This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 14089C

SUPERCONTAINERS

Advancing the Usage and Scalability
of Containers in HPC

PRESENTED BY

Andrew J. Younge
Sandia National Laboratories

ajyoung@sandia.gov

Sandia National Laboratories is a multimission
laboratory managed and operated by National
' Technology & Engineering Solutions of Sandia, LLC, a
D O E B O O t h —_ S u p e r C O m p u t l n g 2 O l 9 wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract
DE-NA0003525.

Motivation

= DOE/NNSA and Sandia have long history of investment in HPC

= Mission workloads computational requirements demand scale
= Tightly coupled BSP simulation codes typically use MPI for communication
= Many workload ensembles quickly expanding to ML/DL/AI

= Public cloud computing is often prohibitive
= Both in cost and security models

= However, HPC is not traditionally as flexible as “the cloud”
= Shared resource models
= Static software environments
= Not always best fit for emerging apps and workflows

= What about Containers?
= Can we support containers in HPC in the same way as industry?
= Does this model fit for HPC and emerging workloads across DOE? \
= Can we adapt our programming environments into container images? /‘

ASC

What is a Container?

necessary to execute single process or task

= Encapsulates the entire software ecosystem (minus the kernel)

= OS-level virtualization mechanism
= Different than Virtual Machines
= Think "chroot” on steroids, BSD Jails
= Dependent on host OS, which is (usually) Linux
= Uses namespaces (user, mount, pid, etc)

|
= Unit of software which packages up all code and dependencies B |

= Docker is the leading container runtime
= Used extensively in industry/cloud enterprise
= Foundation for Kubernetes and Google cloud
= Supported in Amazon AWS cloud

Initial HPC Container Vision \
y \
AsSC

= Support HPC software development and testing on laptops/workstations
= Create working container builds that can run on supercomputers
= Minimize dev time on supercomputers

= Developers specify how to build the environment AND the application
= Users just import a container and run on target platform
= Have many containers, but with different manifests for arch, compilers, etc.
= Not bound to vendor and sysadmin software release cycles

= Performance matters
= Use mini-apps to “shake out” container implementations on HPC
= Envision features to support future workflows (ML/DL/in-situ analytics)

Containers in HPC |

Wanted Features Conflicting Features |
= BYOE - Bring-Your-Own-Environment = Overhead
= Developers define the operating environment and = HPC applications cannot incur significant overhead
system libraries in which their application runs from containers
= Composability = Micro-Services

= Developers have control over how their software = Micro-services container methodology does not
environment is composed of modular components apply to current HPC workloads

as container images = 1 app/node with multiple processes or threads per
= Enable reproducible environments that can container
potentially span different architectures o
- = On-node Partitioning
= Portability = On-node partitioning with cgroups unnecessary
= Containers can be rebuilt, layered, or shared]
across multiple different computing systems = Root Operation
= Potentially from laptops to clouds to advanced Containers allow root-level access control to users
supercomputing resources = Root is a significant security risk for HPC facilities |
= DevOps Commodity Networking
- Integrate with revision control SyStemS like Git = Common network control mechanisms are built
= Include build manifests and container images around commodity networking (TCP/IP)
using container registries = Supercomputers utilize custom interconnects w/ OS

kernel bypass operations

HPC Container Runtimes

= Docker is not good fit for running HPC workloads
= Building with Docker on my laptop is ok

= Security issues, no HPC integration

= Several different container options in HPC

N, |/

> s
SHIFTER \/
= All 3 HPC container runtimes are usable in HPC today

Charliecloud

= Each runtime offers different designs and OS mechanisms
= Storage & mgmt of images
= User, PID, Mount namespaces
= Security models
= OCI vs Docker vs Singularity images
= [mage signing, validation, registries, etc

ECP Supercontainers

= Joint DOE effort - Sandia, LANL, LBNL, LLNL, U. of Oregon

= Ensure container runtimes will be scalable, interoperable, and well integrated across DOE ‘
= Enable container deployments from laptops to Exascale

= Assist ECP applications and facilities leverage containers most efficiently

= Three-fold approach
= Scalable R&D activities
= Collaboration with related ST and AD projects
= Training, Education, and Support

