error in the Gaussian process
model represented by its standard deviation estimate. With an increasing number of evaluations we gain confidence in
the Gaussian process model, are able to decrease the noise and, finally, the trust region.

SNOWPAC showed promising results as described in [11], outperforming optimization methods like COBYLA
[20], NOMAD [21] or cBO [22] on a collection of benchmark problems; it is also available in the optimization and
uncertainty quantification framework DAKOTA (from version 6.7 [23]) where it can be used a stand-alone solver or an
approximate subproblem solver. With its derivative-free approach it offers the flexibility and applicability to a wide
range of problems. Thus, it is our method of choice. For a more elaborate introduction to the method we refer the
interested reader to [11] and will focus on the most recent algorithmic developments next.

C. Multilevel Monte Carlo for the expected value

As stated before, SNOWPAC employs Monte Carlo sampling estimators R to evaluate the measures of risk and
robustness R resulting from the OUU formulation. By having access to a hierarchy of models/fidelities we can speed up
the computation by employing newly developed multifidelity and multilevel approaches (see [2, 3]).

Let us first introduce some notation. Given a mapping f : R X Q@ — R where § € Q is a random variable
as in Section III.A, we use the shorthand Q := f(-0) or Q¥ := f© (., #) when multiple levels are available. A
realization (or sample) is then written as Q; := f(-, 6;) or Q([) = fO(.,6;) where N, samples are used for level ¢,
such that: {0'9, .. .,Q%ﬁ} ={fO00),..., O 0n,)}. Weemploy u[Q] := E[Q] for the expected value, while
u; = E[(Q — u[@71,i > 0, is used for the i-th central moment. If obvious from context, we also allow ourselves
to omit the random variable we integrate over, e.g. u; := y;[Q]. Additionally, the hat symbol stands for a sampling
approximation of the quantity, e.g. 1o ~ po while a multilevel estimator is equipped with a superscript, e.g. ,L;’\Qm

() (£-1)

Furthermore, for the multilevel notation, the current level is shown as superscript, e.g. u, ’, while H;, = means we

approximate ;,i > 0, on level (£ — 1) using samples from ¢, e.g. ,u(f D= 1{ Zl.:l FE-D, 0;‘7)) = NL[ Z Q(f D
and similarly for higher order moments. Finally, all described estimators are unbiased, e.g. u = E[wug], if not exphcltly
noted otherwise.

Having introduced the notation, the generic multilevel Monte Carlo (MLMC) estimator for a Qol Q at a given
highest resolution level L (¢ = 0 being the coarsest level) is computed as

E[Q1] = 41011 ~ ML[QL]—Zuo[Q‘“ 0“1 = Z Z(Q“’) afs™, ol = )



and its variance is given by

L L
1 M O «-D
VIkg = ) 3 VIQe = Qi = VI = 3 Viug - wgly Ul ©)
(=0 £=0

Therefore, for a sequence of levels for which V[Q, — Qp—1] — 0 with £ — L, it is possible to redistribute the
computational load toward the coarser level in order to reach a desired accuracy. Moreover, the optimal allocation of
samples NE,E across levels can be obtained in closed form once the variance on each level V[Q, — Q¢_1] is estimated.
The optimization that we need to solve for the optimal sample allocation as described in [1, 2] is given as

L
min C[NE,
N¢ ;) @)

s.t. V[ = €.

Here, we minimize the cost while targeting a certain error tolerance €. Since the constraint V[/}(‘)TL] = €’ is based on the
variance of the MLMC estimator for the expected value Eq. (6)f, we further on also refer to solving Eq. (7)) as "targeting
the mean".This is further symbolized by the superscript E for the sample allocation N),E. It is known (see e.g. [2]) that
the optimization problem has an analytic solution where the method of Lagrange multipliers is used to find the multiplier

A=¢€? Z VVI[Q¢ = Qr-11Ce, ®)

L
=0

and finally the optimal sample allocation for each level

VI[Q¢ — Qr-1]
A4 /7@ } ) 9

NE =

D. Multilevel Monte Carlo for the variance

In general, for UQ problems we are not only interested in the expected value but also in higher order moments.
Specifically in the field of OUU the variance and standard deviation play an important role as mentioned in the section
[I.Al When optimizing, e.g., over the standard deviation we decrease the variation in our optimal design. Additionally,
often times a linear combination of mean and standard deviation is used as probabilistic constraints to ensure a robust
solution under uncertainty. Hence, we present here our contribution to find the optimal sample allocation for higher
order moments, specifically the variance. To find the optimal sample allocation for the variance N;’ the optimization
problem that we have to solve is

L
min C[NY,
N/ rz:;) (10)

st V[t = €.

