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Motivation

= DOE/NNSA and Sandia have long history of investment in HPC

= Mission workloads computational requirements demand scale
= Tightly coupled BSP simulation codes typically use MPI for communication
= Many workload ensembles quickly expanding to ML/DL/AI

= Public cloud computing is often prohibitive
= Both in cost and security models

= However, HPC is not traditionally as flexible as “the cloud”
= Shared resource models
= Static software environments
= Not always best fit for emerging apps and workflows

= What about Containers?
= Can we support containers in HPC in the same way as industry?
= Does this model fit for HPC and emerging workloads across DOE? \
= Can we adapt our programming environments into container images? /‘
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What is a Container?

necessary to execute single process or task

= Encapsulates the entire software ecosystem (minus the kernel)

= OS-level virtualization mechanism
= Different than Virtual Machines
= Think "chroot” on steroids, BSD Jails
= Dependent on host OS, which is (usually) Linux
= Uses namespaces (user, mount, pid, etc)

|
= Unit of software which packages up all code and dependencies B |

= Docker is the leading container runtime
= Used extensively in industry/cloud enterprise
= Foundation for Kubernetes and Google cloud
= Supported in Amazon AWS cloud




Initial HPC Container Vision \
y \
AsSC

= Support HPC software development and testing on laptops/workstations
= Create working container builds that can run on supercomputers
= Minimize dev time on supercomputers

= Developers specify how to build the environment AND the application
= Users just import a container and run on target platform
= Have many containers, but with different manifests for arch, compilers, etc.
= Not bound to vendor and sysadmin software release cycles

= Performance matters
= Use mini-apps to “shake out” container implementations on HPC
= Envision features to support future workflows (ML/DL/in-situ analytics)



Containers in HPC |

Wanted Features Conflicting Features |
= BYOE - Bring-Your-Own-Environment = Overhead
= Developers define the operating environment and = HPC applications cannot incur significant overhead
system libraries in which their application runs from containers
= Composability = Micro-Services

= Developers have control over how their software = Micro-services container methodology does not
environment is composed of modular components apply to current HPC workloads

as container images = 1 app/node with multiple processes or threads per
= Enable reproducible environments that can container
potentially span different architectures o
- = On-node Partitioning
= Portability = On-node partitioning with cgroups unnecessary
= Containers can be rebuilt, layered, or shared ]
across multiple different computing systems = Root Operation
= Potentially from laptops to clouds to advanced Containers allow root-level access control to users
supercomputing resources = Root is a significant security risk for HPC facilities |
= DevOps Commodity Networking
- Integrate with revision control SyStemS like Git = Common network control mechanisms are built
= Include build manifests and container images around commodity networking (TCP/IP)
using container registries = Supercomputers utilize custom interconnects w/ OS

kernel bypass operations



HPC Container Runtimes

= Docker is not good fit for running HPC workloads
= Building with Docker on my laptop is ok

= Security issues, no HPC integration

= Several different container options in HPC

N, |/
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= All 3 HPC container runtimes are usable in HPC today

Charliecloud

= Each runtime offers different designs and OS mechanisms
= Storage & mgmt of images
= User, PID, Mount namespaces
= Security models
= OCI vs Docker vs Singularity images
= [mage signing, validation, registries, etc



ECP Supercontainers

= Joint DOE effort - Sandia, LANL, LBNL, LLNL, U. of Oregon

= Ensure container runtimes will be scalable, interoperable, and well integrated across DOE ‘
= Enable container deployments from laptops to Exascale

= Assist ECP applications and facilities leverage containers most efficiently

= Three-fold approach
= Scalable R&D activities
= Collaboration with related ST and AD projects
= Training, Education, and Support

= Activities conducted in the context of interoperability
= Portable solutions

= Optimized E4S container images for each machine type SUPERCONTAINERS

= Containerized ECP that runs on Astra, A21, El-Capitan, ... |

= Work for multiple container implementations E (E\\ I:
= Not picking a “winning” container runtime

= Multiple DOE facilities at multiple scales ... =



: | Container DevOps P

I
= Impractical to use large-scale
supercomputers for DevOps and
testing
= HPC resources have long batch queues -
= Large effort to port to -elach n.ew machlr?e E:":"‘?EE %I%E:E?%éogé:j:%%rm&t %;Z;% % wpling
= Deployment portability with containers AN 7 H

