
Parallel Data-Local Training for
Optimizing Word2Vec Embeddings for
Word and Graph Embeddin:s

PRESENTED BY

Gordon E. Moon1, Denis Newman—Griffis2, Jinsung Kim3,
Aravind Sukumaran—Rajam4, Eric Fosler—Lussier2, P. Sadayappan3

•

1Sandia National Laboratories*, 2 The Ohio State University, 3University of Utah, 4Washington State University

*This work was done during the Ph.D. of the first author at The Ohio State University

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell

International Inc. for the U.S.
Department of Energy's National

Nuclear Security Administration under
contract DE-NA0003525.

SAND2019-14021C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Machine Learning Everywhere

Machine Learning is becoming an integral part of everyday life

3 Top-Trending Machine Learning Architecture

Problem:
How to achieve good performance?

4 Machine Learning Frameworks

Machine Learning frameworks like TensorFlow (Google), PyTorch (Facebook) and
CNTK (Microsoft) are facilitating high productivity

PyTorch
m Microsoft ++

Caffe2CNTK
TensorFlow

Problem with Machine Learning framework:
There is a significant gap in the performance achievable by machine learning frameworks and the peak
compute capability of the current architectures

TensorFlow vs. Our approach
Running on the same machine with text8 dataset

Word2Vec TensorFlow Our approach

Training time per epoch 59.02 (s) 1.02 (s)

5 I FLOPs vs. Data Movement

Aspects of Performance
Processor (number of operations)

Memory (data movement)

Pe
rf

or
ma

nc
e

100,000

10,000

1,000

100

10

1

Processor

Memory

1980 1985 1990 1995

Year

2000 2005 2010

Source: John L. Hennessy (Stanford) and David A. Patterson (UC Berkeley) -

6 I Data Movement Cost: Energy Trends

10000

u) 1000
a)
=
o 100
'51c)
E 10

1

The relative energy cost of data movement vs.
computation keeps increasing (20x —> 85X)

FLOPs are free; data movement is not

d 6 .4? -4? 4\ a. •cc%ik, ..• sc. ii- e e.1/44s, „INc, A., ,c, 4z. .(.. 4k,
R 64° o" o* cl.. cik

4° 441- '<' 6‘ cf*
4(<, e # 00 • 45mm

0
o
ic. 11nm (2018)

Ne
Source: Jim Demmel (UC Berkeley) and John Shalf (LBL)

Solution:
0 Minimization of data movement overheads
0 Architecture-aware Machine Learning algorithm design

7 I Word Vector Representations in NLP

Four kinds of vector semantic models

Hard clustering (e.g., Brown clustering)

Soft clustering (e.g., SVD, NMF, LSA, LDA)

Neural-network-ins • ired models

(e.g., Skip-Gram and CBOW in Word2Vec. ELIVIo,
BER

Mutual-information weighted word co-occurrence metrics

Source: Dan Jurafsky (Stanford). "Vector Semantics"

8 I Outline

1. Word2Vec Word Embedding

2. Skip-gram based Word2Vec with Negative Sampling

3. Performance Challenges in Parallelizing Word2Vec

4. Parallel Attraction-Repulsion based Word2Vec

b. Data Movement Comparison

6. Performance Evaluation

9 I Overview: Neural Word Embeddings

The intuition:
Similar words appear in similar contexts*

More precisely: Similar words have similar distributions of words to their left and right

Neural Word Embeddings
The idea: Directly generate a dense vector to store "most" of the important information
in a low-dimensional embedding space for each word in a fixed vocabulary

word vector for a word "apple"

Fruit 0.47

Sport 0.05

Company 0.25

AI 0.12

Health 0.09

•

*Source: Zellig S. Harris. "Distributional Structure"

i
10 Overview:Word2Vec Word Embedding

I

Word2Vec
Goal: Find word representations that are useful for predicting its surrounding context words

- Context types
° Skip-Gram (SG)

Icenter word (given)
.
+

blue is my favorite color SG models pairwise

\...."2.__ -----"v
probabilities individually

predict predic predict predict

Continuous Bag-of-Words (CBOW)

surrounded words (given)

