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Overview
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* What is MagLIF?

* How does the magneto Rayleigh-Taylor instability
affect the Lawson criterion “P-tau” ?

* How do helical instabilities affect “P-tau” ?




MagLIF is our magnetically driven inertial confinement
fusion concept at Sandia

MagLIF = Magnetized Liner Inertial Fusion

* Magnetic fields inhibit thermal conduction losses to the cold liner and trap
alpha particles

* Relaxes areal density requirements of traditional ICF

We accomplish this in three stages:

Magnetization Preheat Implosion Stagnation




The implosion stage is susceptible to the magneto
Rayleigh-Taylor (MRT) instability

Without Bz Bz=7T
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K. 4 0 1 2 -1 0 1
McBride et al., Physics of Awe et al., Physics of Plasmas
Plasmas 20, 056309 (2013) 21, 056303 (2014) experiments

 MRT deforms the inner liner surface, can increase liner/fuel mix, and
reduces the inertial confinement time

* These experiments used empty liners (no back-pressure), making it unclear
exactly how MRT affects inertial confinement

How do instabilities affect the Lawson criterion “P-tau” ?




‘ We designed a platform to directly investigate the inertial
confinement time for magnetically driven implosions |

Use 12-MA from Z Machine to implode a beryllium liner filled with cryogenic
deuterium - generate high pressure, low temperature stagnation

- This platform MaglLIF

liquid deuterium fill o) 10 g/cc 0.3 g/cc
T 10 eV > 3 keV
P ~100 Mbar > 600 Mbar
CR 8 ~35 |
Knapp et al., Physics of Plasmas 24, 042708 (2017)
Using a low temperature removes the complexities of a fusion producing
system = we measure the hydrodynamic confinement time |
The initial target had no axial B field and was designed to stagnate in ~1D at ‘

a low convergence for detailed comparison with 1D and 2D simulations



Stagnation conditions are determined by a converging
shock in the deuterium
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Disagreements with simulations begin during the stagnation
phase, which will be the focus of this talk
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Disagreements with simulations begin during the stagnation
phase, which will be the focus of this talk




‘ Radiographs show stagnation and disassembly of high

pressure deuterium
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A few notable features

* We only register beryllium, deuterium appears “invisible” due to low opacity

Radial Distance [mm]

* Azimuthally symmetric MRT spikes and bubbles
No significant deceleration instabilities (Atwood # ~ 0.1, reduces RT growth rate)

Radial Distance [mm]




Pressure history and confinement time are determined
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The liner disassembles faster than the simulations predict,
indicating a reduced confinement time

The pressure history is determined by the liner trajectory. Assuming the
deuterium is adiabatically compressed during stagnation:

® Pryel = Pshock * [CR]?Y ~ R(t)™2Y ey =4/3 (adiabatic index)

The experimental pressure is lower due to a
reduction in the liner convergence




Pressure history and confinement time are determined
usmg the liner trajectory
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The confinement time is defined as time over which pressure is ~constant

P(t) > 0.85 - Pyoy

Both the pressure and confinement time are reduced, reducing the overall P-tau

P = 85 MBar (sim.) T=16ns (sim.) | mmm . -
P = 72 MBar (exp.) & r=14ns (exp.) | == 25% reduction in P-tau

(the 85% metric is arbitrary, but does not change the percent reduction in P-tau)



The MRT instability is more developed in experiments
compared to the simulations
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 MRT was seeded using experimental surface roughness of liner (~100 nm RMS)

Simulations under-predict Simulations over-predict

 MRT amplitude on outside of liner
« Feedthrough to inside of liner —
* Instability wavelength

* Deuterium pressure
* |nertial confinement time




MRT redistributes mass to reduce liner areal density in
“bubbles”
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3110 3115 3120 3125 3130 3135 3140
time [ns]
The liner becomes a less effective tamper in the bubble regions

* The reduced mass increases outward acceleration for a given
fuel pressure

* This prematurely expands the fuel, decreasing pressure and
confinement time




MRT redistributes mass to reduce liner areal density in
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“bubbles”
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Regions of reduced areal density cannot tamp  —
high pressure fuel 5
* Inflection in inner liner radius indicates
fuel is “drilling” through liner
* Could eventually puncture liner, providing
an addition mechanism for relieving fuel

pressure

Similar to Springer’s “aneurysms” in NIF capsules,
see Nucl. Fusion 59, 032009 (2019)
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Our second campaign investigated the effects of an
axial magnetic field and increased current
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Our first campaign with Bz = 0 demonstrated
P-tau was reduced by 25% due to the azimuthally
symmetric MRT instability

MagLIF requires an axial magnetic field, which
shifts the instability to a helical mode

* No longer azimuthally symmetric MRT

How does this affect P-tau?

Axial Position [mm]

To investigate this, we added an axial magnetic
field and increased the target current

- 1st Campaign | 2"d Campaign

B, ¢ oT 7T
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Current 12 MA 16 MA Transverse Position [mm]




‘ We obtained radiographs during the implosion, —
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During the implosion, helically oriented structures develop on the outside of

the liner

* The pitch angle of these is not the same on the “front” and “back” sides of

the liner!

* The pitch angle increases as the liner implodes, indicating the structures
are “locked-in”

During stagnation, a long-wavelength kink instability (A ~ 2.3 mm) forms prior

to disassembly
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Preliminary analysis shows the kink-mode degrades

" the confinement time

Inner liner radius gives us an
estimate of the pressure history

Using the 85% metric,
comparison with simulations
show:

P(t) > 0.85- Py

T = 4.5 ns (sim.)
T = 3.4 ns (exp.)

~25% reduction in tau
~40% reduction in P-tau
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Reduction in P-tau is very similar to lower current,
non axially magnetized case




‘ Summary and future work

We have directly demonstrated the link between the MRT instability and
degradation of P-tau:

Axial Field & oT 7T
Peak Current 12 MA 16 MA

Decrease in tau 15% 25%

Decrease in P-tau 25% 40%

We have one more shot to complete the magnetized dataset

Nine additional experiments will scale the un-magnetized target from

12 MA to 21 MA to understand how the degradation of P-tau scales at larger
currents







The origin of the long-wavelength kink mode remains
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unclear
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There is a small peak near the 2.3 mm kink
wavelength: ~1/100% of amplitude

However, the total FOV is “4 mm, so care
must be taken when interpreting >2 mm
peaks

The long-wavelength kink mode is likely
formed during stagnation
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Simulations under-predict the shock speed in the liner

.!:.f.";

location of shock identified in
radiography
but disagrees during disassembly

* How does this affect confinement
time?
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Shock speed measured using radial

Agrees for early part of stagnation,

SM

@

This could indicate discrepancies
in the EQS, or be a symptom of
mass re-distribution from MRT
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How does this platform compare to MagLIF?

Peak Current 12 MA 16+ MA
Preheat No yes

Axial Field No* 10+ T
Fuel density 10 g/cc 0.3 g/cc
Fuel temperature 10 eV ~3 keV
Fuel pressure ~100 MBar ~0.6 GBar
Convergence Ratio 8 35+

This target was designed to stagnate at large radii for clear
radiographic diagnosis of the stagnation and disassembly process

*Preliminary results with an axial magnetic field will be presented
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