= Develop Docker containers on your laptop or Gitiab Container Reglstry

Service
workstation ‘ V
Pl 5 l

= Leverage registry services

= Import container to target deployment $ docker buildappl $ singularity pull app1.img
. ) . $ docker login gltlab..sandla.gov docken/lgmab:sandla'.govluserlappj ‘latest
= Integrate with vendor libs (via ABI compat) — ym *awnﬂxﬂ"g"'aﬂwﬁawtmaPP‘-exe

= Leverage local resource manager (SLURM)

= Separate networks maintain separate
registries




o | Singularity Runtime at Sandia

= Singularity fit for current needs
= OSS, publicly available, support backed by Sylabs
= Simple image plan, support for many HPC systems
= Docker image support

= Multiple architectures
= X86_64, ARM64, POWER9
= |nitial GPU support

* singualrity exec --nv appl.simg /opt/bin/app
= Large community involvement

= Singularity deployed across Sandia
= CTS-1 and TLCC clusters

= Astra — First Petascale ARM supercomputer [==

= Ongoing collaboration with Sylabs




Sylabs Remote Container Builder

Separated container build workstations for various architectures ‘
= Can’t use a laptop to build ARM64 or POWER9 CPUs
= Inflexible, clunky, isolated

Working with Sylabs on new solution — Remote Builder

- Enables users to build for alternate architectures:
Ex. build AARCH64 container from AMD64 workstation
Can be used as part of CI/CD process (GitHub, etc.)

= Builds run natively on alternate architecture, giving great performance

= Centralized resource pool:
Lowers TCO by decreasing the need for workstations of multiple architectures

- Enables users to build containers without privilege
- Native integration with Singularity CLI I
= Can be deployed on-premise via Singularity Enterprise |

More info: https://sylabs.io/singularity-enterprise/ ,s
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Takeaway: Production HPC Applications can be deployed with containers



2 | Case Study 2: Nalu CFD
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Spack environments help with building containers

= We recently started providing base images with Spack preinstalled. ‘
= Very easy to build a container with some Spack packages in it:
FROM spack/centos:7 [ Base image with Spack
spack-docker-demo/ . in PATH
Dockerfile —»WORKDIR /build
vaml COPY spack.yaml . Copy in spack.yaml
SPRCIC ) RUN spack install Then run spackinstall

. . spack:
& Build with docker build. Specs:
docker - hdf5 @1.8.16 . .
r Run with Singularity — openmpi fabrics=libfabric List of packages to install,
- nalu
\sj (or some other tool)

with constraints |



Emerging workloads on HPC with Containers

= Support emerging Al/ML/DL frameworks on HPC
= Containers useful to adapt ML software to HPC ‘
= Already supported and heavily utilized in industry

= Extreme-scale Scientific Software Stack (E4S)
= Includes TensorFlow & Pytorch in container image

= Find Sameer Shende for more details! — e4s.io
= Working with DOE app teams to deploy custom ML tools in containers

= |nvestigating scalability challenges and opportunities |

“ |

E4S TensorFlow PYTHLRCH |



Case Study 3: Reinforcement Learning Algorithms

* An evolutionary approach for multi-objective optimization
- Evolutionary Algorithms are gradient-free population-based methods ‘

- EA benefits from parallelization and does not require GPU acceleration
Population of agents is generated and attempts a problem in parallel
High performance agents are used for next population generation

We are using Astra for scaling of ASTool’

» Coevolves an agent’s decision making
policy and body

Built Singularity container
* Ubuntu 16.04, NumPy, PyBullet, ...

» Simple to use and modify —
500 nodes - 7.5 hours to complete

- Eliminate major software performance inefficiencies and bottlenecks
* Apply lessons-learned to our own multi-objective optimization problem

NeXt StepS: Credit: https://designrl.github.io/ I
1. https://github.com/hardmaru/astool |

Takeaway: Containers can support Emerging HPC workloads like Reinforcement Learning



On workstation where user has root:

|Case Study 4: Containerized ATSE

Users & Applications

ATSE Programming Environment
ARM Allinea m

Studio
C,C++ & Fortran
Compiler,
Performance

a docker build -t "gitlab.sandia.gov/atse/astra:1.2.2" .
Y ¢ \

9 docker push gitlab.sandia.gov/atse/astra:1.2.2
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salloc -N 2048 -t 4:00:00
mpirun -np 114688 -npernode 56 singularity exec atse-astra-1.2.2.simg /home/user/myapp

Takeaway: Deployed & validated upgraded ATSE in a container before machine upgrade



7 | Containers on Secure Networks

= SNL containers are primarily built on unclassified systems then moved
to air gapped networks via automated transfers

= Cybersecurity approvals in place to run containers on all networks

= Security controls used in running containers on HPC systems
= Working to validate software compliance

= Automated Transfer Services to air gapped networks

= Challenges of automated transfers
= Size — 5GB-10GB are ideal

= Integrity — md5 is enough
= Transfer policies — executables, code, etc.