....... v..x.0"*""*
1::

.. I

blue is my favorite color CBOW uses the average of

surrounded words
'•---- ----..?-
predict predic predict predict

i
11 Overview:Word2Vec Word Embedding

I

Skip-Gram based Word2Vec
c Predicts surrounding "outside" words given the "center" word

center word (given)

+

blue is my favorite color
k,.01 ,..__ --/

predict predie predict predict

Cost/Objective function:

N

11
J09) = —

N
 log p(wordn+ilwordn)

n=1-CC,j=0

For a "center" wordn and an "outside" wordn+i:

exp(< W°ut- W >)n+p nin
log p(wordn+i lwordn) = log v

Ev=i exp(<
wrt, wnin >)

12 I Overview:Word2Vec Word Embedding

Word2Vec
o Objective type

Negative Sampling (NS)

Repulsion Repulsion

Computer system is the combination of hardware, software, user and data. Blue is my favorite color. Wicked is a Broadway musical with music and lyrics.

Attraction

(replaced by
log p(wordn+i lwordn) = log

exp(< wiout

Ev

v
=1 ex13(<

%Tryout, wnt

intractable as the vocabulary

size V > 500, 000 increases

tractable! usually 5< T< 20

log a(< wout. n
>) + log a(—< Iv gut wshn >)

" n+ p

t=1

13 Overview: SG-NS based Word2Vec

Blue is my favorite color.

14 Overview: SG-NS based Word2Vec

Attraction update: the computations that seek to align a word closer to its neighbors in the windows

Repulsion update: the negative-sampling computations

Repulsion updates center word

+
... word 1 ... word 2 ... word 3 ... word 4 ...<Blue is my favorite color>... word 5 ... word 6 ... word 7 ... word 8 ...

Repulsion updates

1

1

Input
word

___S.1}•2____
Attraction updates

where window size = 2 and the number of negative samples = 2

blue blue blue is is is favorite favorite favorite color color color

Target
word

my word 2 word 6 my word 1 word 7 my word 4 word 5 my word 3 word 8

Update
type

A R R A R R A R R A R R

1 5 Overview: SG-NS based Word2Vec

Repulsion updates Repulsion updates

n12 n8 n23 n4 n15 n25 nO n18 n10 n2 n9 n6 n13
n20<Blue is rny favorite color. >n14 n21 n26 n17 n5 n1 n24 n11 n27 n19 n3 n16 n22 n7

IS IS

bIlleEEEEEEEEI • nOEEEEEEEEI • n IEEEEEEEEI •

my my

bIlleEEEEEEM •n2EEEEEEED n3EEEEEEED

is

my

blue blue blue

is ECEEEEED • n4ECEEEEED • n5ECEEEEED

my my my

is ECEEEEED • n6ECEEEEED • n7ECEEEEED •

favorite favorite favorite

is ECEEEEED • n8ECEEEEED • n9ECEEEEED •

Attraction updates

blue blue blue

my® • n I EEEEEEEEI •nl IEEEEEEEEI •

ts ts is

my® • n12 ECEEEEED • n13ECEEEEED •

favorite favorite favorite

myEEEEEEED • n14 ECEEEEED • n15ECEEEEED •

color color color

my® • n16 ECEEEEED • n17ECEEEEED •

is is is

favoriteEEEE= on18® • n19 EEEEEEEEI •

my my my

favoriteEEEE= •1120EEEEEEEEI n21 EEEEEEEEI •

color color color

favoriteEEEEEEED •1122EEEEEEM •

my my my

color , , , • n24EEEEEEED En25® •

favorite favorite favorite

color 1111111 , •n26® •n27EEEEEEED •

16 Performance Challenges in ParallelizingWord2Vec

The total data movement cost:

SL(1 + W(1 + 4K + 8K(T + 1)))

where
S: the total number of sentences over the corpus
L: the number of word tokens in each sentence

