
for Performance Portable Sparse/Dense

linear algebra and Graph Kernels

PRESENTED BY

Siva Rajamanickam, S. Acer, L. Berger-Vergiat, V. Dang, N. Ellin
B. Kelley, K. Kim, C.R. Trott, J. Wilke

SAND2019-XXXXXX

NgSat

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2019-14189C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2  Approaches to Programming GPUs

Native Programming Models
CUDA (NVIDIA), HIP (AMD), SYCL (Intel)

' Pros: Customized for each architecture, so low level control

Cons: Rewrite code every time you buy a hardware from a new vendor

Directive Based Approach
OpenMP, OpenACC

Pros: Standards based, General

o Cons: Long lag time between what is needed and when they are needed, Might have to resort to
#ifdef after all, Different level of support from vendors

Library Based Approach

o Kokkos, RAJA

o Pros: Portable, Clean abstractions, Quicker turnaround, Reference implementations of standards

o Cons: Dependency on libraries

Library based performance portability allows for writing applications to several
architectures with limited dependencies



3 Kokkos Ecosystem for Performance Portability

Kokkos

Tools

Debugging

Profiling

Tuning

ASC-IC/ATDM Applications

Kokkos EcoSystem

Kokkos Kernels

Linear Algebra Kernels Graph Kernels

Kokkos Core
Parallel

Execution
Parallel Data
Structures

b DDR 

Multi-Core

4/ 
11111

11111 11111

DDR 

Many-Core APU

Nlf

CPU + GPU

Kokkos

Support

Documentation

Tutorials

Bootcamps

App support

 JJ

Kokkos Core: parallel

patterns and data structures;
supports several execution
and memory spaces

Kokkos Kernels:
performance portable BLAS;

sparse, dense and graph
algorithms

Kokkos Tools: debugging and
profiling support

Write-once using Kokkos for
portable performance on different
architectures

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

1



4  Focus of Kokkos Kernels

Deliver portable sparse/dense linear algebra and graph kernels
o These are the kernels that are in 80% of time for most applications

o Key problems: Kernels might need different algorithms/implementations to get the best
performance

o Ninja programming needs in addition to Kokkos

) Users of the kernels do not need to be ninja programmers

Focus on performance of the kernels on all the platforms of interest to DOE

Deliver robust software ecosystem for other software technology projects and
applications
o Production software capabilities that give high performance, portable and turn-key

-) Tested on number of configurations nightly (architectures, compilers, debug/optimized,
programming model backend, complex/real, ordinal types...)

Larger release/integration testing with Trilinos and applications

Kokkos Support, github issues, tutorials, hackathons, user group meetings (planned)

Kokkos Kernels delivers portable, high-performance kernels in a robust software
ecosystem to support ECP applications



5 I Overview of the Tutorial

• Use three kernels to demonstrate the use of a library based approach for
performance portability

• Distance-1 graph coloring: Identify independent rows that can be

processed in parallel for a parallel preconditioner.
• Sparse matrix-matrix multiplication: Compute the result of C = A * B

where A and B are sparse matrices
• Team level batched linear algebra: Compute a block tridiagonal

factorization using team-level linear algebra



6 I Graph Kernel: Distance I Graph Coloring

Given a graph G = ( V , E),
With vertices v E V

Edges (vo v2) E E v ov 2 E V

o Distance-1 graph coloring: assigns colors to vertices so that each
vertex have different color from all of its neighbors

C : V N c(vo c (v2) for all (v ov 2) E E
The distinct number of colors assigned to vertices:

Graph coloring problem that minimizes ICI 
is NP-Hard

[Zuckerman, 2006]

Applications:
Parallel computation, Jacobian computation, Register allocations
• • •

o .

i.
1

Image cout5tesy of Sariyuce, Saule, Catalyurek, SIAM PP, 2012 _



7 I Graph Coloring Heuristics

Simple greedy heuristics often obtain near optimal solutions

O First-fit [Matula, 1972], with 0(11/ +10

n Keeps forbidden array to store the colors of neighbors

Obtains 1C16+1 where 6 max degree in the graph
.

