This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-14189C

-

e~

Kokkos Kernels: Library Based Approach
for Performance Portable Sparse/Dense

linear algebra and Graph Kernels

AT,

F

PRESENTED BY

Siva Rajamanickam, S. Acer, L. Berger-Vergiat, V. Dang, N. Ellingwood,
B. Kelley, K. Kim, C.R. Trott, J. Wilke

- - ‘ —— — @ENERGY NS4

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

SAND2019-XXXXXX

2 | Approaches to Programming GPUs

Native Programming Models
> CUDA (NVIDIA), HIP (AMD), SYCL (Intel)
° Pros: Customized for each architecture, so low level control

o Cons: Rewrite code every time vou buv a hardware from a new vendor
y y y

Directive Based Approach
> OpenMP, OpenACC
o Pros: Standards based, General

> Cons: Long lag time between what is needed and when they are needed, Might have to resort to
#ifdef after all, Different level of support from vendors

Library Based Approach
> Kokkos, RAJA
> Pros: Portable, Clean abstractions, Quicker turnaround, Reference implementations of standards

> Cons: Dependency on libraries

Library based performance portability allows for writing applications to several
architectures with limited dependencies

3

Kokkos Ecosystem for Performance Portability

f

o

ASC-IC/ATDM Applications

p.

O N
/ Kokkos \

Support

Kokkos Trilinos
Tools
Kokkos EcoSystem
-
Debugging Kokkos Kernels
Brmilig \[Linear Algebra Kernels] [Graph Kernels]
; i e
Tuning Kokkos Core
g Parallel Parallel Data
/ & Execution Structures

Documentation

Tutorials

Bootcamps

App support

J

A /)

Multi-Core

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

CPU + GPU

Kokkos Core: parallel
patterns and data structures;
supports several execution
and memory spaces

Kokkos Kernels:
performance portable BLAS;
sparse, dense and graph
algorithms

Kokkos Tools: debugging and
profiling support

Write-once using Kokkos for
portable performance on different
architectures

4

Focus of Kokkos Kernels

Deliver portable sparse/dense linear algebra and graph kernels

° These are the kernels that are in 80% of time for most applications

° Key problems: Kernels might need different algorithms/implementations to get the best
performance

> Ninja programming needs in addition to Kokkos
> Users of the kernels do not need to be ninja programmers

o Focus on performance of the kernels on all the platforms of interest to DOE

Deliver robust software ecosystem for other software technology projects and
applications
° Production software capabilities that give high performance, portable and turn-key

° Tested on number of configurations nightly (architectures, compilers, debug/optimized,
programming model backend, complex/real, ordinal types...)

° Larger release/integration testing with Trilinos and applications

> Kokkos Support, github issues, tutorials, hackathons, user group meetings (planned)

Kokkos Kernels delivers portable, high-performance kernels in a robust software
ecosystem to support ECP applications

5 I Overview of the Tutorial

* Use three kernels to demonstrate the use of a library based approach for
performance portability

*Distance-1 graph coloring: Identify independent rows that can be
processed 1n parallel for a parallel preconditionet.

* Sparse matrix-matrix multiplication: Compute the result of C = A * B
where A and B are sparse matrices

*Team level batched linear algebra: Compute a block tridiagonal
factorization using team-level linear algebra

6

Graph Kernel: Distance | Graph Coloring

Given a graph G = (V| E),
o With vertices vVEYV
“BEdges (v,v,)€EE v,v,EV

> Distance-1 graph coloring: assigns colors to vertices so that each ‘
vertex have different color from all of its neighbors

O C:V—=N C)=C(v,) forall(v,v,)EE
The distinct number of colors assigned to vertices: ‘C ‘

° Graph coloring problem that minimizes ‘C ‘is NP-Hard
[Zuckerman, 2000]

Applications:

° Parallel computation, Jacobian computation, Register allocations

Image courf’tesy of Sariyuce, Saule, Catalyurek, SIAM PP, 2012

7 ‘ Graph Coloring Heuristics

Simple greedy heuristics often obtain near optimal solutions
° [Matula, 1972], with O(|V|+|E|)
° Keeps forbidden array to store the colors of neighbors
° Obtains ‘C‘ =0+] where 0 max degree in the graph