Warning: Currently just Slideware

Future Containerized Cl Pipeline

= As a developer | want to generate container builds from code pull requests so
that containers are l{_sed fo test new code on taraet HPCC machines.

Gitlab

I\ :
I\
. |
!
Contirfuous Integration
[ Build l’ Test I Deploy
i :
!

IBM

Spack Binary Mirror Heterogeneous Build Farm
Interneal Network




Container Takeaways (aka tupperware!?)

= Use Docker to build manifests to assemble full app suites from scratch
= Developers specify base OS, configuration, TPLs, compiler installs, etc
= Leverage base or intermediate container images (eg: TOSS RPMs in a container)

= Leverage container registry services for storing images

= Import/flatten Docker images into Singularity & run on HPC resources
= Also works for Charliecloud compatibility

= Advantages
= Simplify deployment to analysts (just run this container image)
= Simplify new developer uptake (just develop FROM my base container image)
= Decouple development from software release cycle issues
= Reproducibility has a new hope?

= Caveats
= ABI compatibility with MPI an ongoing issue

= Focus is on x86_64 images, alternative archs require more work
= Can’t build an ARM64 container image from my Mac laptop w/ x86 64

= Containers are an option in HPC, not a mandate




Conclusion

= Demonstrated value of container models in HPC Acknowledgements:
= Deployments in testbeds to production HPC Kevin Pedretti (1423) ‘
= nitial performance is promising Anthony Agelastos (9326)
= Modern DevOps approach with containers B]O:lgn;?sgn(ggg)zz)
= Deployed on several Sandia systems Aron Warren (9327) |
= ECP Supercontainers Stephen Olivier (1423)

Justin Lamb (9326)

= Enable containers at Exascale
Erik Illescas (9327)

. E.mbrr.ace software.div.ersity while insuring interoperability Ron Brightwell (1423) |
= Simplify HPC application deployment
= Enable next-gen computing ecosystems Collaborators:
_ : : o epey s Shane Canon (LBNL/NERSC)
Containers can increase software flexibility in HPC Todd Gamblin (LLNL) I
\ Reid Priedhorsky (LANL)
E (CEP /‘ Sameer Shende (Oregon) |
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Supercontainer R&D Activities

= Containers must work at Exascale!
= Embrace architectural diversity

R&D Topics:
= Advanced Container Runtimes = Expand interoperability
= Efficient container launch = Decrease reliance on MPI ABI compatibility
= Comparison studies = Foster community standards
= Optimized Images Other opportunities
= E4S environment = Service container orchestration
= Use Spack! Workflow ensemble support
= Vendor images = Reproducibility?
e
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SNL ATDM Mission App
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Emerging workloads on HPC with Containers

= Support merging AI/ML/DL frameworks on HPC
= Containers may be useful to adapt ML software to HPC ‘
= Already supported and heavily utilized in industry

= Extreme-scale Scientific Software Stack (E4S)
= Includes TensorFlow & Pytorch in container image

= Working with DOE app teams to deploy custom ML tools in containers

= |nvestigating scalability challenges and opportunities |

/ |

E4S TensorFlow PYTLRCH |



Warning: Currently just Slideware

Future Containerized Cl Pipeline

= As a developer | want to generate container builds from code pull requests so
that containers are l{_sed fo test new code on taraet HPCC machines.

Gitlab
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Training Education & Support

= Containers involve new software deployment methodology

= Training and education is needed to help ECP community to best utilize
new functionality

= Technical Reports
= Best Practices for building software using containers
= Taxonomy survey to survey current state of the practice

= Training sessions
= International Supercomputing Conference 2019
= [|EEE/ACM Supercomputing 2019
= ECP All-Hands Meeting

= Provide single source of knowledge for groups interested in containers