Hence, we need to compute the variance (or mean squared error) for the MLMC estimator of the variance instead of the
expected value in Eq. (7). Therefore, we refer to the solution of Eq. (10) as "targeting the variance". This is similarly
symbolized by the superscript V in the sample allocation N;’. This problem is not analytically traceable any longer.
Thus, we give closed form solutions for the different terms of the optimization problem in the following and finally
revert to solving it numerically to get the sample allocation N;].

*which is equal to the mean squared error of ,u(“)’[L since its an unbiased estimator



First, we introduce the MLMC estimator for the variance by again employing the telescopic sum

L
VIQL] ~ @501 = ) 72101 - 0]
£=0

2w

N\ (O _ e Dy
- Z T Hyp
=0

Next, using this estimator we decompose the constraint of Eq. (10) in its single terms

3

(Z(Q“) WP - @5 - ;7 an

~
~

VIEg = Z(ﬂw) - ﬂ(sz RIE Z V[,U([) /éff 1= Z V[:“(f)] + V[,u2 ¢ 1)] 2COV['“(2[)’ “gfl ] (12

where we use independence of the samples over the different levels. Note again the notation ,u(F 1 Where we evaluate

the moment of interest on level (£ — 1) but use samples on level ¢ which results in a dependence expressed by the
covariance term.

In the following, we derive the single terms in Eq. (I2). The variance of variance is a well-know expression and
can be for example found in [24]. The authors, however, only describe a biased estimator and we derive an unbiased
estimator for the expression as:

-y (N-1) (- N-3__,
\% ~V = - 13
[p2] = V(2] N2—2N+3(4 No1H2 13)
This also includes the fourth central moment for which we derive an unbiased single level estimator
_ 1 ( N3 (6N —9)(N? —N)Az) (14)
M4 = M4 biased — s
9 . _ 6N-9YN2-N) \N —-1"" N2 -2N +3
(N*-3N+3) N(N2-2N+3)
where
Fbiased = Z(Ql 0. (15)
Thus, we use single level expressions Eq. (13)) and Eq. (@) to evaluate the variance terms of Eq. (12)).
Finally, we derive the covariance term as
Covpd), 10 = —E[ WOy 4 m( HO10® QD] - =Dy (16)
where
2 2 0 2 -] @ 3
Elu gf)'u(zl’[ By = ((’) [Q(f) 01 ] zluz)f) [Q([) 0 1)] /18[) [Q(/ 1)]
» 2 NG NG 12
+ zlugf) [Q(f 1)] #(()5) [Q“) ] _ z'ug(’) [Q([)] 'ué(’) [Q({’)Q({’ b ] .

4 4;%7) [Qw—n] ;f? [Q(m] ;g?) [Qa’)Q(f—n] i 2;55 [Qw)]z ;,(07) [Q(f—lﬂ]
i [0 0 [0 -5 0] [0

Note that the product of (multiple) mean estimators is again a biased estimator. Therefore, we also derived unbiased
estimators for double, triple and quadruple products of expected values in Eq. (I7) which, however, we do not list
explicitly for the sake of compactness of this presentation.

Finally, we close this section with a brief review about work in this field and putting our contribution into context.
First work regarding MLMC estimators known to us was published in [13]. While they present estimators for higher
order central moments, the authors employ biased estimators. More recent work by [14] leverages h-statistics and
symbolic computations to find unbiased closed form solutions for the higher order moments; however, they only
approximate the underlying optimization problem for the sample allocation, thereby solving an approximate analytic
problem while we use numerical optimization instead.



E. Coupling MLMC, SNOWPAC and DAKOTA
Additionally, in order to couple a given UQ strategy with SNOWPAC, for a generic objective function E[Q] + ac[Q]
it is necessary to provide an estimation of the standard error SE for E, V and o as estimate for e in Eq. (3) and Eq. (4).

While the standard error for the sample mean g is simply obtained as \/V[io] = +/ %, we can now use the derived

quantities from the previous chapter to also compute the standard error for the variance as given in Eq. (12) for the
multilevel estimator and Eq. (13)) for a single level.