Parallel Implementations

o [Gebremedhin and Manne,2000], [Bozdag, 2008]
° [Jones and Plassmann, 1993] parallelization of [Luby, 1986]

° Distributed Implementations: [Catalyurek,2012]

> Hybrid MPI+OpenMP Implementations: [Sartyuce, 2012]

s | Manycore Coloring Heuristics Betore Kokkos Kernels approach

Xeon Phi: Speculative Method (IPGC) [Saule, 2012]
° Speculatively color vertices in each threads

o Detect conflicts due to race conditions and recolor them

GPUs: Nvidia cuSPARSE: [Naumoyv, 2015]

° Relaxation of Jones and Plassmann (JP) based on the independent sets
> Highly parallel, runs fast

° But the number of colors found are usually very high

o | Vertex-Based Coloring on GPUs

Minimum atomic work are vertices, therefore 1 vertex 1s owned by a single thread: IPGC,
cuSPARSE

Some implementation details are often ignored
° e.g. the requirement of thread private Forbidden array O(9)

° can be a problem on highly irregular graphs, or when number of threads are high

Optimization:
° Limit the size of Forbidden array e.g. with constant size 32 (called VB)
° Traverse the adjacency multiple times
° first for the vertices with colors 1-32, then 33-64 ...
> On GPUs this array can be stored in slow local memory
> Use the bits of single int (called VBBIT)
> Conversion to back and forth to bit representation

° Stored 1n registers on GPU rather than slow memory

0 | Edge-Based Coloring on GPUs

Minimum atomic work are edges, therefore 1 edge 1s owned by a single thread

° Requires more complex synchronizations

Three Phase algorithm
> Assign Colors (Vertex Based)

> Detect Conflict (Edge Based)
> Forbid Colors (Edge Based)

Optimization:
° Bit-based forbidden arrays
> Use Edge Filtering to minimize number of times an edge 1s seen
> Convergence improvements with tentative coloring

o Parallel-Prefix sums vs Atomics

“Simple” Distance-1 graph coloring on GPUs can become complex very quickly due to the
massive parallelism.

11 I Graph Coloring and Multithreaded Gauss Seidel

* Conjugated Gradient Algorithm in Kokkos Kernels
* Preconditioner: multi-threaded Gauss-Seidel
* Very sequential algorithm
* Coloring to find independent rows
* Then operations can be done in parallel for independent rows
* More colors = more synchronization, less work in parallel regions
* Other Approaches possible for Gauss-Seidel preconditioning:
* Level-set based Gauss-Seidel (similar to a triangular solve)
* Dynamic parallelism 1s difficult on GPUs
* Block Gauss-Seidel similar to MPI
* (Can become (block) Jacobi preconditioner as #threads increase as in GPUs

Details ot the algorithm are in the paper Parallel Graph Coloring for Manycore Architectures,
M. Deveci, E. Boman, K. Devine and S. Rajamanickanm, IPDPS 2016.

12 I Graph Coloring and Multithreaded Gauss Seidel

64.00
1.20

L, 32.00 EEKokkosKernels ===cuSPARSE
m -
o -
< 16.00 ; [T KokkosKernels
- O i
+ 4.00 ® <
= 292
S 2.00 83
oy ©
S 1.00 £
© [=)
o 2
-4 0.50
(7]

0.25

0.13

S & ¢ D N 2> & e ? o

. Performance: Better quality (4x on average) and run time (1.5x speedup) w.r.t cuSPARSE.
. Performance portable implementation allows better results on the KNL as well.
. Enables parallelization of preconditioners: Gauss Seidel: 136x on K20 GPUs w.r.t. serial Sandy
Bridge (significant for a triangular solve like kernel)
. Application Integration
. Integrated in Trilinos preconditioners (IFPACK2 package)
. Evaluated in the Exascale Computing Project Wind Energy application Nalu

13 | Sparse Kernel : Sparse Matrix-Matrix Multiplication

o

Sparse Matrix-Matrix Multiplication (SpGEMM): fundamental block for
Algebraic multigrid RxAxP
Various graph analytics problems: triangle counting, clustering, betweenness
centrality...

More complex than most of the other sparse BLAS and graph problems:
Extra irregularity: nnz of C is unknown beforehand.
Requirement of thread private data structures

I DN B0 T

4 | Sparse Matrix-Matrix Multiplication Background

.