W: (2Xwindow_size) — (2Xwindow_startIdx)
T: the number of negative samples

Data movement is the key bottleneck
A large number of dot-product computations between the
embedding vectors is inherently memory-bandwidth limited

repeat
for sentence = 0 to S — 1 do

L = number of word tokens in sentence
for word = 0 to L — 1 do

center_word = corpus[sentence][word]
window_startldx = random_uniform() % window_size
for context = window_startldx to 2 x window_size — window_startldx do

if context != window_size then
input_word = corpus[sentence][word - window_size + context]
Initialize temp[0 : K-1] to 0
for t = 0 to num_negative_samples do

if t = 0 then
target_word = center_word, label = 1

else
target_word = random_uniform() % V, label = 0

sum = 0

for k = 0 to K — 1 do

sum +=
Win[input_word][k] x wout[target_word][k]

end

gradient = (label — sigmoid(sum)) x learning_rate

for k = 0 to K — 1 do
temp[k] += gradient x Wout[target_word][k]
kut[target_word][k] += gradient x W,„[input_word][k]

end

end

for k = 0 to K — 1 do
W.[input_word][k] += temp[k]

end

end
end

end
end

until convergence

Minimum time required for data moved:

SL(1 + W(1 + 4K + 8K(T + 1))) x bandwidth of the system

How can we reduce data movement cost?

17 I Performance Challenges in ParallelizingWord2Vec

is

blue=oxo snOc=xo • n lcoxoxo •

my my my

blue=oxo on2coxoxo • n3cco= •

blue blue blue

is =oxo I n4amxm on5caccon •

my my my

is =oxo o n aux= • n7oxoxm •

favorite favorite

is o=oxo o n8coox= on9oxoxco •

favorite

blue blue blue

royacmxo onlOcco=co onll=oxo •

is

rnyacmxo In12 =um on13=oxo •

favorite favorite favorite

my= on14 °mama on15== •

color color color

I
my= n16 oxo=o on17=oa •

IS IS IS

fayoriteaccoxo on18 =co= • n19 amxm •

fayoriteoxoxm on20 °mama • n21 o=oxo •

color color color

fayoriteoxoxm on22 =cc= • n23 o=oxo •

coloraoxao • n24 o=oxo on25o=oxo •

favorite favorite favorite

coloraoxao • n26 o=oxo on27o=oxo •

nl
n2
n3

n
n

n
n7
n8

-0 N • ,;•?,0,

Given two matrices A, (M><K) and B, (KXN),
data movement of the ordinary matrix-matrix multiplication with iterative vector-vector
multiplications:

2MNK + MN

data movement for efficient tiled matrix multiplication:

2MNK

AFE where T: cache size

Source: Julien Langou. "Communication Lower Bounds for Matrix-Matrix Multiplication". (2015)

18 Performance Challenges in ParallelizingWord2Vec

The efficiency of matrix-matrix multiplication depends on the size of matrix
° The size of matrix depends on the number of negative samples

negative
samples

nnl

n3

V
6n
n7
n8

1

cz
-(:)'N9:,`?-c"

How can we reformulate multiple vector-vector multiplications to

matrix-matrix multiplication?

19 Parallel Attraction-Repulsion based Word2Vec

Blue is my favorite color.

•• 111
.„ •• 1-14-11 1-11-1 1-11-1 .•

4* 4 yr

.. . 0.% **
* 40:#4. •••••. • ••.•.....•.•:*‘•ick:::*** IRS *♦ 40, * :4: • • ****** ANS

•.• it batch 0 batch 1 batch 2 ••:.0 II II II 0

••
•
•

▪ in=1 •••••

20 I Parallel Attraction-Repulsion based Word2Vec
Sharing negative samples

••

OS.

10. 41/14,

00.
an%

00.

• • °loot.. ••••
• • ♦0.0.0.00,000., # • I#

** **** :;10#41,‘(.46" "'r
......

/

• •
J11:11.47.• ♦ >A4

•441*,t14, •4104,ig

V

rts ..
......

••••
.1:•• ••••

4 4 wts
...word 1...word 2...word 3...word 4...word 5...word 6...word 7...word 8... < B l u e is my favorite color?...word 9...word 10...word 11...word 12...word 13...word 14...word 15...word 16...

