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2 | Integrating multiple efforts

Motivation: crash and impact environments (abnormal mechanical)
° In the spirit of safety we consider drop/crush/impact and pressurization
> BEvery scenario requires ductile failure modeling

> Bxplicit dynamics simulations with lots of technical complexity: Preload, Contact, Large deformation, Local
temperature rise, Fracture/Failure

Objectives and Principles

> Improve ductile failure capability for system model analysis
> Materials, environments, examples, benchmarks (Qols)
> Focus on structural alloys SS304L, Al6061-T6

> Make data informed decisions
> Generate experimental discovery and characterization data for relevant alloys
> Probe numerical techniques and study applicability to system analyses

> Improve our fundamental understanding
> Probe failure surface of relevant alloys comprehensively in terms of rate, temperature, and stress state

> Develop tools to decipher and understand system response in nuclear safety scenarios

Operations

° Integrate a collection of projects spanning multiple programs to develop understanding and deliver tools for
system analysis



Research driven by Sandia’s mission

Material: stainless steel 304L-VAR
> Vacuum Arc Remelting (VAR) typically minimizes anisotropy
> Hardens tremendously, high ductility
° Sensitive to strain rate and sensitive to temperature changes

> Produces temperature changes at even moderate strain rates

@1.100+.005G

Material: aluminum 6061-T6 SS 304L-VAR Bar
° System aluminum parts produced by first forging to net shape with heat treatment, then final machining
> Process is expected to produce preferential gran flow leading to mechanical anisotropy
> Not nearly as ductile as 304L-VAR, sensitive to defect structures from manufacturing process

o Less sensitive to strain rate at moderate strains (< 1000/sec)

o

Higher thermal conductivity leads to less local temperature production from plastic work

Environment (abnormal mechanical)
° Primarily of interest are crash or drop safety scenarios

o

Crush and large deformation from impact loading at various velocities
° Temperature, initially at room

Strain rate up to 1000-10000 / sec

Multiaxial stress states

(e]

(e]

Al 6061-T6 Plate Stock




Current ductile failure capabilities in abnormal mechanical environments

Solid mechanics simulations of impact or crash scenarios
> Explicit transient dynamics capability in SIERRA/SM

Ductile constitutive model

° Typically isotropic ]2 plasticity with nonlinear hardening, possibly rate and/or
temperature dependence

° Pursuing modular rate and temperature dependent anisotropic plasticity

o Pursuing calibration methods applicable to a broad class of models and data sets

Failure model
o 'Typically a local measure of material damage or criteria

° Pursuing more advances theories and implementations of ductile failure
methodologies

Regularization method

> Typically none — lack of regularization leads to grid dependent results, lack of
confidence and rigor

o Pursuing phase field fracture and nonlocal regularization applicable for explicit
transient dynamics

Surface Creation method ) .
+ Typically element death | deletion |erosion SFC2 — Ti-6Al-4V lessons learned included the

J, surface Hill surface ‘
° Working towards XFEM | GFEM | remeshing (out of scope) need for anisotropic viscoplasticity & temperature |



Current ductile failure capabilities in abnormal mechanical environments

Solid mechanics simulations of impact or crash scenarios
> Explicit transient dynamics capability in SIERRA/SM

Ductile constitutive model

o Typically isotropic ]2 plasticity with nonlinear hardening, possibly rate and/or
temperature dependence

° Pursuing modular rate and temperature dependent anisotropic plasticity

o Pursuing calibration methods applicable to a broad class of models and data sets

Failure model
° Typically a local measure of material damage or criteria

° Pursuing more advances theories and implementations of ductile failure
methodologies

Regularization method

> Typically none — lack of regularization leads to grid dependent results, lack of
confidence and rigor

° Pursuing phase field fracture and nonlocal regularization applicable for explicit
transient dynamics

Surface Creation method
o Typically element death | deletion | erosion
> Working towards XFEM | GFEM | remeshing (out of scope)
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6 I Activities

Contributions

° Ductile Failure looking a regularization strategies and integrated project oversight
° Constitutive model development for modular plasticity

> Damage model development for anisotropy

(o]

Calibration tool development (MatCal)

O

Exploration of ductile failure in shear environments

o

Code development and implementation into production analysis code SIERRA/SM

> BExperimental support for Ductile Failure characterization and validation data

Operations
° Ductile Failure Working Group meetings held quarterly
° Ductile Failure Advisory Panel meeting held occasionally

° Leveraging the Sandia Fracture Challenges and teams



7 1 Activities

Contributions

° Ductile Failure looking a regularization strategies and integrated project oversight - Talamini

o Constitutive model development for modular plasticity - Scherzinger

(e]

(o]

Calibration tool development (MatCal)

(e]

Exploration of ductile failure in shear environments - Corona

o

Experimental support for Ductile Failure characterization and validation data - Jin

Operations

o
o

(e]



g8 I Technical highlights — Experimental Characterization
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Mechanical characterization of SS3041.-VAR and ALL6061-T6
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Objective: generate a body of characterization data, deliver modelers and analysts
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9 | Technical highlights — Modular Plasticity
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A family of yield surfaces implemented in LAME provides the basis for a flexible modeling of plastic deformation
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10 I Technical highlights — Modular Plasticity

Hundreds of analytical, automated tests
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11 | Technical highlights — Calibration
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12 | Technical highlights — Shear Failure

Exploration of material behavior in low triaxiality, or shear dominated environments
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13 I Technical highlights — Phase Field Regularization
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Phase field fracture methodology, as implemented in What can we say about R-curve behavior?
SIERRA/SM, a promising mesh independent failure capability
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14 | Technical highlights — Nonlocal Regularization
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15 I Conclusions and Future Work

Ductile Failure is a challenging and important research topic for the mechanics communities
> Alloys exhibit a broad range of behaviors

° Physical mechanisms governing plasticity and failure vary by material system
° Physical mechanisms governing plasticity and failure vary by environment (rate, temperature, stress state)

> Modeling and simulation with targeted discovery, characterization, and validation experiments can help us
increase our understanding of the dominant physical mechanisms for a given application

Next steps

° Constitutive modeling — anisotropic hardening, integration and implementation improvements, how to
partition energy in storage and dissipation during large inelastic deformation

° Failure modeling — anisotropic failure, how does this fit into the phase field and nonlocal approaches

° Experiments — development of techniques to extract more information from experiments via surface (DIC)
or volume (DVC) measurements, also how to get more value from current testing techniques and diagnostics

> Numerical methods — how to generally introduce adaptivity to modify meshes in front of, and also behind,
crack fronts, local remeshing/entichment
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