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1 Overview
3

• What is MagLIF?

• How does the magneto Rayleigh-Taylor instability I
affect the Lawson criterion "P-tau" ?

• How do helical instabilities affect "P-tau" ?



I MagLIF is our magnetically driven inertial confinement
fusion concept at Sandia I

MagLIF = Magnetized Liner Inertial Fusion

• Magnetic fields inhibit thermal conduction losses to the cold liner and trap
alpha particles

• Relaxes areal density requirements of traditional ICF

We accomplish this in three stages:

Magnetization Preheat Implosion
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I The implosion stage is susceptible to the magneto
5 Rayleigh-Taylor (MRT) instability

Without Bz
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McBride et al., Physics of Awe et al., Physics of Plasmas

Plasmas 20, 056309 (2013) 21, 056303 (2014) experiments

Bz = 7 T

• MRT deforms the inner liner surface, can increase liner/fuel mix, and
reduces the inertial confinement time

• These experiments used empty liners (no back-pressure), making it unclear
exactly how MRT affects inertial confinement

How do instabilities affect the Lawson criterion "P-tau" ?



6 I We designed a platform to directly investigate the inertial
confinement time for magnetically driven implosions

Use 12-MA from Z Machine to implode a beryllium liner filled with cryogenic
deuterium 4 generate high pressure, low temperature stagnation

5 mm

anode
cathode

liquid deuterium fill

Knapp et al., Physics of Plasmas 24, 042708 (2017)

-This platform

rI 10 g/cc I

T 10 eV

P

CR

—100 Mbar

8

0.3 g/cc

> 3 keV

> 600 Mbar

—35

Using a low temperature removes the complexities of a fusion producing

system 4 we measure the hydrodynamic confinement time

The initial target had no axial B field and was designed to stagnate in —1D at

a low convergence for detailed comparison with 1D and 2D simulations



I Stagnation conditions are determined by a converging
shock in the deuterium

• Shock reflects off axis and strikes
liner, initiating deceleration

• Liner continues to compress
deuterium to —100 Mbar

• Velocimetry measurements of the
shock and liner trajectories agree
with 1D simulations

Outer Liner

ALRadius

Inner Liner

Radius

1
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Disagreements with simulations begin during the stagnation
phase, which will be the focus of this talk
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9 I Radiographs show stagnation and disassembly of high
pressure deuterium
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A few notable features
• We only register beryllium, deuterium appears "invisible" due to low opacity
• Azimuthally symmetric MRT spikes and bubbles
• No significant deceleration instabilities (Atwood # - 0.1, reduces RT growth rate)



10 I Pressure history and confinement time are determined
using the liner trajectory
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The liner disassembles faster than the simulations predict,

indicating a reduced confinement time

3150

The pressure history is determined by the liner trajectory. Assuming the

deuterium is adiabatically compressed during stagnation:

• Pfuel = Pshock • [CRP/ R(t)-2Y • y = 4/3 (adiabatic index)

The experimental pressure is lower due to a
reduction in the liner convergence



11 I Pressure history and confinement time are determined
using the liner trajectory
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The confinement time is defined as time over which pressure is —constant

P (t) > 0 .85 • Pmax

3150

Both the pressure and confinement time are reduced, reducing the overall P-tau

P = 85 MBar (sim.)

P = 72 MBar (exp.) tt T = 16 ns (sim.)

= 14 ns (exp.)
25% reduction in P-tau

(the 85% metric is arbitrary, but does not change the percent reduction in P-tau)



12 I The MRT instability is more developed in experiments
compared to the simulations I
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• MRT was seeded using experimental surface roughness of liner (-100 nm RMS)

Simulations under-predict 

• MRT amplitude on outside of liner

• Feedthrough to inside of liner

• Instability wavelength

l>.

Simulations over-predict 

• Deuterium pressure

• Inertial confinement time
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I MRT redistributes mass to reduce liner areal density in
13 "bubbles"
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The liner becomes a less effective tamper in the bubble regions

• The reduced mass increases outward acceleration for a given
fuel pressure

• This prematurely expands the fuel, decreasing pressure and
confinement time



I MRT redistributes mass to reduce liner areal density in
14 "bubble s"

Regions of reduced areal density cannot tamp
high pressure fuel

• Inflection in inner liner radius indicates
fuel is "drilling" through liner

• Could eventually puncture liner, providing

an addition mechanism for relieving fuel
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Similar to Springer's "aneurysms" in NIF capsules, Radial Position [rnm]
see Nucl. Fusion 59, 032009 (2019)



I Our second campaign investigated the effects of an
axial magnetic field and increased current

Our first campaign with Bz = 0 demonstrated
P-tau was reduced by 25% due to the azimuthally
symmetric MRT instability

MagLIF requires an axial magnetic field, which
shifts the instability to a helical mode

• No longer azimuthally symmetric MRT

How does this affect P-tau?

To investigate this, we added an axial magnetic
field and increased the target current
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I We obtained radiographs during the implosion,
stagnation, and disassembly stages
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During the implosion, helically oriented structures develop on the outside of
the liner
• The pitch angle of these is not the same on the "front" and "back" sides of

the liner!
• The pitch angle increases as the liner implodes, indicating the structures

are "locked-in"

During stagnation, a long-wavelength kink instability (A. 2.3 mm) forms prior

to disassembly



I Preliminary analysis shows the kink-mode degrades
the confinement time

Inner liner radius gives us an
estimate of the pressure history

Using the 85% metric,
comparison with simulations
show:

P (t) > 0.85 • Pmax

T = 4.5 ns (sim. )
T = 3.4 ns (exp. )

—25% reduction in tau

—40% reduction in P-tau
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Reduction in P-tau is very similar to lower current,
non axially magnetized case



18 1 Summary and future work
We have directly demonstrated the link between the MRT instability and
degradation of P-tau:

Axial Field &

Peak Current

Decrease in tau 15% 25%

Decrease in P-tau 25% 40%

We have one more shot to complete the magnetized dataset

Nine additional experiments will scale the un-magnetized target from

12 MA to 21 MA to understand how the degradation of P-tau scales at larger
currents
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unclear
2

I The origin of the long-wavelength kink mode remains
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formed during stagnation
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1 Simulations under-predict the shock speed in the liner
• Shock speed measured using radial

location of shock identified in

radiography

• Agrees for early part of stagnation,

but disagrees during disassembly

• How does this affect confinement

time?
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This could indicate discrepancies

in the EOS, or be a symptom of

mass re-distribution from MRT
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1 How does this platform compare to MagLIF?
This platform

Peak Current

Preheat

Axial Field

12 MA

No

No*

Fuel density 10 g/cc

Fuel temperature 10 eV

Fuel pressure —100 MBar

Convergence Ratio 8

16+ MA

yes

10+ T

0.3 g/cc

—3 keV

—0.6 GBar

35+

This target was designed to stagnate at large radii for clear
radiographic diagnosis of the stagnation and disassembly process

*Preliminary results with an axial magnetic field will be presented
22