•

•••"•141:44•
•••,••• *4'1 •••...•••

•%„••• '••• a.„„
•••• .„„

blue is is

iS EEEEEEEEI • My EEEEEEEEI • favorite EEEEEEED •

is my favorite my my

blue EEEEEEEEI • iS EEEEEEEEI • my === • favorite EEED:EED • color EEEEEEEEI •

my favorite color color favorite

blue EEEEEEED • Is EEEEEEED • My ED:=E0 • faVorite EEED,0,0 • color EEEEEEED •

word 1
word 6
word 10
word 12

batch 0

Min

M ou t

word 3
word 4
word 7
word 8
word 11
word 13
word 15
word 16

batch 1 e

M in

M out

•• •• •%.
•• N•• ••
•• •• ••
NN x ••••• ••
•• NN ••
NN X N• NN
N• s• ••1.
Vt X U ••..

.. 111 18 U..

1% I 1111 1.1..

4 w v * *

word 2
word 5
word 9
word 14

batch 2

M in

M ou t

Attraction updates Repulsion updates

21 I Parallel Attraction-Repulsion based Word2Vec

The impact of time and convergence across different mini-batch sizes

One Billion Word Benchmark One Billion Word Benchmark
-

0
P• -x-WordSim-353 -SimLex-999

in 1000

0
1 8 16 24 32 40 48 56 64 72 80

;a:), 0.8

c/o 0.6

,L1 0.4

cio 0.2

0

X X XX)(XXX)C

0—e—e—e—e—e—e—e—e—e—o

1 8 16 24 32 40 48 56 64 72 80

Batch Size Batch Size

Mini-batch size vs. Training time Mini-batch size vs. Convergence

22 I Parallel Attraction-Repulsion based Word2Vec

Three matrix-matrix multiplications required for Repulsion phase

shared memory

oo

Compute

gradients
0

Mout

...
...

••

•.
•

B 1

M grad

o

•
K 1

.**
..*
• Compute

update values of Mout

shared memory
o K-1

N/

Min

o

B-1

.•

shared

.*.
. Compute

update values of Min

memory

0o

M grad

o K 1

N.7

Mout

Min_update

2D-tiled matrix-matrix multiplications using shared-memory

o

0 1 1

23 Parallel Attraction-Repulsion based Word2Vec

Data movement analysis
The total data movement cost:

S (L(Attraction phase) + B (Repulsion phase))

s (L(1 + W(1 + 8K))
L

B
(
6HBK

H + 4BK + 4KH + 2HB))
Art

where
S: the total number of sentences over the corpus
L: the number of word tokens in each sentence

W: (2Xwindow_size) — (2Xwindow_startIdx)
K: embedding vector size
B: mini-batch size
H: the number of shared negative samples

T: cache size

#pragma omp parallel num_threads(number of threads)
Distribute S sentences in the corpus into multiple threads
tld = thread id

re
Spt
peat

number of threads

for sentence = tld x Spt to (tld + 1) x Spt — 1 do
L = number of word tokens in sentence

label = 1
for word = 0 to L — 1 do

center_word = corpus[sentence][word]
w'ndow startldx = random uniform() % window size
for context = window startIdx to 2 x window_size — window_startldx do

if context != wind6w size then
input word = corpus[sentence][word - window_size + context]
targeT word = center_word
sum = 0
for k = 0 to K — 1 do

sum += Win[input_word][k] x Wout[target_word][k]
end
gradient = (label — sigmoid(sum)) x learning_rate
for k = 0 to K — 1 do

temp = gradient x Wout[target word][k]
Wout[target word][k] += gradient x Win[input_word][k]
Win[input_vTord][k] += temp

end
end

end
end

Attraction phase

label = 0
B = batch_size, num_batch = L / B

=for batch 0 to num_batch — 1 do
min_pos = batch x B, max_pos = min_pos + B — 1
if (min_pos<=window_size-1) 11 (L-1—min_pos <= window_size-1) then

rep_window_size = random_uniform() % window_size
else

rep_window_size = random_uniform() % (2 x window_size)
end
0 = num_negative_samples x rep_window_size
shared_ns[0:0-1] = random_uniform() % V
memcpy(Min[0:B-1][0:K-1], Win[corpus[sentence][min_pos:min_pos+B-1]][0:K-1])
memcpy(mout[0:0-1][0:K-1], Wout[shared_ns[0:0-1],1[0:K-1])
M rad [0:0-1][0:B-1] = sgemm(Mout[0:0-1][0:K-1], Min[0:B-1][0:K-1])
grad [0:0-1][0:B-1] = (label—sigmoid(M-grad [0:0-1][0:B-1])) x learning_rate

