This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

1 keV Net - W(111), 6 =45°, a = 76°

H>(g) dosing
100 -

Characterization of W(I | |)+H(ads)

80

60

system using multi-angle scattering
and direct recoil maps

40

20f

H(R) signal for H,(g) dosing (counts/nC)

0 60 120 180 240
azimuthal angle [¢]

PRESENTED BY
Chun-Shang “Tim” Wong | November 18, 2019

Robert Kolasinski and Josh Whaley

SAND2019- 14041C

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



2 | Outline

* Hydrogen interactions with tungsten surfaces

« Characterizing the W(111)+H(ads) system
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3 | Fusion energy

relatively clean
sustainable & abundant
no risk of meltdown

what materials can contain
a hot fusion plasma?
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4 | Hydrogen-Tungsten interactions in fusion reactors

Tungsten is a leading candidate material for fusion reactors

The divertor is a hydrogen (D and T) rich environment

=y ': Concerns arise from
* hydrogen effects: embrittlement and blistering

 tritium retention and inventory

How does hydrogen adsorb on tungsten

e
it

surfaces before diffusing into the bulk?



; | Hydrogen adsorption on tungsten surfaces

W(100) and W(110) have been studied, but W(111) is much more complex

6(1 11): open, corrugated surface structurh /Complex H binding geometry \‘

Top view
S— predicted by DFT simulations [1]
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1.5A<ds<1.7A 095A<h<1.10A
1. Characterize ion scattering off W(111) K bond-centered (BC) site JI
2. Validate DFT prediction of BC site |

3. Understand ion channeling on W(111)

[1] Z. Bergstrom et al., J. Phys.: Condens. Matter, (2019).
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Characterizing W(I | I )+H(ads) system

LEIS, DRS, and ICISS



7 | ARIES: Angle-Resolved lon Energy Spectrometer

surface:
mmmil

0

« LEIS and DRS performed with ARIES S

 can also be configured for backscattering measurements




8 | LEIS and DRS

/LOW energy ion scattering (LEIS)
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« both techniques can be performed simultaneously my ‘
« energy of detected ion depends only on py and 6 no mp



Multi-layer scattering from W(l | |) substrate




0 I Constructing multi-angle scattering maps with LEIS

track counts of scattered Ne*
while varying angles « and ¢

scattering signal (counts/nC)
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11 I Multi-angle scattering maps for W(QYS)
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2 | Shadow cones

Focusing effect incoming af
/ ton beam

)

Shadow cone

Agostino et al., Surf. Sci. 384, (1997).

« Shadow cone arises from ion focusing

 Enhanced scattering or recoil signal when cone

coincides with neighboring atom




13 | Shadow line analysis

incoming
ion beam

L

coincides with nejghb
shadow cone overshoot

neighbor for larger «

edge of cone realigned
by ¢ rotation

incoming
ion beam

Shadow line = delineates
region of enhanced scattering

Agostino et al., Surf. Sci. 384, (1997).




14 | Shadow lines for fimse ¥W\abees s

*  Gledngganisaiific xOivtoaddiirysigsaat tering

pigaathe center be explained?
» Crystalline orientation confirmed with

ICISS backscattering maps

Experiment: ARIES ICISS Simulation: MARLOWE
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Determination of H adsorption sites on W(l | |):

modeling DRS measurements with MD simulations




i I DRS measurement of H at a single «
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Molecular dynamics (MD) simulations with Kalypso [2] -

Simulations performed for the DFT predicted BC site
as well as 3 other high symmetry sites for comparison
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[2] Karolewski, Nucl. Instrum. Methods Phys. Res. B 230, (2005).



18 | MD simulation results compared to experimental H(R)

1 keV Net > W(111)+H(ads)
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19 | Constraining adsorbate

h=1.0+0.1A

DFT prediction:
0.95A<h<1.10 A

dBC= 1.610.1 A

DFT prediction:
1.5A<dg <1.7A

height and position
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lon channeling for the W(Il | I)+H(ads) system
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21 I Constructing H(R) maps

1keV Ne™ » W(111),0 =45, a =76°
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2 | lon channeling along and into W(I | I) surface

Hz(g) dosing
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Previous studies [3]:

H within channel = peak in H(R) signal 30 60 %0 120 150

H(R) intensity (counts/nC)

[3] Kolasinski et al., PRB, (2012).



23 I Enhanced ion channeling due to adsorbed H
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24 | Summary of W(I | I)+H(ads) study bond centered (BC)

o¢ 0.
pPe 0.8 4@
1. Advanced existing analysis and modeling _ "'?'-. e u
g ) ._: ’..:I
techniques for surface hydrogen detection: D¢ e --E i

o 9 ® -.:

complex binding geometry and corrugated surface

Hz(g) dosing

2. Validated DFT predictions:

DFT provides inputs for larger scale models, e.g.

* interatomic potentials for MD

......

* hydrogen dissociation energies on surfaces
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26 | Modeling H(R) with molecular dynamics (MD) simulations

saturated H coverage on W substrate elastic collisions—universal ZBL potential |
surface relaxation of W substrate® only include projectile—target interactions
vibrational displacements of W & H* stationary target atoms

only count recoiled H with final trajectory

and energy that corresponds to detector ~ 02Mage to target was not tracked

*DFT calculations performed by collaborators at U. Tenn



27 I Channeling into the surface breaks symmetry

MD simulation data Experimental data
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28 | Shadow lines—analytic description

* In the literature, shadow lines were calculated numerically

* | showed that shadow lines can be determined analytically, based on

geometrical arguments:
¢y, = arctan

cot(ay)

shadow cone

envelope

\

cos?(a)

cos?(ay)

neighboring atom

h

y r-h r

Shadow line = delineates
region of enhanced scattering

center

scattering




29 | Early study to find H on surfaces—shadow cone analysis

LEIS to detect D on Pd surface
Bastasz et al., Phys. Rev. Lett. 63, (1989).
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 based on D being hidden by Pd-atom
shadow cones
 unable to fully determine binding site

 only works for D, not H

Fc?g effect

I, ﬁ%o(d)

Shadow cone

[3] Agostino et al., Surf. Sci. 384, (1997).
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30 | Channeling with multi-angle maps (varying both angles)
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31 | MD simulation for

multi-layer scattering

3 keV Net » W(111), 6 =45°, a = 76°
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» | Effect of hydrogen on ion-channeling

bond-centered (BC)
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[1] Kolasinski et al., PRB 201 2.




13 | State of the art: dechanneling of projectile ions
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[1] Kolasinski et al., PRB 201 2.



