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2 I Integrating multiple efforts

Motivation: crash and impact environments (abnormal mechanical)
In the spirit of safety we consider drop/crush/impact and pressurization

- Every scenario requires ductile failure modeling

o Explicit dynamics simulations with lots of technical complexity: Preload, Contact, Large deformation, Local
temperature rise, Fracture/Failure

Objectives and Principles
O Improve ductile failure capability for system model analysis
. Materials, environments, examples, benchmarks (QoIs)

. Focus on structural alloys SS304L, A16061-T6

o Make data informed decisions
. Generate experimental discovery and characterization data for relevant alloys
. Probe numerical techniques and study applicability to system analyses

o Improve our fundamental understanding
. Probe failure surface of relevant alloys comprehensively in terms of rate, temperature, and stress state

. Develop tools to decipher and understand system response in nuclear safety scenarios

Operations
O Integrate a collection of projects spanning multiple programs to develop understanding and deliver tools for
system analysis



3 I Research driven by Sandia's mission

Material: stainless steel 304L-VAR
• Vacuum Arc Remelting (VAR) typically minimizes anisotropy

• Hardens tremendously, high ductility

• Sensitive to strain rate and sensitive to temperature changes

• Produces temperature changes at even moderate strain rates

Material: aluminum 6061-T6
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• System aluminum parts produced by first forging to net shape with heat treatment, then final machining

• Process is expected to produce preferential gran flow leading to mechanical anisotropy

Not nearly as ductile as 304L-VAR, sensitive to defect structures from manufacturing process

Less sensitive to strain rate at moderate strains (< 1000/sec)

Higher thermal conductivity leads to less local temperature production from plastic work

Environment (abnormal mechanical)
• Primarily of interest are crash or drop safety scenarios

• Crush and large deformation from impact loading at various velocities

• Temperature, initially at room

• Strain rate up to 1000-10000 / sec

• Multiaxial stress states
Al 6061-T6 Plate Stock

•



4 Current ductile failure capabilities in abnormal mechanical environments

Solid mechanics simulations of impact or crash scenarios
Explicit transient dynamics capability in SIERRA/SM

Ductile constitutive model
o Typically isotropic J2 plasticity with nonlinear hardening, possibly rate and/or

temperature dependence

o Pursuing modular rate and temperature dependent anisotropic plasticity

o Pursuing calibration methods applicable to a broad class of models and data sets

Failure model
o Typically a local measure of material damage or criteria

o Pursuing more advances theories and implementations of ductile failure
methodologies

Regularization method
o Typically none — lack of regularization leads to grid dependent results, lack of

confidence and rigor

o Pursuing phase field fracture and nonlocal regularization applicable for explicit
transient dynamics

Surface Creation method
o Typically element death deletion erosion

o Working towards XFEM GFEM remeshing (out of scope)

J2 surface Hill surface

SFC2 — Ti-6A1-4V lessons learned included the

need for anisotropic viscoplasticity & temperature

1
1



5 Current ductile failure capabilities in abnormal mechanical environments

Eyy at crack initiation
Solid mechanics simulations of impact or crash scenarios 2 4e-01

Explicit transient dynamics capability in SIERRA/SM 0.2

Ductile constitutive model 0.15

• Typically isotropic J2 plasticity with nonlinear hardening, possibly rate and/or
temperature dependence

o

0.05o Pursuing modular rate and temperature dependent anisotropic plasticity

o Pursuing calibration methods applicable to a broad class of models and data sets Oe+00

Failure model
o Typically a local measure of material damage or criteria

o Pursuing more advances theories and implementations of ductile failure
methodologies

Regularization method
o Typically none — lack of regularization leads to grid dependent results, lack of

confidence and rigor

o Pursuing phase field fracture and nonlocal regularization applicable for explicit
transient dynamics

Surface Creation method
o Typically element death deletion erosion

• Working towards XFEM GFEM remeshing (out of scope)

€Y Y
4.0e-01

0.3

0.2

0.1

0.Oe+0O

Exp All

at failure

SFC3 — AM SS 316L lessons learned include

value in geometry, ICs, modularity



6 Activities

Contributions

Ductile Failure looking a regularization strategies and integrated project oversight

o Constitutive model development for modular plasticity

o Damage model development for anisotropy

o Calibration tool development (MatCal)

Exploration of ductile failure in shear environments

Code development and implementation into production analysis code SIERRA/SM

Experimental support for Ductile Failure characterization and validation data

Operations

Ductile Failure Working Group meetings held quarterly

Ductile Failure Advisory Panel meeting held occasionally

c) Leveraging the Sandia Fracture Challenges and teams



7 Activities

Contributions

Ductile Failure looking a regularization strategies and integrated project oversight - Talamini

° Constitutive model development for modular plasticity - Scherzinger

Calibration tool development (MatCal)

Exploration of ductile failure in shear environments - Corona

Experimental support for Ductile Failure characterization and validation data - Jin

Operations

•
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8 Technical highlights — Experimental Characterization
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Objective: generate a body of characterization data, deliver modelers and analysts



9 I Technical highlights — Modular Plasticity
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10 I Technical highlights — Modular Plasticity

Hundreds of analytical, automated tests
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I11 Technical highlights — Calibration
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12 I Technical highlights — Shear Failure

Exploration of material behavior in low triaxiality, or shear dominated environments
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13 Technical highlights - Phase Field Regularization
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14 1 Technical highlights — Nonlocal Regularization

•
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Nonlocal average of a local state variable, such as damage

Comparison here to phase field approach for verification



1 5 Conclusions and Future Work

Ductile Failure is a challenging and important research topic for the mechanics communities
o Alloys exhibit a broad range of behaviors

o Physical mechanisms governing plasticity and failure vary by material system

o Physical mechanisms governing plasticity and failure vary by environment (rate, temperature, stress state)

o Modeling and simulation with targeted discovery, characterization, and validation experiments can help us
increase our understanding of the dominant physical mechanisms for a given application

Next steps

o Constitutive modeling — anisotropic hardening, integration and implementation improvements, how to
partition energy in storage and dissipation during large inelastic deformation

o Failure modeling — anisotropic failure, how does this fit into the phase field and nonlocal approaches

o Experiments — development of techniques to extract more information from experiments via surface (DIC)
or volume (DVC) measurements, also how to get more value from current testing techniques and diagnostics

o Numerical methods — how to generally introduce adaptivity to modify meshes in front of, and also behind,
crack fronts, local remeshing/enrichment



Thank you for your attention!
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