Sequential Algorithms: 1D [Gustavson 78]

5 | Sparse Matrix-Matrix Multiplication Background

o

Sequential Algorithms: 1D [Gustavson 78]

15

I DN B0 T

16 | Sparse Matrix-Matrix Multiplication Background

m

.L

>

5

Distributed algorithms:
> 1D Trilinos

> 2D Combinatorial Blas [Bulug 12] — 2D Decomposition of C

> 3D [Azad 15]

> Hypergraph-based: [Akbudak 14|, [Ballard 10]

25

B 00 O

7 | Sparse Matrix-Matrix Multiplication Background

Most of the shared algorithms bases on 1D Gustavson
algorithm

° Differ in the data structure they use for accumulation

Multi-threaded algorithms:
> Dense Accumulator [Patwary 15]
° Sparse Heap accumulators: ViennaCL, CommBlass

° Sparse accumulators: MKL

GPUs:
> CUSP: Expand — Sort — Collapse
° Hierarchical: cuSPARSE, bhSparse [Liu 14]

s | Portable Sparse Matrix-Matrix Multiplication

Variety in architectures
> Tens/Hundreds/thousands of threads

> CPUs/lightweight-cores/streaming multi-processors
° Shared / high bandwidth / DDR memory

Native multi-threaded algorithms
° Fewer threads, more memory & more work per thread

GPU algorithms

° Thousands of threads, less memory & less work per thread

19 I Thread Mapping

Each team works on a bunch of rows of C (or A)

° Team: Thread block (GPU) group of hyper-threads in a core (CPU) ‘

Fach worker in team works on consecutive rows of C

> Worker: Warp (GPUs), hyperthread (CPU)

° More coalesced access on GPUs,

Team-2

° Better L1-cache usage on CPUs.

Each vectorlane in a worker works on a different multiplications within a row:
° Vectorlane: Threads in a Warp (GPUs), vector units (CPU)

thread-1 A B C |

thread-2

team-2

team-3

team-4

team-5

20 I Thread Mapping (continued)

Team-2

Team-2

‘Thread-2

Thread to rows of A

* No atomics needed
in data structures

Thread-2

« Load balancing
could be a problem

Team to row of B
 No atomics needed
* Load balancing

could be a problem
between teams

21 | Thread Mapping (continued)

Threads to rows of B

« Team level
synchronization
needed

« Load balancing
could be a problem

Teams to rows of A,

unroll all computation

to threads

« Team level
synchronization
needed

Kokkos allows exploring
different styles of
hierarchical parallelism

2 | Data Structures for SpGEMM

Two-level Hashmap Accumulator:

° 1%t level accumulator: GPUs shared memory or a small memory
that will fit in I.1 cache

o 20d Jevel goes to global memory

Memory Pool: Only some of the workers need 2°¢ level hash map.
They request memory from memory pool.

> Fixed size, fixed alignment

#pragma omp parallel
{
data_type *my_data = new data_type[n];
//1initialize my_data ---> 0(n)
//once 0(n) per thread
#pragma omp for
for (1 = 1...m){
//work on my_data ---> 0(k) and k << n
//re-initialize my_data ----> 0(Ck)
¥
hy

23 | Limitations of Accelerators require two phase SpGEMM

. Require: A representing the input mesh, b right handside vector
Size and structure of rows are B i shep

unknown at the beginning 2: for timestep € [0,n] do

.] 3 Xp < initial guess
> over-allocation: expensive 4 //nonlinear solve
. . i 5 for £k € [0,...] until Xp converges do
e dYﬁamlCﬂHy increase: not suitable to 6: AF + assemble_matrix (A, Xy) //linear matrix
1 //calculate residual
> Estimation methods: not cheaper 9 //solve problem - using multigrid
.) . 10: Ax, <+ solve(Ak, ')
than Calculatmg the actual size in i1 //update the solution
practice = Xe+1 ¢ Xk + Bx,,
Two-phase:

symbolic - calculate #nnz
then numeric - actual ﬂops

Repetitive multiplications for different numeric values with same symbolic
structure