Finally, the standard error for the sample standard deviation o[Q} ] = \/ﬁE(L) is approximated by

SE(o[QL]) ~

—\[VIK5"] (18)
2 u;)

for a single level and for o[Q1 ] = ;I’E“\L by

1 —
SE(c[QL]) ¥ ——+/VIu3'] 19)

2\ 15"

by employing the so-called Delta Method. This enables us to approximate the probability distribution of a function (the
root mean square for us) of an asymptotically normal estimator, i.e. the sample variance in our case. Of course, in our
case the sample variance is not an asymptotically normal estimator, therefore this is only an approximation.

The developed MLMC algorithms and estimators are implemented in DAKOTA [23], a software that offers
state-of-the-art research and robust, usable algorithms for optimization and UQ. It furthermore includes SNOWPAC
as an external solver. By its modular design, a number of surrogate models can be employed with the optimization
algorithm of the user’s choice. Applications can be easily coupled, e.g., through the exchange of input and output files.
This offers a powerful tool to utilize and exchange a multitude of algorithms in a straight-forward manner.

IV. OUU results
After having introduced the new algorithmic developments regarding higher moment MLMC estimators, we show
their computational efficiency on two problems. In Section [V.A] we work with an analytic OUU example which also
serves as a verification case for the approach. Afterwards, we continue to the two turbine wind problem in Section [V.B|
to show the effectiveness of the method for a real word problem.

A. Analytical test problem

Before approaching the complex wind application, we perform a series of tests to verify both the implementation
and the performance of the OUU algorithm. The test is based on problem 18 of a collection of optimization problems
given in [25] and has been modified by adding a constraint. Given the following deterministic functions

| x-2)? ifx <3
Fo0 = {ZIOg(x ~+1  ifx>3 @)
gx) = 28N (x 1)+ 1 1)

which we also illustrate in the left figure of Figure [I] we define the deterministic optimization problem:

min  f(x),

st. c(x):=g(x)— f(x) <O0.

(22)

Next, we add a uniform random variable ¢ to the constraint function ¢ based on a parameter A to obtain a traceable
multilevel OUU formulation:

e (x,€) = gu(x, &) — f(x) = g(x) + € — f(x),

(23)
cL(x,€) = gr(x, &) = f(x) = g(x) + A&’ — f(x),€ ~ U(-0.5,0.5),



where H describes the fine and L describes the coarse level, respectively. A is a control parameter that correlates the
two levels which we modify in order to obtain an interesting problem with desired features: this gives us a verification
case, not only with a control parameter for the correlation over the two levels but also an analytical solution since
6 6
Eleni(x, )] = g(x) = f(x), Vley] = %= and Ve ] = A0,
Finally, we define two robust optimization problems to see the effect of the newly developed MLMC estimators

* Mean:
min  f(x),
x 24
s.t.  Rmean = Elcn (x, )] < 0.
* Mean plus push back:
min  f(x),
* (25)

s.t.  Rpback := Elemy (x,&)] + 30 [cy(x,£)] < 0.

Here, we evaluate the robustness measure using either Monte Carlo sampling on cg as reference or MLMC sampling
with an appropriate combination of samples on cy and cr.

OUU Verification Case MLMC high fidelity Nj; and low fidelity Nf samples based on A
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Fig.1 Test functions f and g in the interval x € [0, 6] (left). MLMC profile for the number of samples Ny and
N given parameter A. (right)

To find the optimal MLMC profile we first solve problem reported in Eq. (7)) where we use a Monte Carlo estimator
on cy with Ny = 100 samples as reference case and a cost ratio of 10 between the two levels. Therefore, we set
€ = V[cy1/100 and solve the optimization problem which returns a sample allocation dependent on A. In the right
plot of Figure [, we plot the number of samples Ny and Ny, in relation to A. Based on this profile we pick A = 0.7
which results in a sample allocation of Ng =16 and NII? = 119. Additionally, we compute a second sample profile by
solving Eq. (10) numerically since we not only have to estimate the expected value but also the standard deviation for
Eq. (25)). This returns the sample allocation NE =38 and Nz’ = 108 for A = 0.7 which tells us to redistribute samples
to the fine level to properly resolve the variance. Though the cost are theoretical here, this results in total cost reduction
of 70.5% for N® and 47.4% for NV compared to Ni = 100 samples of the Monte Carlo reference solution.

