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Introduction

Syntactic foams, Damage mechanisms, and GMB
Interactions



Mechanics of Syntactic Foam
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Stress-strain behavior is
defined by damage to GMBs
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Role of GMB interactions

GMBs are irregularly distributed XCT cross-section:

e — — o L -
Ty -

What does that mean for the
damage mechanisms?

What are implications of:

* Volume fraction (long-range
interactions)?

 GMB clustering (short-range
interactions)?
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Research Motivation

What is the role of global and local GMB density
on the damage micromechanics?

¢ = 0.1 ¢ =0.2

a Nnerghbor =1 b Nnngbbor =5
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Research Outline

1. Finite element study of GMB clustering

2. Statistical analysis of in situ XCT damage
measurements
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FE study of GMB
clustering



Role of GMB interactions

GMB thought experiment:
Sparsely-packed GMBs Closely-packed GMBs
BEREEER BEEEEER

tt11 ttt1
Which GMBs have higher stress?
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Role of GMB interactions

GMB thought experiment:
Sparsely-packed GMBs Closely-packed GMBs
BEREEER BEEEEER

t1tt

What happens after one GMB
collapses?

t1 1t
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Model development

RN

FE model to address:

« Spacing between
GMBs

o Stress redistribution
after fracture

* Cluster orientation

210

(edw) ssa13S

13
Croom - 2019.11.14 Croom, Comp Sci Tech, 2019



GMB stress distribution

Intact Damaged
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GMB stress distribution
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GMB stress distribution

Intact Damaged
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Summary of FE results

* Particle clustering strongly influences GMB
stress:
 Stress is higher for closely-spaced GMBs

« Significant stress redistribution around damaged
GMBs

* |In some cases... can increase stress on adjacent GMBS!
« Significant influence of cluster orientation
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XCT analysis of short-
and long-range GMB
Interactions

Analysis of ¢ and Ny.ignpor
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In situ XCT experiments

_ _ In situ X-ray
Compression experiments Computed
performed on four volume Tomography
fractions: QD

¢ = 0.10,0.2,0.37,0.46 . . I
X-ray
Source Sample Detector
Specimens
imaged at two
resolutions:

2 mm

500 pum
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Low
resolution XCT
images

High
resolution XCT
images
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Analysis framework

DVC
displacement
measurement
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Initial GMB
arrangement
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GMB damage
measurements

\

GMB tracking
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Statistical
damage
modeling
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Effects of Volume Fraction

Macroscopic damage response:
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Effects of Volume Fraction

Damage measurement:
¢ = 0.10
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Effects of Volume Fraction

Damage measurement:
¢ = 0.10
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Effects of Volume Fraction

Damage measurement:
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Effects of Volume Fraction

Damage measurement:
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Effects of Nyeignpor

Counts (Normalized)

0 5 10 15 20
N neighbors

Irregular GMB arrangement leads to
variation in Nycignpor

* Can isolate effects of ¢ vs Nyeignpor
on damage

Croom - 2019.11.14 Croom, Composites Part B, 2019



Effects of Nyeignpor
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Effects of Nyeignpor
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Decreasing survival at large Nyeignpor
* Consistent across VF
* Negligible change for Nyeignpor > 10
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Summary for XCT experiments

Volume fraction ¢ and N,,.;snpor have similar
effects:

» Large ¢ = damage occurs at smaller strain, clustered
damage in tightly-packed regions

* Large Nyeignpor = decreased pgyrpivai

However:

« Damage still occurs faster at higher ¢ for same
Nneighbor

* Npeignbor 1S €specially important at low ¢
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Conclusions



Conclusions

In situ XCT experiments reveal the effects of
volume fraction and GMB clustering

« Multiscale XCT + DVC analysis enables tracking of
individual GMBs

* Large ¢ and N, npor have similar effects (accelerated
GMB collapse), but both are needed to predict failure

« GMB clustering / agglomeration has strong implications
for mechanical response of syntactic foams
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