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Introduction
On the competition between Orowan Alternating Slip
(OAS) and microvoid coalescence
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Orowan Alternating Slip (OAS)

OAS operates by conjugate slip
at corners of a prismatic cavity

• Occurs in pure metals and
some alloys

Outstanding questions:

1. How does OAS initiate?

2. What is relationship /
competition with other
damage mechanisms?

7
Orowan 1949
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Orowan Alternating Slip (OAS)

The only interrupted in situ experiments in the literature:

OFHC Copper (99.94%) Al 5754
Ghahremaninezhad, IJSS 2011 Spencer, Mat Sci Eng A 2002

lnterru

separa

catastr

99.9% Ni (also 99.9% Cu)
Noell, Acta Mat 2018

Ghahremaninezhad, IJSS 2011:
"A single cavity is nucleated at the center of the necked region" 4
No microvoid nucleation / growth / coalescence!
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Orowan Alternating Slip (OAS)

How to explain fracture surfaces?

OFHC Copper (99.94%) Al 5754

Ghahremaninezhad, IJSS 2011 Spencer, Mat Sci Eng A 2002

Extensive coalescence / dimpled surface prior to
transition to OAS
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OAS vs. Void Coalescence

99.9% Cu (NoeII Acta Mat 2018)
c = 0.85 £ = 1 .2

Detailed examination of the deformation process
identifies activity of multiple damage mechanisms
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OAS vs. Void Coalescence

What controls the transition from coalescence to OAS?

Void
Nucleation

Failure by
Coalesc.

Failure by
OAS
 i

99.9% Cu 99.999% Cu

100 pm 100 pm

Noell, Unpublished Noell, Acta Mat 2018
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Damage mechanisms
in Cu wires
In situ testing at Advanced Photon Source
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Experiment overview

ln situ testing performed at 2-BM at Advanced Photon
Source

• 99.999% Cu wires

• 1 mm and 0.75 mm
wire diameters

• Three tests on each
size

• 3D tomograms with
0.65 pm voxel size
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Damage mechanisms in Cu

1 mm wires, 99.999% Cu

Complex sequence of
events:

1. Shear band +
Appearance of
micron-sized voids

2. Coalescence

3. OAS growth of
cavity

Croom, Acta Mat 2019 250 pm
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Damage mechanisms in Cu

Key features:
1. Ellipsoidal cloud

of voids

1 mm wires, 99.999% Cu
Specimen: 1 mm - A

a E=1.34

.>7

S/20

•

Scale bars: 125 pm Croom, Acta Mat 2019
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Damage mechanisms in Cu

Key features:
1. Ellipsoidal cloud

of voids
2. Coalescence

along shear
band
• Consumes most

voids on plane

1 mm wires, 99.999% Cu
Specimen: 1 mm - A

a E=1.34

.>7

b E=1.58

Scale bars: 125 pm Croom, Acta Mat 2019
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Damage mechanisms in Cu

Key features:
1. Ellipsoidal cloud

of voids
2. Coalescence

along shear
band

3. OAS growth of
cavity

1 mm wires, 99.999% Cu
Specimen: 1 mm - A

a E=1.34

.>7

b E=t58 C E=1.88

Scale bars: 125 pm Croom, Acta Mat 2019
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Damage mechanisms in Cu

Key features:
1. Ellipsoidal cloud

of voids
2. Coalescence

along shear
band

3. OAS growth of
cavity

4. OAS growth
until failure

1 mm wires, 99.999% Cu
Specimen: 1 mm - A

a E=1.34

.>7

S/20
4/0/20(9/-

•

b E=1.58 C E=1.88

Scale bars: 125 pm Croom, Acta Mat 2019

d E=2.46
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Damage mechanisms in Cu

Key features:
1. Ellipsoidal cloud

of voids
2. Coalescence

along shear
band

3. OAS growth of
cavity

4. OAS growth
until failure

1 mm wires, 99.999% Cu
Specimen: 1 mm - A

a E=1.34

.>7
co

S/20
,04/20(9/-

1...? .

ql• 
t.

•

Specimen: 1mm - B
e E=1.33

.>7
co
a)

b

f

Scale bars: 125 pm

E=1.58

E=1.53

C E=1.88

E=1.81

d E=2.46

h E=2.11
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Damage mechanisms in Cu

Isolated instances of:
1. OAS growth
2. Void coalescence

Activation criterion of
damage mechanism is local
in nature

a E=1.34

b

25 pm

E=1.33

25 pm

E=1.58

E=1.53

E=1.88

Croom, Acta Mat 2019
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Damage kinetics
Quantitative analysis of void measurements
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Void growth statistics

a

=C:3)
3 
200

>
t 150

':c2 100

z 50

0

1 mm wires, 99.999% Cu

Coalesc.
1

I

I

E

x

— — A —0— B — — C X Ex situ

• Appearance of micron-sized
voids:
• Begins at E '--- 1

• Ends at E '--- 1 .5 (coalescence)

Croom, Acta Mat 2019 19
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Void growth statistics
1 mm wires, 99.999% Cu

Coalesc.a b so

41:] 200
o z- 60 -

t • 150
((i3/ 40 -

:2 100

020z 50

x

0
g

1 I 2 3

— — A —0— B — — C X Ex situ

• Appearance of micron-sized
voids:
• Begins at E 1

• Ends at E 1 .5 (coalescence)
• Void spacing reaches minimum

prior to coalescence
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Void growth statistics
1 mm wires, 99.999% Cu

Coalesc.a b so
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• Appearance of micron-sized
voids:
• Begins at E 1

• Ends at E 1 .5 (coalescence)
• Void spacing reaches minimum

prior to coalescence
• Median void size plateaus at
£ ;=- 1.25
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Void growth statistics
1 mm wires, 99.999% Cu
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• Appearance of micron-sized
voids:
• Begins at E 1

• Ends at E 1 .5 (coalescence)
• Void spacing reaches minimum

prior to coalescence
• Median void size plateaus at
£ ;=- 1.25

• Void growth restricted to OAS
cavity £ > 1 .5
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Void growth statistics
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Conclusions



Summary of damage
mechanisms

Failure by
Coalesc.

Shear Band

•

Failure by OAS

ofe)

Coalesced
void

Slip
directions Smooth

{4 

surface

Prismatic
growth Dimpled
(OAS) surface
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Conclusions

In situ XCT experiments reveal the collaborative
nature of damage in high-purity Cu

• Failure involves sequence of damage mechanisms

• The activation of a new damage mechanism is:
• Local in nature

• Dependent on prior strain + damage history

• Modeling must account for collaboration between
damage mechanisms
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