To compare the two samples allocations in a first verification test we sample the stochastic moments E, V and o
5000 times over & at location x = 3 and compare the MC and MLMC estimation given the sample allocations. The
resulting histograms are visualized in Figure 2. While the MLMC estimator (red) for the expected value (left) matches
the Monte Carlo estimator (blue) we see a discrepancy for the variance (center) and standard deviation (right). This is
reasonable since the sample profile was chosen to match the expected value of the Monte Carlo estimator following
Eq. (7). However, this does not ensure that also the variance or standard deviation are matching. We can clearly see a
better match for the variance and standard deviation for the sample allocation targeting Eq. (10) (green). However, we
now over-resolve for the expected value due to the higher sample sizes on the fine grid.

If we now compare the two optimization benchmarks given in Eq. (24) and Eq. (25) we can see how the sample
allocation influences the optimization. For this test we run 100 optimizations for Eq. (24) and Eq. (25) starting from the
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Fig. 2 Histogram plot over 5000 test runs evaluating the expected value E (left), the variance V and standard
deviation o of the stochastic constraint. The Monte Carlo estimator using 100 samples is shown in (solid) blue.
The MLMC estimator optimized following Eq. (7) using samples Nf} and NE is plotted in (dashed) red. The
MLMC estimator when targeting the variance as in Eq. (10) employing the sample allocation NX and Nz’ is
shown in (dot dashed) green. The flat lines on the bottom show two times the standard error as well as the mean
of the histogram while the grey top most line reflect the analytic error.

same initial value xo = 0.25, different random seed and comparing MC and MLMC estimators. In Figure 3 we plot
the final designs obtained for the optimization runs. Here, we show that the discrepancy when higher order moments
are evaluated using the MLMC estimator based on Eq. (7)) is visible. While we observe the final designs obtained
for Eq. (24) matching for Monte Carlo (red diamond) and MLMC (blue cross), MLMC performs poorly for Eq. (25)
compared to the designs found by Monte Carlo. Here, although we would like to see the MLMC designs match the
Monte Carlo designs, they are much more infeasible when only targeting Eq. (7). Using the sample allocation obtained
from Eq. (10) (green plus) we see an improved performance in the right plot of Figure 3] where the designs are more
feasible and located around the analytic optimal solution. Therefore, we conclude that an appropriate sample allocation
is necessary when including higher order moments—Iike the standard deviation—in the OUU problem formulation, still
leveraging a cost reduction compared to classical Monte Carlo.

Final designs using MC and MLMC estimator for £[c] Final designs using MC and MLMC estimator for £[c] + 30o[c]
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Fig. 3 Final designs obtained after 100 optimization runs starting from the same initial design xo = 0.25 for
formulation (24)) (left) and (25) (right). The blue line shows the deterministic objective function f, the black line
shows the analytic solution of the stochastic constraint. The blue crosses show the final designs using a classic
Monte Carlo estimator with 100 samples on the final level. The red diamonds show the final designs using a
MLMC estimator following (7). The MLMC estimator targeting the variance (10) is shown as green pluses. The
orange star shows the respective optimal solution.



B. OUU for Wake Steering

After showing the general validity of the approach on the test problem we are returning to the wind application. For
this application, we are considering a scenario involving two turbines arranged such that the upwind turbine partially
wakes the downwind turbine. The turbines are represented as the NREL 5 MW [26] machine, are spaced apart 600 m in
the streamwise direction, and offset by half a rotor diameter in the spanwise direction. We assumed an average 8 m/s hub
height velocity with the turbines operating at a fixed axial induction factor of 1/3. This partial wake overlap situation
commonly occurs in wind farms, and is know to have a clear wake steering strategy in the deterministic case. The
partial offset introduces an asymmetry in the power response to yaw motions that avoids a bimodal situation that would
otherwise occur when using the non-rotating actuator disks in WindSE in cases without spanwise offsets. Furthermore,
we treat the prescribed yaw angles y; as the optimization variables, and assume uncertainty in the incoming velocity 6,
as well as random additive noise at each turbine 6,, as done in previous studies. The noise in yaw angles is attributed to
errors in the wind vane sensors, yaw positioning system, and unresolved turbulent fluctuations.