Parallel Implementations

o Speculative Method [Gebremedhin and Manne,2000], [Bozdag, 2008]

o Uones and Plassmann, 1993] parallelization of [Luby, 1986]

o Distributed Implementations: [Catalyurek,2012]

Hybrid MPI+OpenMP Implementations: [Sariyuce, 2012]



8 I Manycore Coloring Heuristics Before Kokkos Kernels approach

Xeon Phi: Speculative Method (IPGC) [Saule, 2012]

( Speculatively color vertices in each threads

( Detect conflicts due to race conditions and recolor them

GPUs: Nvidia cuSPARSE: [Naumov, 2015]

Relaxation of Jones and Plassmann (JP) based on the independent sets

Highly parallel, runs fast

But the number of colors found are usually very high



9 I Vertex-Based Coloring on GPUs

Minimum atomic work are vertices, therefore 1 vertex is owned by a single thread: IPGC,
cuSPARSE

Some implementation details are often ignored

e.g. the requirement of thread private Forbidden array 0(8)

' can be a problem on highly irregular graphs, or when number of threads are high

Optimization:

Limit the size of Forbidden array e.g. with constant size 32 (called VB)

) Traverse the adjacency multiple times

first for the vertices with colors 1-32, then 33-64 ...

G On GPUs this array can be stored in slow local memory

o Use the bits of single int (called VBBIT)

o Conversion to back and forth to bit representation

r) Stored in registers on GPU rather than slow memory



10 I Edge-Based Coloring on GPUs

Minimum atomic work are edges, therefore 1 edge is owned by a single thread
Requires more complex synchronizations

Three Phase algorithm

Assign Colors (Vertex Based)

Detect Conflict (Edge Based)

Forbid Colors (Edge Based)

Optimization:

Bit-based forbidden arrays

o Use Edge Filtering to minimize number of times an edge is seen

o Convergence improvements with tentative coloring

O Parallel-Prefix sums vs Atomics

"Simple" Distance-1 graph coloring on GPUs can become complex very quickly due to the
massive parallelism.



11 I Graph Coloring and Multithreaded Gauss Seidel

• Conjugated Gradient Algorithm in Kokkos Kernels
• Preconditioner: multi-threaded Gauss-Seidel

• Very sequential algorithm
• Coloring to find independent rows

• Then operations can be done in parallel for independent rows
• More colors 4 more synchronization, less work in parallel regions

• Other Approaches possible for Gauss-Seidel preconditioning:

• Level-set based Gauss-Seidel (similar to a triangular solve)
• Dynamic parallelism is difficult on GPUs

• Block Gauss-Seidel similar to MPI

• Can become (block) Jacobi preconditioner as //threads increase as in GPUs

Details of the algorithm are in the paper Parallel Graph Coloring for Manycore Architectures,

M. Deveci, H. Boman, K Devine and S . Rajamanickam, IPDPS 2016.



12 I Graph Coloring and Multithreaded Gauss Seidel

64.00

32.00
cr)
cc 16.00
ct
o.
tn 8.00

+.; 4.00

o_
2.00

cu

o_

1.00

0.50
Vf

0.25

0.13

00

liKokkosKernels cuSPARSE

00

rsi
Ls) Tr

to
ci .4  

cr) Tr 
 e-i Tr. Ommi±:

1, ,<*0 e t 0-

No
rm
al
iz
ed
 #
co

lo
rs

 w.
r.

t.
 

1.20

1.00

I I KokkosKernels

cuSPARSE0.80

cc
0. 0.60
cr)
z
C.) C;

0.40

L/1

0.20 L11

01 CT1ci

0.00

• Performance: Better quality (4x on average) and run time (1.5x speedup ) w.r.t cuSPARSE.

• Performance portable implementation allows better results on the KNL as well.

• Enables parallelization of preconditioners: Gauss Seidel: 136x on K20 GPUs w.r.t. serial Sandy

Bridge (significant for a triangular solve like kernel)

• Application Integration

• Integrated in Trilinos preconditioners (IFPACK2 package)

• Evaluated in the Exascale Computing Project Wind Energy application Nalu



1 3 I Sparse Kernel : Sparse Matrix-Matrix Multiplication

•

x

IM

=

11

a
Sparse Matrix-Matrix Multiplication (SpGE M): fundamental block for

Algebraic multigrid RxAxP

Various graph analytics problems: triangle counting, clustering, betweenness
centrality...

More complex than most of the other sparse BLAS and graph problems:

Extra irregularity: nnz of C is unknown beforehand.
Requirement of thread private data structures



14 I Sparse Matrix-Matrix Multiplication Background

5 2 x

2 7
3 5

a.