Mout_update[0:0-1][0:K-1] = sgemm(Mgrad[0:0-1][0:B-1], min[0:B-1][0:K-1])
[0:B-1][0:K-1] = sgemm(K.ad[0:0-1][0:B-1],Min u date mout[0:0-1][0:K-1])

add(Ki[corpus[sentence][min_pos:min_pos+B-1]][0:K-1],
M

mm.pdatj0:13-1][0:K-1])
- outupdate [0:0-1][0:K-1])-add(Wout[shared_ns[0:0-1]][0:K-1],

end

Repulsion phase

end
until convergence

24 Data Movement Comparison

Data movement

Attraction phase

Repulsion phase

Total data movement

LEI
1 Original Word2Vec Our approach

s(L(1 + W(1 + 8K))) s(L(1 + W(1 + 8K)))

SWW(1 + 4K + 8KT)))
s

+ H + 4BK + 4KH + 2HB))
(L (6HBK

B Arr

L 6HBK
s(La + W(1 + 4K + 8K(T + 1)))) s(La + W(1 81()) H 4BK 4KH 2HB))+ + + + ++

B
(

-Fr

For the real One Billion Word Benchmark dataset

S N L K WT H B r

30,607,741 804,269,958 N/S 128 16 5 80 24 35MB

Data movement

Attraction phase

Repulsion phase

Total data movement

where
S: the total number of sentences over the corpus
N: the total number of word tokens over the corpus
L: the number of word tokens in each sentence
W: (2xwindow_size) — (2Xwindow startIdx)

K: embedding vector size
B: mini-batch size
H: the number of shared negative samples
t: cache size

Original Word2Vec (byte) Our approach (byte)

72487241 x 106

85665204 x 106

19239278 x 105

15109321 x 106

1

5.67x reducedi

25 Performance Evaluation: Graph Embedding

Node2Vec

Input: Graph G: (V nodes, E edges and W: weights), p: return, q: in-out, R: number
of random walks for each node, V: number of unique nodes, L: length of each walk,
K: number of hidden units, C: window size
Output: Win:VxK input node embedding matrix, Wout: K x V output node
embedding matrix

1: n- <— Preprocess(G, p, q)
2: Generate new G': (V , E, n-)
3: Initialize random_walks
4: for r = 0 to R — 1 do
5: for v = 0 to V — I do
6: Initialize walk
7: for walk_iter = 0 to L — 1 do
8: sample_node <— Sampling(C, n-)
9: walk <— [walk; sample_node]

10: end for
11: random walks [random walks; walk]
12: end for
13: end for
14: // random_walks: pre-generated dataset to use it as an input for Word2Vec
15: repeat
16: Win,Wout <-1 SG-NS based Word2Vec(random_walks, K, C)I
17: until convergence

training time for Word2Vec within Node2Vec —

total training time for Node2Vec
72.635360(s)

= 89. 12% (BlogCatalog)
81.505412(s)