We consider two different robust optimization problems where we are able to control the yaw angle of the turbines
while we model uncertainty in the yaw angle sensors as well as the velocity measurements of the inflowing wind.
Finally, we are interested in the combined power production of the two turbines as described in Section [[I. Similar to
Section [V.A] we maximize for the expected value of the power production only; or, maximize for its expected value
while trying to minimize its variance. The two optimization problems are defined as follows:

* Mean:
max Ryean 1= Max E[fpower (7] 2 Y2, Ous Oy, 072)]- (26)
Y172 Y172
* Mean plus push back:
I’;’Illg’)z( Repback := 1;,1[]3)2( E[fpower (71s Y2, Ous g'yl s H'yz)] = 30—[fpower (713 Y2, Ous gy] s 0’}/2)]' 27

Here, y; € [-45°,45°],i = 1,2 are box constraints for the design variables and 6,, ~ U(7.6 %, 8.4%), 0y, ~
U (-5°5°),i = 1,2 the uniform distributions for the uncertain parameters.

We employ a hierarchy of three different grid resolutions COARSE, MEDIUM and FINE for the multilevel case.
The different grids and a velocity field snapshot for each of the grids are visualized in Figure 4 using angles of the initial
design of y; = 0° and y, = 0°. Starting from different base resolutions, each of the grids uses additional refinement
along a channel following the flow around the turbines and is most refined around the turbines themselves to capture the
flow field and wake. The degrees of freedom of each of the grids and the absolute and relative cost are given in Figure [I.
Here, the runtimes were averaged over 20 pilot runs over the uncertain space at the centered value y; = 0°,i = 1, 2.

COARSE | MEDIUM | FINE
Degrees of freedom 12548 86364 242788
Absolute cost [s] 17.288 133.41 531.567
Approximate relative cost 1 8 31

Table 1 Degrees of freedom, averaged absolute cost in seconds and relative cost with respect to COARSE for
the three grid employed grid resolutions COARSE, MEDIUM and FINE for a single evaluation.

Regarding the sample allocation we solve the optimization problems Eq. (7) and Eq. (10) with respect to a Monte
Carlo reference solution with Nging = 150 samples. Hence, we search for an MLMC estimator matching the same
accuracy but at lower computational cost. Using the previously mentioned 20 pilot runs we compute the sample
allocations N¥ = [223,7, 1] for Eq. (7). For this case we consider the final profile of N¥ = [223,7, 5] to account for a
realistic number (five) of pilot samples at the fine level. When targeting the variance we compute the sample allocation
NV =[396, 46, 20] numerically solving Eq. (10). As we can observe, to target the variance we again need more samples.
While the Monte Carlo reference using Npivg = 150 samples has a total cost of Cpy, = 4650 for a single optimization
step, the MLMC estimators reduce it to Cye = 481 and Cpv = 1590, respectively. Hence, we again leverage the
resolution hierarchy for a more efficient computational performance.

We present the optimization results in Figure 5. We plot here the optimization progress of the objective function that
we maximize (right) as well as the change of the design parameters y;,i = 1, 2 (left). We compare results using a MLMC
estimator in the optimization against a Monte Carlo reference estimator employing 150 samples on FINE; additionally,
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Fig.4 Grid resolutions employed for the multilevel case (top row) and example velocity fields for initial design
v1 = 0° and y, = 0° (bottom row) visualized on the three different resolutions from left to right: COARSE,
MEDIUM and FINE

we compare to the deterministic problem using the nominal values of the uncertain parameters, i.e. 8,, = 0°,i = 1,2
and 6, = 87. In the following plots, the gray lines extend the converged the deterministic solution as well as the Monte
Carlo reference solutions that stopped because of limited computational resources.

When we consider the first OUU formulation Eq. (26) we can see that the Monte Carlo reference solution (blue)
finds a similar optimal design as the deterministic solution (black) in Figure 5. The MLMC estimator (red) finds a
similar objective value but at a different design with additional optimization steps though the solution does not seem
fully converged yet. However, we deduce a similar performance of the Monte Carlo and MLMC case when targeting the
mean. This is reasonable since they are designed for the same accuracy (neglecting the extra samples for numerical
stability).

Regarding the second formulation Eq. (27) we observe the effect of the added standard deviation term in Figure 0.
Now, the MLMC case targeting the mean (red) clearly has problems and is underresolved. Looking at the MLMC
estimator targeting the variance (green), however, we clearly see a better match with the Monte Carlo reference solution
(blue) in the design as well as the objective value. This again, as in the previous sections, is due to the design of the
sample allocation and shows the importance of employing Eq. (10) when a variance or standard deviation has to be
estimated. Therefore, similar to the previous test problem in Figure [V.A] the appropriate sample allocation ensures
a better performance during the optimization despite a slight additional cost compared to N¥; the cost reduction to
standard Monte Carlo is more significant.