Sequential Algorithms: 1D [Gustayson 78]



1 5 I Sparse Matrix-Matrix Multiplication Background

5 2 x

2

3

3

5

-

Sequential Algorithms: 1D [Gustayson 78]



1 6 I Sparse Matrix-Matrix Multiplication Background

5 2 x
3
e

5

Distributed algorithms:

1D Trilinos

0 2D Combinatorial Blas [Bulug 12] — 2D Decomposition of C

° 3D [Azad 15]

Hypergraph-based: [Akbudak 14], [Ballard 16]

10 6 2 5



1 7 I Sparse Matrix-Matrix Multiplication Background

Most of the shared algorithms bases on 1D Gustayson
algorithm

Differ in the data structure they use for accumulation

Multi-threaded algorithms:
o Dense Accumulator [Patwary 15]
o Sparse Heap accumulators: ViennaCL, CommBlass
o Sparse accumulators: MKT.

GPUs:
o CUSP: Expand — Sort — Collapse
- Hierarchical: cuSPARSE, bhSparse [Liu 14]



1 8 I Portable Sparse Matrix-Matrix Multiplication

Variety in architectures
Tens/Hundreds/thousands of threads

CPUs /lightweight-cores / streaming multi-processors

Shared / high bandwidth / DDR memory

Native multi-threaded algorithms
Fewer threads, more memory & more work per thread

GPU algorithms
o Thousands of threads, less memory & less work per thread

Design decisions
o Work distribution to threads

o Scalable data structures

O Limitations of specific architectures



19  Thread Mapping

Each team works on a bunch of rows of C (or A)

° Team: Thread block (GPU) group of hyper-threads in a core (CPU)

Each worker in team works on consecutive rows of C

Worker: Warp (GPUs), hyperthread (CPU)

More coalesced access on GPUs,

Better L1-cache usage on CPUs.

Team-1

Thread-1 Thread-2

v2 v3.. v4

Each vectorlane in a worker works on a different multiplications within a row:

Vectorlane: Threads in a Warp (GPUs), vector units (CPU)

thread-1

MEM v4
team-1

team-2

team-3

team-4

team-5

A

X

MIME= v4 •••

• ••• Ai •

MEM

••• ••••••

••• =EMI"

••• •••••

•••• •••••

••••• ••••

•••• ••••

•••• ••••

1- 

Team-2

Thread-3 Thread-4

v5 v6 v7 v8



20 I Thread Mapping (continued)

Thread-1
Team-1

Thread-2

Thread-3
Team-2

Thread-4

Team-1

Team-2

A

 ).

x
Team-1

Team-2

Team-2

Team-1

v2

v3 v4

v3 v4

vl v2 vl v2 vl v2

B
v2vl

v5 v6

■

v5 v6

v2 v3 v4 III v2

Thread-1 Thread-2 Thread-1

c

Thread to rows of A
• No atomics needed

in data structures
• Load balancing

could be a problem

Team to row of B
• No atomics needed
• Load balancing

could be a problem
between teams

A B



21 I Thread Mapping (continued)

Team 1

Team-2

Team-1

Team-2

A

A

Thread-71 

Thread-3

Thread-4

Thread-2

x

Team-1

x

Team-1

v2

v5 v6

v7 v8

NO v4 v3 v4 v3 v4

B

11.
v2

v5 v6

v7 v8

v3 v4
=Mr
vl v2 v3 v4

B
B(1,:) B(6,:)

Thread-1 Thread-2 Thread-1 Thread-2

v2 v3 v4 V v2 v3 v4

r;

Threads to rows of B
• Team level

synchronization
needed

• Load balancing
could be a problem

Teams to rows of A,
unroll all computation
to threads
• Team level

synchronization
needed

Kokkos allows exploring
different styles of

hierarchical parallelism



22  Data Structures for SpGEMM

Two-level Hashmap Accumulator:

- 1st level accumulator: GPUs shared memory or a small memory
that will fit in L1 cache

2nd level goes to global memory

Memory Pool: Only some of the workers need 2nd level hash map.
They request memory from memory pool.

