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• Hydrogen interactions with tungsten surfaces

• Characterizing the W(111)+H(ads) system
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3 Fusion energy

ITER—final step before a DEMC nstration reactor

• relatively clean

• sustainable Et abundant

• no risk of meltdown

• what materials can contain
a hot fusion plasma?



4 Hydrogen-Tungsten interactions in fusion reactors

Tungsten is a leading candidate material for fusion reactors

/ The divertor is a hydrogen (D and T) rich environment1

Concerns arise from

• hydrogen effects: embrittlement and blistering

• tritium retention and inventory

How does hydrogen adsorb on tungsten

surfaces before diffusing into the bulk?



5 Hydrogen adsorption on tungsten surfaces

W(100) and W(110) have been studied, but W(111) is much more complex

rW(111): open, corrugated surface structur
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Side view

1. Characterize ion scattering off W(111)

2. Validate DFT prediction of BC site

3. Understand ion channeling on W(111)

(-Complex H binding geometry

predicted by DFT simulations [1]

Top view Side view [01T]
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[1] Z. Bergstrom et al., J. Phys.: Condens. Matter, (2019).



Characterizing W( I I I)+H(ads) system

LEIS, DRS, and ICISS



7 ARIES:Angle- esolved on nergy pectrometer

MCP backscattered
ions and neutrals

forward-scaltered
and recoiled ions

ESA

_
./

• LEIS and DRS performed with ARIES

• can also be configured for backscattering measurements



8 LEIS and DRS

-_ow energy ion scattering (LEIS

E cos 9 + -42 sin2 B1 2

E0

ESA

Direct recoil spectroscopy (DRS)

ESA
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• both techniques can be performed simultaneously

• energy of detected ion depends only on p and 0
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Multi-layer scattering from VV( I I I) substrate



10 Constructing multi-angle scattering maps with LEIS
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11 Multi-angle scattering maps for W(QS)

surface
normal A 0
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12 I Shadow cones

Focusine effect

Shadow cone

Agostino et al., Surf. Sci. 384, (1997).

incoming c
ion beam

• Shadow cone arises from ion focusing

• Enhanced scattering or recoil signal when cone

coincides with neighboring atom



13 Shadow line analysis

incoming
ton beam

coincides with neiRlibl
shadow cone oversrroot
neighbor for larger a

Shadow line delineates
region of enhanced scattering

•

edge of cone realigned
by rotation

incoming
ion beam

Agostino et al., Surf. Sci. 384, (1997).



14 . Shadow lines for fivaanfAlaifvers

. G Eititaktfictbdrrt sektering

signathe center be explained?

• Crystalline orientation confirmed with

ICISS backscattering maps
Experiment: ARIES 1CISS Simulation: MARLOWE
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•

Determination of H adsorption sites on W( I I I):

modeling DRS measurements with MD simulations



1 6 DRS measurement of H at a single a
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17 Molecular dynamics (MD) simulations with Kalypso [2]

• 1st layer W
• 2nd layer W
• hydrogen

Simulations performed for the DFT predicted BC site
as well as 3 other high symmetry sites for comparison
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bond-centered (BC)

DFT prediction
[2] Karolewski, Nucl. lnstrum. Methods Phys. Res. 6 230, (2005). _



18 MD simulation results compared to experimental H(R)

• 1st layer W
• 2nd layer W
• hydrogen
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19 Constraining adsorbate height and position

h = 1.0 ± 0.1 A

DFT prediction:
0.95Å h 1.10Å

dBc = 1.6 ± 0.1 A

DFT prediction:
1.5 A dBc 1.7 A

Side view [011]
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20 1

lon channeling for the W(I I I)+H(ads) system
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21 Constructing H(R) maps
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22 lon channeling along and into W( I I I) surface

• 1st layer W
• 2nd layer W
• hydrogen

bond-centered (BC)

• • • •
• • 1/''

• 00<i:re •

Irr.to=u

•

di •

•
•

Previous studies [3]:
H within channel peak in H(R) signal

F12(g) dosing

W(I I I) surface structure

-"1"11111.ibiw,

3C. 90' 120

H(R) intensity (countsine)

150

[3] Kolasinski et al., PRB, (2012).



23 Enhanced ion channeling due to adsorbed H

• 1st layer W
• 2nd layer W
• hydrogen

bond-centered (BC)
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24 Summary of W(I I I)+H(ads) study

1. Advanced existing analysis and modeling

techniques for surface hydrogen detection:

complex binding geometry and corrugated surface

2. Validated DFT predictions:

DFT provides inputs for larger scale models, e.g.

• interatomic potentials for MD

• hydrogen dissociation energies on surfaces

bond centered (BC)

H2 (g) dosing

30 60 90 120

H(R) intensity (countsinC)

150



Extra slides



26 Modeling H(R) with molecular dynamics (MD) simulations

physics included assumptions made

saturated H coverage on W substrate elastic collisions—universal ZBL potential

surface relaxation of W substrate* only include projectile—target interactions

vibrational displacements of W Ec H* stationary target atoms

only count recoiled H with final trajectory
damage to target was not tracked

and energy that corresponds to detector

*DFT calculations performed by collaborators at U. Tenn



27 Channeling into the surface breaks symmetry
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28 Shadow lines analytic description

1 the literature, shadow lines were calculated numerically

• I showed that shadow lines can be determined analytically, based on

geometrical arguments:

Shadow line 4 delineates
region of enhanced scattering

(Prot = arctan I cot(a0) I 1 cos2 )(a0

cos2 (a)

shadow cone
envelope

scattering
center

neighboring atom



29 Early study to find H on surfaces

LEIS to detect D on Pd surface

Bastasz et al., Phys. Rev. Lett. 63, (1989).
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shadow cone analysis

• based on D being hidden by Pd-atom

shadow cones

• unable to fully determine binding site

• only works for D, not H

Focusine effect

/
Shadow cone

[3] Agostino et al., Surf. Sci. 384, (1997).



30 Channeling with multi-angle maps (varying both angles)
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• maps provide information on ion
channeling

• detection of adsorbates not limited
to near-surface

• only considers scattering from top
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31 MD simulation for multi-layer scattering

3 keV Ne+ —> W(111), e = 45°, cr = 76°
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32 Effect of hydrogen on ion-channeling

bond-centered (BC)
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33 State of the art: dechanneling of projectile ions

Surface channeling in W( I 00)
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