To further investigate the final designs found we sample each of the solutions over the uncertain space. In Figure [7
we plot histograms for 200 sample runs. We compare the final distributions for formulations reported in Eq. (26)
(left) and Eq. (27) (right) where each plot shows the distributions at the initial design (gray), the optimal deterministic
solution (black) as well the optimal solutions found using Monte Carlo (blue) and MLMC (red for N, green for NV).
Additionally, the vertical lines show the mean value while the horizontal lines show the standard deviation for the
respective solution. Note, that we plot the histogram value of fyower, D0t the objective value.

11



Design: yaw angle y; and y» Objective: Rumean = Elfpowerl

3.100

15

.......................... 3.075
10

3.050

&
o
N}
w

e R B S R

\
™oy e 1\
0 1 D I e L T EE R [roreNg e

i
n_t 1

R -

Y1, Y2 in degrees
g
=}
S
S

Objective value

N
— i Det 2975
— =y, Det y L]

== Detevals

e ' = Det path
i~ — Y1 MCN, =150 55 Yy 1 —= MCN_=150 evals
1 - .950 i
h ==y, MCN_ =150 [ = MC N, =150 path
) ; — y1 MLMC N* i — = MLMC N* evals
J

==y, MLMC N¥ 2.925 —— MLMC N path

0 10 20 30 40 0 10 20 30 40
Optimization steps Optimization steps

Fig. 5 Optimization path (left) and optimal design path (right) using Monte Carlo and MLMC estimator for
formulation (26)

First, we observe that all designs show approximately a uniform distribution in the quantity of interest. Additionally,
we clearly see the improvement in the expected value of the solution due to the optimization. Furthermore, all optimal
designs result in a similar final distribution and expectation value. Moreover, also the variance is approximately equal.
Thus, we cannot observe a significant effect from adding the standard deviation term in formulation Eq. (27). It seems
that the variance over the design does not change considerably to enforce different optimal robust solution. Therefore,
the solution of Eq. (27) returns to the optimal solution of Eq. (26)).

Apart from observing the performance of the optimizer qualitatively we state the final design values for each of the
approaches in Table 2. Additionally, we state the approximated expected value as well as the standard deviation of
Spower at the corresponding designs. These values are computed from the 200 samples also used for the histograms. We
see that all approaches find a similar objective value in expectation. Additionally, we notice a similar standard deviation
value. This further strengthens the argument that the standard deviation seems constant over the design space and
explains the similar results between the formulations reported in Eq. (26) and Eq. (27).

RMean Rpback
Initial Det MC MLMC MC MLMC NV
Y1 0.0 11.6341 | 12.8512 | 10.3720 | 17.6596 12.9430
2 0.0 0.0570 | 3.1616 | -2.3608 | -2.8550 -1.8230

E[ fpower (Y1, 72, 0us 0y,, 65,)] | 2.9851 | 3.0558 | 3.0506 | 3.0529 | 3.0297 3.0534
o[ fpower (Y15 Y2, Ous 0y, 65,)] | 02490 | 0.2514 | 0.2512 | 0.2513 | 0.2496 0.2511
Objective 29851 | 3.0558 | 3.0506 | 3.0529 | 2.2808 2.3001

Table2 Optimization results for the different methods compared to the initial condition. All values are rounded
to four digits.

Finally, we show three flow fields for the velocity magnitude computed for the final design at the nominal values for
the deterministic (left), mean (center) and mean plus push back OUU formulation (right). The results are visualized in
Figure [§. Again, there is no major difference visible and all cases try to steer mainly the wake of the first turbine to
optimize the total power production.

We summarize this section by the following three observations and conclusions: First, we see an advantage of
employing MLMC to leverage a hierarchy of available resolutions compared to standard Monte Carlo and therefore
reducing the computational cost. Second, when employing higher order moment in the problem formulation, an
adaptation of the MLMC estimator following the description in Section [[II.D| Third, for this application we do not see a
direct advantage of using a OUU formulation spending the additional computational resources while the deterministic
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Fig. 6 Optimization path (left) and optimal design path (right) using Monte Carlo and MLMC estimator for
formulation (27)

solution already seems quite promising. Therefore, we envision to move to more challenging applications, e.g. adding
more turbines to the problem and, thus, enlarging the design as well as the uncertain space or add additional uncertain
as well as design parameters and nonlinear constraints.