° Fixed size, fixed alignment

#pragma omp parallel
{

data_type *my_data = new data_type[n];
//initialize my_data ---> 0(n)
//once 0(n) per thread

#pragma omp for
for (i = 1...m){
//work on my_data ---> 0(k) and k « n
//re-initialize my_data ----> 0(k)

}
}



23 I Limitations of Accelerators require two phase SpGEMM

Size and structure of rows are
unknown at the beginning

over-allocation: expensive

dynamically increase: not suitable to
GPUs

Estimation methods: not cheaper
than calculating the actual size in
practice

Require: A representing the input rnesh, b right handside vector
1: //time step
2: for timestep E [0,n] do
3: Xo initial guess

4: //nonlinear solve

5:
6:
7:
8:
9:
10:
11:

for k e [0,...] until X0 converges do
Ak assemble_matrix (A, X k) //linear matrix
//calculate residual

rk b — Ak x Xk

//solve problem - using multigrid
x-k solve(Ak , rk)

//update the solution
12: Xk+1 Xk + Xk

Two-phase:

symbolic - calculate ll  nnz

then numeric - actual flops

Repetitive multiplications for different numeric values with same symbolic

structure



24 I Kokkos Kernels Two phase SpGEMM

Doubles the amount of work performed

Symbolic phase: works on the symbolic structure — no floating values

performs unions on rows to find the structure/size of the output row

compression method to speedup first phase and reduce its memory requirements

Compression: Compress the rows of B: O(nnz(B)) using 2 integers.

Column Set Index (CSI): represents column set index

Column Set (CS): the bits represent the existence of a column

Advantages:

Symbolic complexity: 0(FLOPS) -> on average —0(avgdeg(A)x nnz(B))

How much memory we need is unknown

and overestimated as max row flops

row

CS!

cs

6 7 8 9 10 33 34 35 36 37

0 1

3 4 5 6 7 8 9 10 . . 31

0

0



2 5  Kokkos Kernels Two phase SpGEMM Performance

• Integration:

• Integrated into the Tpetra package of Trilinos and used by the multigrid solver MueLU within a

distributed memory sparse matrix-matrix multiply

• Integration with several Exascale Computing Project applications (ExaWind, EMPIRE)

• Performance Profile — 82 different instances of SpGEMM

• Quicker and higher better. KNL DDR mode (left): KK-SpGEMM is the best for —50 test instances,

within 1.5x of the best instance for all but 3 instances. GPU (right): KKSpGE M and NSPARSE are

the two best methods.

80

70

in 60a)
u
c
2 50
in
c

-LY, 40
2
o 30
#

20

10

 w

A-A KKMEM
4-4 KKDENSE
x  MKL-INS

O 0 MKL8
4-4, MKL7

(8,—. KKSpGEMM

80

70

(an) 60
u
c
19, 50
cr)
c

t.,' 40
CD

46 30
#

20

10

,,

KKLP

KKMEM

cuSparse

KKSpGEMM

NSPARSE

viennaCL

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Proximity to the best performing method

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Proximitv to the best performina method

5.0



26 I Kernel 3:Team Level BLAS in Kokkos Kernels

Common hierarchical-parallel pattern in Kokkos based applications
parallel for over some entities (rows, elements, vertices, particles)

o BLAS/LAPACK call is team-level / serial call within the paralleljor with vectorization

The device level loop is much larger than the BLAS call underneath. It is not one BLAS
call, it is a set of BLAS calls and other operations together in a larger kernel.

o "Standard" Batched BLAS as proposed by the reference implementation introduces
synchronization and data movement for these use cases

Kokkos Kernels provides BLAS / LAPACK functionality at the team-level / serial level

Some exceptions
Machine learning use cases where a layer could be fully expressed and utilize the device
level concurrency

"Standard" batched BLAS interface provides the required functionality here

Kokkos Kernels can provide interfaces to vendor kernels and libraries like MAGMA

Kokkos Kernels provides team-level and serial BLAS / LAPACK functionality to
be used within a parallel application context.



27 I Kokkos Kernels interface to BLAS/LAPACK — Other considerations

Compact Layout

Repack the matrices to be stored in compact layout for small matrix sizes in the
batch

Use traditional layouts for large matrix sizes or based on architectures

Purely a memory access issue

Vectorized reads/writes
Coalesced memory access on a GPU

See work by Kokkos Kernels and Intel MKT, team (SC'17) for the usefulness of
compact layout

o Also implemented in Intel MKT,

Usage of different memory layouts based on problem sizes and architecture needs
is critical for performance



28 Application Use Case :Tridiagonal solvers

m

mxn

• Application characteristics
• One dimension of the

mesh more important
than the others when
preconditioning

• Multiple degrees of
freedom per element
gives rise to tiny blocks

Algorithm 1: Reference impl. TriLU

i for T in {To, Ti,• • • ,Tnixn_1} do in parallel
To • 2 for to k— 2 do

MM.
MEM
['MN

'
3

4

Ar LU (Ar);
fir := L-114r;