26 Performance Evaluation: Setup

Datasets

Text datasets --1

Labeled
graph datasets

Unlabeled _..1
graph datasets

Dataset

V
of unique words

OR
of unique nodes

S
of sentences over the corpus

OR
of random walks over the graph

N
of word tokens over the corpus

OR
the sum of the length of the walks in S

text8 71,291 9,385 16,718,843

1 B-Word 555,514 30,607,741 804,269,958

BlogCatalog 10,313 103,120 8,352,720

PPI 3,891 38,900 3,150,900

Wikipedia-2006 4,778 47,770 3,869,370

Facebook 4,040 40,390 3,271,590

ASTRO-PH 18,773 187,720 15,205,320

Machine configuration

Machine Details

CPU
Intel(R) Xeon(R) CPU E5-2680 v4 (14 cores and 28 threads),

128 GB RAM, 76.8 GB/s bandwidth, 35 MB L2 cache; ICC 18.0.3

GPU
Tesla P100 PCIE, 56 SMs, 64 cores/MP, 16 GB Global Memory,

732 GB/s bandwidth, 4 MB L2 cache; CUDA 9.2.88

27 Performance Evaluation: Evaluation Metrics

For the word embeddings learned from Word2Vec
0 Intrinsic evaluations

o WordSim-353: 353 pairs rated for similarity of meaning

o SimLex-999: 999 pairs rated specifically for similarity

o

O P n 1-1 i•-• 1-1 extrac

o Sentiment flnalysis: positive/negative binary classitication ot INIDI3, using a U.

cul the node embeddings learned from Word2Vec
0 Extrinsic evaluations

o All11-11-1aDel classification, using a logistic regression

O Link prediction, using a SVM

28 Performance Comparison: Quality

Intrinsic evaluations for word embeddings

—N— Word2Vec-cpu pWord2Vec-cpu —II— wombatSGNS-cpu —A— pSGNScc-cpu

0.8

0.5

text8

1 2 3 4 5 6 7 8 9 10
Training Epoch

0.35

t
'cip 0.25

0.2

text8

1 2 3 4 5 6 7 8 9 10
Training Epoch

0.7

0.68

r,,1-; 0.66
e'.'
.p., 0.64
c/D
-c)
'5 0.62

0.6

0.58

—0— PAR-Word2Vec-cpu

1B-Word

1 2 3 4 5 6 7 8 9 10
Training Epoch

•

• oc• • accSGNS-gpu 1-0.• PAR-Word2Vec-gpu

0.38

0.36

I 0.32
cip

Number of iterations vs. Word similarity scores

higher the better

0.3

0.28

1B-Word

1 2 3 4 5 6 7 8 9 10
Training Epoch

29 Performance Comparison: Quality

Intrinsic evaluations for word embeddings

Model
text8 1B-Word

WordSim-353 SimLex-999 WordSim-353 SimLex-999

Word2Vec-cpu 0.701 (±0.010) 0.308(±0.014) 0.653(±0.004) 0.344(±0.007)

pWord2Vec-cpu 0.701 (±0.008) 0.296(±0.008) 0.656(±0.003) 0.348(±0.002)

wombatSGNS-cpu 0.694(±0.013) 0.278(±0.009) 0.653(±0.001) 0.350(±0.002)

pSGNScc-cpu 0.716(±0.008) 0.301 (±0.009) 0.657(±0.003) 0.350(±0.001)

PAR-Word2Vec-cpu 0.705(+0.008) 0.302(+0.003) 0.663(±0.002) 0.341 (±0.003)

accSGNS-gpu 0.704(±0.004) 0.303(±0.002) 0.659(±0.003) 0.337(±0.002)

PAR-Word2Vec-gpu 0.698(+0.008) 0.323(+0.005) 0.680(±0.004) 0.368(±0.004)

higher the better

30 Performance Evaluation: Evaluation Metrics

For the word embeddings learned from Word2Vec

O

O

Extrinsic evaluations
Relation extraction: SemEval-2010 shared task, using a CNN

Sentiment analysis: positive/negative binary classification of I DB, using a LSTM

chL 11VU1, cmLLudings learned from Word2NL,
• 1_:,Atrinsic evaluations

o All11-11-1aDel classification, using a logistic regression

O Link prediction, using a SVM

31 Performance Comparison: Quality

Fxtrinsic evaluations for word embeddings

Model

text8 1B-Word

Relation
Extraction

Sentiment
Analysis

Relation
Extraction

,,entiment
Analysis

Word2Vec-cpu 0.671 (±0.010) 0.795(±0.006) 0.689(±0.009) 0.782(±0.008)

pWord2Vec-cpu 0.669(±0.006) 0.791 (±0.004) 0.686(±0.008) 0.779(±0.007)

wombatSGNS-cpu 0.666(±0.007) 0.776(±0.005) 0.691 (±0.010) 0.783(±0.005)

pSGNScc-cpu 0.666(±0.009) 0.790(±0.005) 0.685(±0.010) 0.784(±0.006)