V. Conclusions

Wind plant design and control is a formidable engineering problem that requires the use of accurate and
computationally expensive high-fidelity simulations to capture the interactions among the wakes and the rotors.
In this work we will focus on the wake steering control approach that enables to increase the power extraction of a wind
plant already installed by just modify the yaw angle of each turbine. By changing the yaw angle of a turbine its wake
can be tilted as well in order to minimize the loss of power caused the wake impinging on downstream turbines. The
difficulty in measuring accurately the yaw angle of each turbine by using sensors mounted on the nacelle motivates
the use of an optimization under uncertainty approach. In particular, we propose an efficient multilevel strategy that
combines efficient multilevel forward propagation with the derivative-free stochastic optimization method SNOWPAC
in Dakota that enables us to either accelerate this workflow by requiring only a limited number of high-fidelity
simulations complemented by a large number of lower fidelity system realizations or improve accuracy while having
similar computational cost compared to standard Monte Carlo forward propagation. In this paper we have reported
the performance of the proposed approach with respect to its single fidelity counterpart based on MC sampling. We
employed both verification test cases as well as a more challenging, albeit quite simplified, wind turbine test case based
on RANS presented in [15]. For this particular optimization formulation we have observed an improvement of the
performance for the optimized configuration with respect to the nominal configuration. However, we have not observed
a substantial difference between the deterministic and OUU formulation. In the future we plan to consider more
challenging test cases, e.g. wind plant configurations with a higher number of turbines, for which we expect a greater
non-linearity of the response and therefore a significant difference between the deterministic and OUU formulations.

Acknowledgments

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views
expressed in the article do not necessarily represent the views of the U.S. Department Of Energy or the United States
Government. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance
for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G0O28308.
Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy

13



Histogram at final design for Rvean = Elfpower] Histogram: Reback = Elfpower] — 30 fpower]

14 —— Initial —— Initial
— Det 14 — Det
— MC RMean — MC Repback

12 —— MLMC Ruean —— MLMC Rpback

12

10
10

2.6 2.8 3.0 3.2 34 2.6 2.8 3.2 3.4

3.0
foower(V1, Y2, 8u, By, By,) Toower(V1, Y2, 8u, By, By,)

Fig.7 Histogram for 200 sample runs over the uncertain space at the respective final design for the formulations
reported in Eq. (20) (left) and Eq. (27) (right).

ude fag Mognitude
10 1.38+01 0.0e e+0 . 6 8 10 1.3e+01

g
8

Fig. 8 Flowfield for velocity magnitude for final design found for deterministic (left), mean (26) (center) and
pushback (27) (right) formulation.

Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this work, or allow others to do so, for U.S. Government purposes.

References
[1] Heinrich, S., “Multilevel Monte Carlo Methods,” Large-Scale Scientific Computing, edited by S. Margenov, J. Wasniewski, and
P. Yalamov, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 58-67.

[2] Giles, M. B., “Multilevel Monte Carlo Path Simulation,” Operations Research, Vol. 56, No. 3, 2008, pp. 607-617. doi:
10.1287/0pre.1070.0496, URL http://pubsonline.informs.org/doi/abs/10.1287/opre.1070.0496.

[3] Giles, M. B., “Multilevel Monte Carlo methods,” Acta Numerica, Vol. 24, 2015, p. 259-328. doi:10.1017/5096249291500001X.

[4] Pasupathy, R., Schmeiser, B. W., Taaffe, M. R., and Wang, J., “Control-variate estimation using estimated control means,” //E
Transactions, Vol. 44, No. 5, 2012, pp. 381-385.

[5] Ng, L., and Willcox, K., “Multifidelity approaches for optimization under uncertainty,” Int. J. Numer. Meth. Engng., Vol. 100,
No. 10, 2014, pp. 746-772.

14



(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]
(20]
(21]
[22]

(23]

[24]

[25]

(26]

Peherstorfer, B., Willcox, K., and Gunzburger, M., “Optimal model management for multifidelity Monte Carlo estimation,”
SIAM Journal on Scientific Computing, Vol. 38, No. 5, 2016, pp. A3163-A3194.

s

Geraci, G., laccarino, G., and Eldred, M. S., “A multi fidelity control variate approach for the multilevel Monte Carlo technique.’
CTR Annual Research Briefs 2015, 2015, pp. 169-181.

Geraci, G., Eldred, M. S., and laccarino, G., “A multifidelity multilevel Monte Carlo method for uncertainty propagation in
aerospace applications,” 19th AIAA Non-Deterministic Approaches Conference, 2017, p. 1951.