= Activities conducted in the context of interoperability
= Portable solutions

= Optimized E4S container images for each machine type SUPERCONTAINERS

= Containerized ECP that runs on Astra, A21, El-Capitan, ... |

= Work for multiple container implementations E (E\\ I:
= Not picking a “winning” container runtime

= Multiple DOE facilities at multiple scales ... =

: | Container DevOps P

I
= Impractical to use large-scale
supercomputers for DevOps and
testing
= HPC resources have long batch queues -
= Large effort to port to -elach n.ew machlr?e E:":"‘?EE %I%E:E?%éogé:j:%%rm&t %;Z;% % wpling
= Deployment portability with containers AN 7 H

= Develop Docker containers on your laptop or Gitiab Container Reglstry

Service
workstation ‘ V
Pl 5 l

= Leverage registry services

= Import container to target deployment $ docker buildappl $ singularity pull app1.img
.) . $ docker login gltlab..sandla.gov docken/lgmab:sandla'.govluserlappj ‘latest
= Integrate with vendor libs (via ABI compat) — ym *awnﬂxﬂ"g"'aﬂwﬁawtmaPP‘-exe

= Leverage local resource manager (SLURM)

= Separate networks maintain separate
registries

o | Singularity Runtime at Sandia

= Singularity fit for current needs
= OSS, publicly available, support backed by Sylabs
= Simple image plan, support for many HPC systems
= Docker image support

= Multiple architectures
= X86_64, ARM64, POWER9
= |nitial GPU support

* singualrity exec --nv appl.simg /opt/bin/app
= Large community involvement

= Singularity deployed across Sandia
= CTS-1 and TLCC clusters

= Astra — First Petascale ARM supercomputer [==

= Ongoing collaboration with Sylabs

Sylabs Remote Container Builder

Separated container build workstations for various architectures ‘
= Can’t use a laptop to build ARM64 or POWER9 CPUs
= Inflexible, clunky, isolated

Working with Sylabs on new solution — Remote Builder

- Enables users to build for alternate architectures:
Ex. build AARCH64 container from AMD64 workstation
Can be used as part of CI/CD process (GitHub, etc.)

= Builds run natively on alternate architecture, giving great performance

= Centralized resource pool:
Lowers TCO by decreasing the need for workstations of multiple architectures

- Enables users to build containers without privilege
- Native integration with Singularity CLI I
= Can be deployed on-premise via Singularity Enterprise |

More info: https://sylabs.io/singularity-enterprise/ ,s

10000 T

Time (seconds)

1000 -

Case Study |: SNL ATDM App

128 (7168)

SPARC HIFIRE-L1 Native v Container

N~ e Native

N - =-Containe

g o

256 (14336) 512 (28572) 1024 (57344)
Nodes (cores)

Points:

Supporting SPARC containerized build &

deployment

Deployed on Astra with Singularity

Near-native performance using a container
« Container faster due to new

optimizations for TX2
Testing HIFIRE-1 Experiment (MacLean et
al. 2008)

Takeaway: Production HPC Applications can be deployed with containers

2 | Case Study 2: Nalu CFD

7,000

6,000

Ul
o
o
o

)

Mean Wall Time (sec.)
o o o o
o o o o
o o o o

o

Nalu: A generalized unstructured massively parallel
low Mach CFD flow code designed to support
energy applications of interest

Nalu - Container vs. Native - Strong Scaling
1.200

1.150
1.100
1.050

1.000

Container Speedup

4 6 8 10 12 14 16 18 20
Nodes
—+—Native =x=Container Ratio

=
O
o
o
- EEEEEEEEEE—

Spack environments help with building containers

= We recently started providing base images with Spack preinstalled. ‘
= Very easy to build a container with some Spack packages in it:
FROM spack/centos:7 [Base image with Spack
spack-docker-demo/ . in PATH
Dockerfile —»WORKDIR /build
vaml COPY spack.yaml . Copy in spack.yaml
SPRCIC) RUN spack install Then run spackinstall