24 | Kokkos Kernels Two phase SpGEMM

Doubles the amount of work performed
Symbolic phase: works on the symbolic structure — no floating values
performs unions on rows to find the structure/size of the output row
compression method to speedup first phase and reduce its memory requirements
Compression: Compress the rows of B: O(nnz(B)) using 2 integers.
Column Set Index (CSI): represents column set index
Column Set (CS): the bits represent the existence of a column
Advantages:
Symbolic complexity: O(FLOPS) -> on average ~O(avgdeg(A)x nnz(B))

roWIB‘7|8|9|10|33|34’35]36|37|

csl [o]1]

CS [1984 62
3/12345678910...31
LeJolele oo HNE— - - [
o[oJo]o]o]. - .[9]

How much memory we need 1s unknown

and overestimated as max row tlops

25 | Kokkos Kernels Two phase SpGEMM Performance

* Integration:
* Integrated into the Tpetra package of Trilinos and used by the multigrid solver MueLLU within a
distributed memory sparse matrix-matrix multiply
* Integration with several Exascale Computing Project applications (ExaWind, EMPIRE)
* Performance Profile — 82 different instances of SpGEMM
* Quicker and higher better. KNL DDR mode (left): KK-SpGEMM is the best for ~50 test instances,
within 1.5x of the best instance for all but 3 instances. GPU (right): KKSpGEMM and NSPARSE are
the two best methods.

80F e

~
o
T

@)}
o
T

ul
_ o

KKLP
KKMEM
cuSparse
KKSpGEMM |
NSPARSE
viennaCL

of test instances
of test instances

KKDENSE |
MKL-INS
MKL8

MKL7 | 108
KKSpGEMM

o _____________ ______________ ______________

1.0 15 20 25 30 35 40 45 5.0 10 15 20 25 30 35 40 45 50
Proximitv to the best performina method Proximity to the best performing method

26 | Kernel 3: Team Level BLAS in Kokkos Kernels

Common hierarchical-parallel pattern in Kokkos based applications
° paralle/_for over some entities (rows, elements, vertices, particles)
> BLAS/LAPACK call is team-level / serial call within the parallel_for with vectorization

° The device level loop i1s much larger than the BLAS call underneath. It is not one BLAS
call, 1t is a set of BLLAS calls and other operations together in a larger kernel.

> “Standard” Batched BLAS as proposed by the reference implementation introduces
synchronization and data movement for these use cases

> Kokkos Kernels provides BLAS / LAPACK functionality at the team-level / serial level

Some exceptions

> Machine learning use cases where a layer could be fully expressed and utilize the device
level concurrency

o “Standard” batched BLAS interface provides the required functionality here
> Kokkos Kernels can provide interfaces to vendor kernels and libraries like MAGMA

Kokkos Kernels provides team-level and serial BLAS / LAPACK functionality to
be used within a parallel application context.

27 | Kokkos Kernels interface to BLAS/LAPACK — Other considerations

Compact Layout

> Repack the matrices to be stored in compact layout for small matrix sizes in the

batch

° Use traditional layouts for large matrix sizes or based on architectures

° Purely a memory access issue

> Vectorized reads/writes

> Coalesced memory access on a GPU

> See work by Kokkos Kernels and Intel MKL team (SC’17) for the usefulness of
compact layout

> Also implemented 1n Intel MKL

Usage of different memory layouts based on problem sizes and architecture needs
is critical for performance

28 ‘ Application Use Case : Tridiagonal solvers

mxn {

preconditioning
Multiple degrees of

freedom per element
gives rise to tiny blocks

7\

Application characteristics
One dimension of the
mesh more important
than the others when

Algorithm 1: Reference impl. TriLU

————————

1 for Tin {7y, T1, - ,Tuxn—1} do in parallel
2 for r<Otok—2 do
3 A" := LU (A");

4 B :=L'B":

5 Cr.=CUu';
6

;i

8

9

Ty

AAr+1 = ér+1 . érér.
end
A= {L.U};
end

Block Jacobi preconditioner where each block is a
Tridiagonal matrix
Every scalar in the tridiagonal matrix is a small block
matrix

* Block sizes 5x5, 9x9, 15x15 etc
Typical number of diagonal blocks 512-1024
Key kernels needed DGEMM, LU, TRSM