•
5

er;=eru-1;
•
•
• 6

Ar+1 ;=er+1 eV/3'r;

7 endNM

MAI

8
Ask-1 {L.u};

T 9 end

• Block Jacobi preconditioner where each block is a
Tridiagonal matrix

• Every scalar in the tridiagonal matrix is a small block
matrix
• Block sizes 5x5, 9x9, 15x15 etc

• Typical number of diagonal blocks 512-1024
• Key kernels needed DGEMM, LU, TRSM

It is important to define BLAS and LAPACK kernels within the parallel regions



29 I Developing line solvers for a CFD code

• Team Level BLAS

Kernels

• Different from

community developed

standards for Batched

BLAS at the device level

• Proposed as part of the

community standard and

being developed as part

of multiple

implementations

lo
g2
 s
ca

le
 E
t 
lo

we
r 
is
 f
as

te
r 

lo
g2
 T
i
m
e
 p
er
 T
i
m
e
 S
te
p 
[s
] 

Total Problem Solve

2 sec

sec

- 1/2 sec

- -1/4sec 

GPU improvement,
FY19 start to now: -4x

Per GPU performance:
current: -2-3.2x over HSW
FY19 goal: >4x over HSW

4 M
cells/ [node l GPU]

-or-
128k cells/MPI

rank @ 32
ranks/node

A—A ATS 1/HSW, 1 thread (FY19 start)

♦ ATS-1/HSW, 1 thread
♦ ATS-1/KNL, 8 threads (FY19 start)
-M ATS-1/KNL, 4 threads

-* ATS-2/V100 (FY19 start)

V—V ATS-2/V100

Number of Compute Nodes or GPUs

KNL: slightly faster than HSW,
owing to high bandwidth memory
used by linear solves

GPU node-level performance:
current: -8-12x over HSW
FY19 goal: >16x over HSW

64 k
cells/ [node l GPU]

-or-
2k cells/MPI rank @
32 ranks/node

Optimized, vectorized implementation in Kokkos Kernels for Intel CPU, KNL and GPU
platforms

o Line solvers based on compact kernels and integrated the compact BLAS based preconditioners
in CFD code



30 I Kokkos Kernels Capabilities

Dense Linear Algebra
o Good coverage of BLAS + LAPACK
o Team level kernels — coverage based on application requirement
O Complex support
o Tuned for problem sizes

Sparse Linear Algebra
c Sparse matrix-vector multiplication, Sparse matrix-matrix multiplication,
o Sparse Triangular solves,
o Preconditioners — Gauss-Seidel Preconditioner, ILU(k) preconditioner

Graph Algorithms
• D-1 coloring, D-2 coloring
- Triangle Counting

Data Structures
- Hash Map, Memory Pool
- Team Level Sorting

Machine Learning Kernels
2D and 3D Convolutions



31 I Capabilities : BLAS

• abs(y,x)

axpy(alpha,x,y)

axpby(alpha,x,beta,y)

dot(x,y)

• fill(x,alpha)

' mult(gamma,y,alpha,A,x)

nrml (x)

• nrm2(x)

nrm2w(x,w)

nrminf(x)

• scal(y,alpha,x)

• sum(x)

• update(a,x,b,y,g,z)

mgemv(t,alph,A,x,bet,y)

mgemm(tA,tB,alph,A,B,bet,C)

y[i] = 1 x[i] 1

y[i] += alpha * x[i]

y[i] = beta * y + alpha * x[i]

dot = SUM_i ( x[i] * y[i] )

x[i] = alpha

y[i] = gamma * y[i] + alpha * A[i] * x[i]

nrml = SUM_i( 1 x[i] 1 )

nrm2 = sqrt ( SUM_i( 1 x[i] 1 * 1 x[1] 1 ))

nrm2w = sqrt ( SUM_i( ( x[i] 1 / 1 w[i] 1 )A2 ))

nrminf = MAX_i( 1 x[i] 1 )

y[i] = alpha * x[i]

sum = SUM_i( x[i] )

y[i] = g * y[i] + b * y[i] + a * x [i]

y[i] = bet*y[i] + alph*SUM_KA[i,jrx[j])

C [i,j] =bet*C [i,j] +alph*SUM_k(A[i,k]*B [k,j])