. . spack:
& Build with docker build. Specs:
docker - hdf5 @1.8.16 . .
r Run with Singularity — openmpi fabrics=libfabric List of packages to install,
- nalu
\sj (or some other tool)

with constraints |

Emerging workloads on HPC with Containers

= Support emerging Al/ML/DL frameworks on HPC
= Containers useful to adapt ML software to HPC ‘
= Already supported and heavily utilized in industry

= Extreme-scale Scientific Software Stack (E4S)
= Includes TensorFlow & Pytorch in container image

= Find Sameer Shende for more details! — e4s.io
= Working with DOE app teams to deploy custom ML tools in containers

= |nvestigating scalability challenges and opportunities |

“ |

E4S TensorFlow PYTHLRCH |

Case Study 3: Reinforcement Learning Algorithms

* An evolutionary approach for multi-objective optimization
- Evolutionary Algorithms are gradient-free population-based methods ‘

- EA benefits from parallelization and does not require GPU acceleration
Population of agents is generated and attempts a problem in parallel
High performance agents are used for next population generation

We are using Astra for scaling of ASTool’

» Coevolves an agent’s decision making
policy and body

Built Singularity container
* Ubuntu 16.04, NumPy, PyBullet, ...

» Simple to use and modify —
500 nodes - 7.5 hours to complete

- Eliminate major software performance inefficiencies and bottlenecks
* Apply lessons-learned to our own multi-objective optimization problem

NeXt StepS: Credit: https://designrl.github.io/ I
1. https://github.com/hardmaru/astool |

Takeaway: Containers can support Emerging HPC workloads like Reinforcement Learning

On workstation where user has root:

|Case Study 4: Containerized ATSE

Users & Applications

ATSE Programming Environment
ARM Allinea m

Studio
C,C++ & Fortran
Compiler,
Performance

a docker build -t "gitlab.sandia.gov/atse/astra:1.2.2" .
Y ¢ \

9 docker push gitlab.sandia.gov/atse/astra:1.2.2
= — = RN

Mellanox

RHEL
Commands
Containers,

Virtualization
|/O Libraries

o

2 o

2 = | Provisioning, LisigHas, h

S 8 | Monitoring “MAP Profier. SFEE Q
W oz

S5 i Gi

*§n§_ RHEL Runtime Libraries ‘ léll'ls:rrf Sandia GltLab

8 Container

£@ RHEL Kernel Registry

B HPE B Redhat B Arm B Mellanox B Open Source \ /

4} <= [(DT | (1 -
' .

salloc -N 2048 -t 4:00:00
mpirun -np 114688 -npernode 56 singularity exec atse-astra-1.2.2.simg /home/user/myapp

Takeaway: Deployed & validated upgraded ATSE in a container before machine upgrade

7 | Containers on Secure Networks

= SNL containers are primarily built on unclassified systems then moved
to air gapped networks via automated transfers

= Cybersecurity approvals in place to run containers on all networks

= Security controls used in running containers on HPC systems
= Working to validate software compliance

= Automated Transfer Services to air gapped networks

= Challenges of automated transfers
= Size — 5GB-10GB are ideal

= Integrity — md5 is enough
= Transfer policies — executables, code, etc.

Warning: Currently just Slideware

Future Containerized Cl Pipeline

= As a developer | want to generate container builds from code pull requests so
that containers are l{_sed fo test new code on taraet HPCC machines.

Gitlab

I\ :
I\
. |
!
Contirfuous Integration
[Build l’ Test I Deploy
i :
!

IBM

Spack Binary Mirror Heterogeneous Build Farm
Interneal Network

Container Takeaways (aka tupperware!?)

= Use Docker to build manifests to assemble full app suites from scratch
= Developers specify base OS, configuration, TPLs, compiler installs, etc
= Leverage base or intermediate container images (eg: TOSS RPMs in a container)

= Leverage container registry services for storing images

= Import/flatten Docker images into Singularity & run on HPC resources
= Also works for Charliecloud compatibility

= Advantages
= Simplify deployment to analysts (just run this container image)
= Simplify new developer uptake (just develop FROM my base container image)
= Decouple development from software release cycle issues
= Reproducibility has a new hope?