PAR-Word2Vec-cpu 0.665(+0.010) 0.783(+0.008) 0.691 (±0.008) 0.780(±0.004)

accSGNS-gpu 0.680(±0.010) 0.796(±0.007) 0.689(±0.006) 0.787(±0.006)

PAR-Word2Vec-gpu 0.663(+0.010) 0.807(+0.004) 0.623(±0.009) 0.780(±0.004)

higher the better

32 Performance Evaluation: Evaluation Metrics

o

o

o

o

For the node embeddings learned from Word2Vec
Extrinsic evaluations

0 Multi-label classification, using a logistic regression

° Link prediction, using a SVM

33 Performance Comparison: Quality

Fxtrinsic evaluations for node embeddings

Model

BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH

Multi-label Classification Link rrediction

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Micro F1

Word2Vec-cpu 0.429 0.306 0.213 0.188 0.461 0.081 0.699 0.723

pWord2Vec-cpu 0.422 0.304 0.211 0.187 0.478 0.088 0.691 0.721

wombatSGNS-cpu 0.429 0.310 0.211 0.184 0.464 0.079 0.692 0.718

pSGNScc-cpu 0.422 0.301 0.211 0.184 0.442 0.070 0.686 0.692

PAR-Word2Vec-cpu 0.425 0.304 0.223 0.194 0.480 0.101 0.687 0.723

accSGNS-gpu 0.423 0.297 0.215 0.190 0.460 0.082 0.698 0.721

PAR-Word2Vec-gpu 0.420 0.291 0.217 0.184 0.456 0.071 0.672 0.720

Average std dev. ±0.006 ±0.011 ±0.006 ±0.006 ±0.006 ±0.008 ±0.001 ±0.002

higher the better

34 Performance Comparison: Speedup

PAR-Word2Vec-cpu achieved up to 9x speedup over Word2Vec-cpu

Word2Vec-cpu pWord2Vec-cpu wombatSGNS-cpu —A— pSGNScc-cpu

0.8

0.6

0.2

text8

2 4 6
Training Time (s)

8

0.3

c, 0.25
ch
7̀.' 0 2

0 15

0.1

0.05

0

text8

2 4 6
Training Time (s)

8

0.6

cn 0.5

0.4
i7D
-2 0.3

0.2

0.1

0

—0— PAR-Word2Vec-cpu

1B-Word

100 200
Training Time (s)

300

Training time vs. Word similarity scores

higher the better

•

• oc• • accSGNS-gpu 1-0.• PAR-Word2Vec-gpu

1B-Word

100 200
Training Time (s)

300

35 Performance Comparison: Speedup

PAR-Word2Vec-cpu achieved up to 9x speedup over Word2Vec-cpu

Model
Text Dataset Labeled Graph Dataset Unlabeled Graph Dataset

text8 1B-Word BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH

Word2Vec-cpu 7.32 315.46 6.43 3.13 2.95 2.55 12.54

pWord2Vec-cpu 2.20 86.63 1.56 0.45 0.55 0.53 2.66

wombatSGNS-cpu 2.09 90.04 1.43 0.47 0.58 0.71 2.88

pSGNScc-cpu 1.72 58.20 1.46 0.70 0.75 0.84 2.77

PAR-Word2Vec-cpu 1.02 37.43 0.83 0.33 0.28 0.31 1.43

accSGNS-gpu 4.79 185.31 2.23 0.66 0.62 1.37 6.44

PAR-Word2Vec-gpu 0.98 32.60 0.72 0.20 0.21 0.27 1.08

Comparison of the training time in seconds per epoch

lower the better

36 I Conclusions

FLOPs are free, but data movement is expensive
Architecture-aware machine learning algorithm design/implementation is critical

Parallelization of Word2Vec
Devised an efficient Word2Vec algorithm for multi-core CPUs and GPUs by improving
the performance of negative sampling method through increasing data reuse and
decreasing data movements

Achieved significant speedup compared to the other existing state-of-the-art
implementations

Thank you