It is important to define BLAS and LAPACK kernels within the parallel regions

29

Developing line solvers for a CFD code

Team Level BLLAS
Kernels

Different from
community developed
standards for Batched
BILAS at the device level
Proposed as part of the
community standard and
being developed as part
ot multiple
implementations

log2 scale & lower is faster

log, Time per Time Step [s]

Total Problem Solve

=l *“1‘/2'sec”” """""" —— s """""

T T T T . T
ol T N o e o o [ATS-1/HSW, 1 thread (FY19

: @ ATS-1/HSW, 1 thread
GPU improvement, W ATS-1/KNL, 8 threads (FY19

FY19 start to now: ~4x [ATS-1/KNL, 4 threads
. ; & ATS-2/V100 (FY19 start)

1
start) ||

start)

|V—V ATS-2/V100

T N T D G s S S
: : ; 1 : KNL: sl1ghtly faster than HSW,

owing to high

bandwidth memory

used by linear solves

_2_1/4sec R S o
-3 "'1’/8’sec‘ Per GPU performance: | W R | 6PU node-level performance:
| gqr;ggé[?;i;?gvoevre;slﬂvs/w current: ~8-12x over HSW
—4t-1/16 sec | i | : : 1 FY19 goal: >16x over HSW
4 1 ™ > ,\,‘o ,,)’1/ t
! 4 M ' Number of Compute Nodes or GPUs lJ
64 k
cells/[node|GPU] cells/[node|GPU]
-or- -or-
128k cells/MPI 2k cells/MPI rank @
rank @ 32 32 ranks/node
ranks/node

Optimized, vectorized implementation in Kokkos Kernels for Intel CPU, KNL and GPU

platforms

Line solvers based on compact kernels and integrated the compact BLAS based preconditioners

in CFD code

30

Kokkos Kernels Capabilities

Dense Linear Algebra
> Good coverage of BLAS + LAPACK
° Team level kernels — coverage based on application requirement
> Complex support
° Tuned for problem sizes

Sparse Linear Algebra
° Sparse matrix-vector multiplication, Sparse matrix-matrix multiplication,
° Sparse Triangular solves,
> Preconditioners — Gauss-Seidel Preconditioner, ILU(k) preconditioner

Graph Algorithms
* D-1 coloring, D-2 coloring
* Triangle Counting
Data Structures
* Hash Map, Memory Pool
* Team Level Sorting

Machine Learning Kernels
o 2D and 3D Convolutions

31 I Capabilities : BLAS

= abs(y,x)

= axpy(alpha,x,y)

= axpby(alpha,x,beta,y)
= dot(x,y)

= fill(x,alpha)

= mult(gamma,y,alpha,A x)
" nrm1(x)

" nrm2(X)

" nrm2w(X,w)

" nrminf(x)

" scal(y,alpha,x)

" sum(x)

= update(a,x,b,y,g,z)
"oemv(t,alph,A,x,bet,y)

ylil = [x[]
y[1] += alpha * x][i]

] = beta * y + alpha * x][i]
dot = SUM_i (x[i] *y[i])
x[i] = alpha

<

y[i] = gamma * y[1] + alpha * A[1] * x[i]
nrml = SUM_1(|x[1]]|)

nrm2 = sqrt (SUM_1(|x[i]| * |x[]]]))
nrm2w = sqrt (SUM_i((|x[i]|/|w[i]|)"2))
nrminf = MAX_i(|x[1]])

y[1]] = alpha * x[i]

sum = SUM_1(x[1])

ylil =g*yli]l +b*yli] +a*x[]

ylil = bet*y[i] + alph*SUM_j(A[Lj*x[j])

=oemm(tA,tB,alph,A,B,bet,C) C[i,j]=bet*Cl[ij]+alph*SUM_k(A[i,k]*B[kj])

32 | KokkosKernels Interface

1. KokkosKernels BILAS functions

> Convert from hierarchical parallel execution to
using BLAS functions

° tmp = A*x (extra view, holds gemv results)

° result = <y,tmp>

2. KokkosKernels team-based
BLAS function

> Same as hierarchical parallel execution

o Call team-based dot within each team to
perform <AfteamId,:],x>

result = KokkosBlas: :dot(x,y)

performs result = SUM 1i(y[i]*x[i])