= Caveats
= ABI compatibility with MPI an ongoing issue

= Focus is on x86_64 images, alternative archs require more work
= Can’t build an ARM64 container image from my Mac laptop w/ x86 64

= Containers are an option in HPC, not a mandate

Conclusion

= Demonstrated value of container models in HPC Acknowledgements:
= Deployments in testbeds to production HPC Kevin Pedretti (1423) ‘
= nitial performance is promising Anthony Agelastos (9326)
= Modern DevOps approach with containers B]O:lgn;?sgn(ggg)zz)
= Deployed on several Sandia systems Aron Warren (9327) |
= ECP Supercontainers Stephen Olivier (1423)

Justin Lamb (9326)

= Enable containers at Exascale
Erik Illescas (9327)

. E.mbrr.ace software.div.ersity while insuring interoperability Ron Brightwell (1423) |
= Simplify HPC application deployment
= Enable next-gen computing ecosystems Collaborators:
_ : : o epey s Shane Canon (LBNL/NERSC)
Containers can increase software flexibility in HPC Todd Gamblin (LLNL) I
\ Reid Priedhorsky (LANL)
E (CEP /‘ Sameer Shende (Oregon) |

el TR)
- ’ >

: 4 N -
el o = -2 s
= T TR el

Thanks!

ajyoung@sandia.gov

sapl|S dnyjdoeg

Supercontainer R&D Activities

= Containers must work at Exascale!
= Embrace architectural diversity

R&D Topics:
= Advanced Container Runtimes = Expand interoperability
= Efficient container launch = Decrease reliance on MPI ABI compatibility
= Comparison studies = Foster community standards
= Optimized Images Other opportunities
= E4S environment = Service container orchestration
= Use Spack! Workflow ensemble support
= Vendor images = Reproducibility?
e
i | ==
e E p E IS

“Per aspera datr -

i

o ATSE - Advanced Tri-lab Software Environment
e 7 ikl o/ B R » Supports Singularity container runtime
REFE- MOy R « Building ATSE container images

332 TB memor ; .
1.2 Mwy * Developing Pytorch ARM containers

— = - v
e e i
e ———— S ——
e ———————————
e ———————————
e —————————
———————————
———————————_1

e —————————

SNL ATDM Mission App

SPARC - Container Strong Scaling - HIFiIRE-1

4:15:00
4:00:00
3:45:00
3:30:00
3:15:00
__3:00:00
3 2:45:00
E 2:30:00

£ 2:15:00
v 2:00:00 Points:
2 1:45:00 » Supporting SPARC containerized
& 1:30:00 build & deployment
L3R Deployed on Sandia CTS-1
1:00:00 ‘ . .
0 ae00 » Near-native performance using a
0:30:00 container
i - « Testing HIFIRE-1 Experiment
0:00:00 (MacLean et al. 2008)
36 72 144 288 576

B SPARC Container M SPARC Native

Emerging workloads on HPC with Containers

= Support merging AI/ML/DL frameworks on HPC
= Containers may be useful to adapt ML software to HPC ‘
= Already supported and heavily utilized in industry

= Extreme-scale Scientific Software Stack (E4S)
= Includes TensorFlow & Pytorch in container image

= Working with DOE app teams to deploy custom ML tools in containers

= |nvestigating scalability challenges and opportunities |

/ |

E4S TensorFlow PYTLRCH |

Warning: Currently just Slideware

Future Containerized Cl Pipeline

= As a developer | want to generate container builds from code pull requests so
that containers are l{_sed fo test new code on taraet HPCC machines.

Gitlab

I\ :
I\
. |
!
Contirfuous Integration
[Build l’ Test I Deploy
i :
!

IBM

Spack Binary Mirror Heterogeneous Build Farm
Interneal Network

Training Education & Support

= Containers involve new software deployment methodology

= Training and education is needed to help ECP community to best utilize
new functionality

= Technical Reports
= Best Practices for building software using containers
= Taxonomy survey to survey current state of the practice

= Training sessions
= International Supercomputing Conference 2019
= [|EEE/ACM Supercomputing 2019
= ECP All-Hands Meeting

= Provide single source of knowledge for groups interested in containers