32 I KokkosKernels Interface

1. KokkosKernels BLAS functions
o Convert from hierarchical parallel execution to
using BLAS functions

• tmp = (extra view, holds gemv results)
o result = <y,tmp>

2. KokkosKernels team-based
BLAS function
Same as hierarchical parallel execution
Call team-based dot within each team to
perform <A[teamId,:],x>

result = KokkosBlas::dot(x,y)

performs result = SUM i (y [i]*x [i] )

KokkosBlas : : gemv ("N" , alpha ,A, x , beta , y)

performs matrix-vector multiplication
y[i] = beta*y[i] + alpha*SUM j(A[i,j]*x[j])

KokkosBlas::Experimental::dot(teamId,x,y)

performs result = SUM i (y [i] *x [i] ) within each thread team



33 I KokkosKernels Interface : Conjugate Gradient Solver

• Exercise can be found as part of the Kokkos
Tutorials

• Goal: implement conjugate gradient solver
for square, symmetric, positive-definite sparse
matrix

• Details: Mx=1)
• b is Nx1

• A is NxN symmetric, positive-definite sparse
matrix

• x is Nxl

• Look for comments labeled with "EXERCISE"

• Use KokkosKernels BLAS and KokkosKernels
Sparse BLAS

r0 = b — A * x0

ki) o = r0=0

while Ilrk II > E and k<N

rkT * rk
a— 

PTk*A*Pk

Xk+1 = Xk + a *pk

rk+1 = rk — a* A* pk

fl-
T„ 

* Ak+1  rk+1

rkT * rk

Pk+1 = rk+1 + fl* Pk

k=k+1



34 I KokkosKernels Interface : Conjugate Gradient Solver

KokkosKernels Functions

o Sparse matrix generation is
provided

o Compile and run on OpenMP,
CUDA backends

o Vary problem size: -N #

o Compare performance of CPU vs
GPU

result = KokkosBlas::dot(x,y)

performs result = SUM i(y[i]*x[i])

KokkosBlas::axpy(alpha,x,y)

performs y[i] = y[i] + alpha*x[i]

KokkosBlas::axpby(alpha,x,beta,y)

performs y[i] = beta*y[i] + alpha*x[i]

KokkosSparse : : spmv ("N" , alpha , A , x , beta , y)

performs sparse matrix-vector multiplication
y[i] = beta*y[i] + alpha*SUM j (A[i,j]*x[j])



35 I Collaborations with Vendors

NVD IA
• Summit on Summit meetings

o Biweekly work stream meetings to guide NVIDINs math libraries plans

• DOE wide effort, Kokkos Kernels requirements prioritized along with other labs

o Kernel requirements prioritized by application needs and milestones

• Long history of interaction as part of COE

AMD

• Just started the interactions on sparse, dense, batched linear algebra kernels, and sparse solvers

• Kokkos backend under-development

• Kokkos Kernels will be the performance test case

Intel

• Long history of interaction as part of COE, Aurora plans

• Kokkos backend under development

• Kokkos Kernels will be the performance test case

ARM

• Working with the math libraries team both on algorithms and prioritization

Kokkos Kernels team working with hardware vendors to support application needs
on current and exascale platforms

+1.



36 I Collaborations with ECP Applications

SPARC: state-of-the-art hypersonic unsteady hybrid structured/unstructured finite volume CFD code

, High performance line solvers; batched BLAS on CPUs and GPUs

Performance-portable programming models

EMPIRE: next-gen unstructured-mesh FEM PIC/multifluid plasma simulation code

o Scalable solvers for electrostatic and electromagnetic systems for Trinity and Sierra architectures

O Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods

O Performance-portable programming models

Non-linear solvers, discretization, and automatic differentiation approaches

Exawind: next-gen wind simulation code

Scalable solvers for Trinity and Sierra architectures

Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods

O Performance-portable programming models

QMCPACK: Electronic structure code with Quantum Monte Carlo Algorithms

o Team level BLAS and LAPACK within the Kokkos ecssytem

Kokkos Kernels integrated into several applications in an agile manner at all stages from
understanding requirements, designing kernels and integrating them.



Rules of Thumb for library based approach to accelerator programming
37 with performance portability

Identify performance critical kernels
Call library based option when possible
Allows library developers and optimize the kernels to the best extent possibl

Develop portable algorithms when library based option not available
Use a portable programming model or directive based approach

Use architecture independent abstractions

Pay attention to memory layouts, hierarchical parallelism, synchronization costs

Use team level data structures and linear algebra kernels when possible
Optimize performance at all the hierarchical levels