KokkosBlas: :gemv (“*N” ,alpha,A,x,beta,y)

performs matrix-vector multiplication
y[i] = beta*y[i] + alpha*SUM j(A[i,J]1*x[]J])

KokkosBlas: :Experimental: :dot (teamld, x,y)

performs result = SUM 1i(y[i]*x[1i]) within each thread team

33 | KokkosKernels Interface : Conjugate Gradient Solver

* Exercise can be found as part of the Kokkos
Tutorials

* Goal: implement conjugate gradient solver
for square, symmetric, positive-definite sparse
matrix

* Details: A*x=b
* b is Nxl

* A 1s NxN symmetric, positive-definite sparse
matrix

* x1s Nx1
e L.ook for comments labeled with “EXERCISE”

e Use KokkosKernels BILAS and KokkosKernels
Sparse BLAS

r():b—A*XO
Po = To
k=20

while ||ry|| > € and k<N
I * Ty

aXa=———
T
Pk * A * Py
Xp+1 = X T a * Py

Tkyp =T —axAxpy

T
g = Trt1 * Tkt
Iy * Ty

Pr+1 = Ti+1 + B *Pi
k=k+1

34 I KokkosKernels Interface : Conjugate Gradient Solver

KokkosKernels Functions

° Sparse matrix generation is

provided

> Compile and run on OpenMP,
CUDA backends

° Vary problem size: -N #

> Compare performance of CPU vs

GPU

result = KokkosBlas: :dot(x,y)

performs result = SUM 1i(y[i]*x[i])

KokkosBlas: :axpy (alpha,x,y)

performs y[i] = y[i] + alpha*x[i]

KokkosBlas: :axpby (alpha,x,beta,y)

performs y[i] = beta*y[i] + alpha*x[i]

KokkosSparse: : spmv (“*N” ,alpha,A,x,beta,y)

performs sparse matrix-vector multiplication
y[i] = beta*y[i] + alpha*SUM j(A[i,Jj]1*x[]J])

35 | Collaborations with Vendors

NVDIA

° Summit on Summit meetings

[e]

Biweekly work stream meetings to guide NVIDIAs math libraries plans

[e]

DOE wide effort, Kokkos Kernels requirements prioritized along with other labs

[e]

Kernel requirements prioritized by application needs and milestones

> Long history of interaction as part of COE

AMD

° Just started the interactions on sparse, dense, batched linear algebra kernels, and sparse solvers
> Kokkos backend under-development

> Kokkos Kernels will be the performance test case

Intel
> Long history of interaction as part of COE, Aurora plans
> Kokkos backend under development
> Kokkos Kernels will be the performance test case

ARM

> Working with the math libraries team both on algorithms and prioritization

Kokkos Kernels team working with hardware vendors to support application needs
on current and exascale platforms

36 I Collaborations with ECP Applications

SPARC: state-of-the-art hypersonic unsteady hybrid structured/unstructured finite volume CFD code
> High performance line solvers; batched BLAS on CPUs and GPUs

> Performance-portable programming models

EMPIRE: next-gen unstructured-mesh FEM PIC/multifluid plasma simulation code
° Scalable solvers for electrostatic and electromagnetic systems for Trinity and Sierra architectures
> Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods
> Performance-portable programming models

> Non-linear solvers, discretization, and automatic differentiation approaches

Exawind: next-gen wind simulation code
> Scalable solvers for Trinity and Sierra architectures
> Thread-scalable, performance-portable, on-node linear algebra kernels to support multigrid methods
> Performance-portable programming models
QMCPACK: Electronic structure code with Quantum Monte Carlo Algorithms
° Team level BLAS and LAPACK within the Kokkos ecssytem

Kokkos Kernels integrated into several applications in an agile manner at all stages from
understanding requirements, designing kernels and integrating them.

Rules of Thumb for library based approach to accelerator programming
37 I with performance portability

Identify performance critical kernels
° Call library based option when possible

> Allows library developers and optimize the kernels to the best extent possibl

Develop portable algorithms when library based option not available
> Use a portable programming model or directive based approach
> Use architecture independent abstractions

° Pay attention to memory layouts, hierarchical parallelism, synchronization costs

Use team level data structures and linear algebra kernels when possible

> Optimize performance at all the hierarchical levels