Fairbanks, H., Doostan, A., Ketelsen, C., and Iaccarino, G., “A low-rank control variate for multilevel Monte Carlo simulation
of high-dimensional uncertain systems,” Journal of Computational Physics, Vol. 341, 2017, pp. 121-139.

s

Eldred, M., Giunta, A., and Collis, S., “Second-order corrections for surrogate-based optimization with model hierarchies,
10th AIAA/ISSMO multidisciplinary analysis and optimization conference, 2004, p. 4457.

3

Augustin, F., and Marzouk, Y. M., “A Trust-Region Method for Derivative-Free Nonlinear Constrained Stochastic Optimization,’
arXiv:1703.04156, 2017.

Geraci, G., Menhorn, F., Huan, X., Safta, C., Marzouk, Y., Najm, H., and Eldred, M., “Progress in Scramjet Design Optimization
Under Uncertainty Using Simulations of the HIFiRE Configuration,” 2019. doi:10.2514/6.2019-0725.

Bierig, C., and Chernov, A., “Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo
method,” Stochastics and Partial Differential Equations Analysis and Computations, Vol. 4, No. 1, 2016, pp. 3—40. doi:
10.1007/s40072-015-0063-9, URL https://doi.org/10.1007/s40072-015-0063-9.

Pisaroni, M., Krumscheid, S., and Nobile, F., “MATHICSE Technical Report : Quantifying uncertain system outputs via the
multilevel Monte Carlo method - Part I: Central moment estimation,” 2017, p. 29. doi:10.5075/epfl-MATHICSE-263564, URL
http://infoscience.epfl.ch/record/263564, mATHICSE Technical Report Nr. 23.2017 October 2017.

Quick, J., Annoni, J., King, R., Dykes, K., Fleming, P., and Ning, A., “Optimization Under Uncertainty for Wake Steering
Strategies,” Journal of Physics: Conference Series, Vol. 854, 2017, p. 012036. doi:10.1088/1742-6596/854/1/012036, URL
https://doi.org/10.1088%2F1742-6596%2F854%2F1%2F012036.

King, R. N., Dykes, K., Graf, P.,, and Hamlington, P. E., “Optimization of wind plant layouts using an adjoint approach,”
Wind Energy Science, Vol. 2, No. 1, 2017, pp. 115-131. doi:10.5194/wes-2-115-2017, URL http://www.wind-energ-
sci.net/2/115/2017/.

Augustin, F., and Marzouk, Y. M., “A Path-Augmented Constraint Handling Approach for Nonlinear Derivative-Free
Optimization,” arXiv:1403.1931v3, 2014.

Kannan, A., and Wild, S. M., “Obtaining Quadratic Models of Noisy Functions,” Tech. rep., Argonne National Laboratory,
Illinois, 2012.

Rasmussen, C. E., and Williams, C. K. 1., Gaussian Processes for Machine Learning, MIT Press, 2006.
J. D. Powell, M., “A View of Algorithms for Optimization Without Derivatives,” Mathematics TODAY, Vol. 43, No. 5, 2007.
Le Digabel, S., “NOMAD: Nonlinear optimization with the MADS algorithm,” ACM Trans. Math. Softw., Vol. 37, 2011, p. 44.

Gardner, J. R., Kusner, M. J., Xu, Z., Weinberger, K. Q., and Cunningham, J. P., “Bayesian Optimization with Inequality
Constraints,” Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32,
JMLR.org, 2014, pp. [1-937-11-945. URL http://dl.acm.org/citation.cfm?id=3044805.3044997.

Adams, B., Bauman, L., Bohnhoft, W., Dalbey, K., M.S., E., ].P,, E., M.S., E., Hough, P., Hu, K., Jakeman, J., Stephens, J.,
Swiler, L., Vigil, D., and Wildey, T., “DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis - Version 6.6 Users Manual,” , July 2014. Updated
May, 2017.

Mood, A., Graybill, F., and Boes, D., Introduction to the Theory of Statistics, International Student edition, McGraw-Hill, 1974.
URL https://books.google.com/books?id=Viu2AAAATAA].

Gavana, A., “Infinity 77, http://infinity77.net/global_optimization/test_functions_1d.html, 2013. [Online;
accessed June 15th, 2019].

Jonkman, J., Butterfield, S., Musial, W., and Scott, G., “Definition of a 5-MW Reference Wind Turbine for Offshore
System Development,” Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Feb. 2009. URL
http://www.osti.gov/bridge/servlets/purl/947422-nhrlni/.

15



