This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 14021C

Parallel Data-Local Training for
Optimizing Word2Vec Embeddings for

Word and Graph Embeddings

PRESENTED BY

Gordon E. Moon?', Denis Newman—Griffis®, Jinsung Kim?,

Aravind Sukumaran—Rajam4, Eric Fosler—Lussier?, P. Sadayappang

— — Qi

1Sandia National Laboratories*, 2The Ohio State University, 3University of Utah, #Washington State University safis el abaraionies o

multimission laboratory managed and
operated by National Technology and
Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell
*This work was done during the Ph.D. of the first author at The Ohio State University Dot of Ercrars Kattoral
Nuclear Security Administration under
contract DE-NA0003525.

2 | Machine Learning Everywhere

Machine Learning is becoming an integral part of everyday life ‘

3 I Top-Trending Machine Learning Architecture

Problem:

> How to achieve good performance?

TURING TENSOR CORES

-"’ ’ < |
v N

<
#legiige

< -

[

Machine Learning Frameworks

Machine Learning frameworks like TensorFlow (Google), PyTorch (Facebook) and
CNTK (Microsoft) are facilitating high productivity

B® Microsoft

¥) OGPyTorch ENTK & Caffe2

Tensor

Problem with Machine Learning framework:

° There is a significant gap in the performance achievable by machine learning frameworks and the peak
compute capability of the current architectures

TensorFlow vs. Our approach
> Running on the same machine with text8 dataset

Word2Vec TensorFlow Our approach

Training time per epoch 59.02 (s) 1.02 (s)

5 | FLOPs vs. Data Movement

Aspects of Performance
° Processor (number of operations)

> Memory (data movement)

100,000

100,000 e seseseeee st g TS

000 |ttt e

Processor

Performance

100 ettt ittt B e

10 ettt

1980 1985 1990 1995 2000 2005 2010

Year

Source: John L. Hennessy (Stanford) and David A. Patterson (UC Berkeley)

s I Data Movement Cost: Energy Trends

10000
56+®e°

12

The relative energy cost of data movement vs.

g 109 computation keeps increasing (20X — 85X)
S
O 100
o
Q .
o 10 FL.OPs are free; data movement is not
1
Q L . . X
E & & PSS S
F & & & L& &
& & X &5
RO &Y NS m45mm
O & = 11nm (2018)
V
Source: Jim Demmel (UC Berkeley) and John Shalf (LBL)
Solution:

o Minimization of data movement overheads

o Architecture-aware Machine Learning algorithm design

7 I Word Vector Representations in NLP

Four kinds of vector semantic models

> Hard clustering (e.g., Brown clustering) |
° Soft clustering (e.g., SVD, NME, LSA, LDA)

° Neural-network-inspired models
° (e.g.,|Skip-Gram and CBOW in Word2Vec} ELLMo, |
BERT

° Mutual-information weighted word co-occurrence metrics

Source: Dan Jurafsky (Stanford). “Vector Semantics” |

s | Outline

Word2Vec Word Embedding

Skip-gram based Word2Vec with Negative Sampling
Performance Challenges in Parallelizing Word2Vec
Parallel Attraction-Repulsion based Word2Vec

Data Movement Compatrison

I L B o

Performance Evaluation

9 I Overview: Neural Word Embeddings

The intuition:
° Similar words appear in similar contexts*

> More precisely: Similar words have similar distributions of words to their left and right

Neural Word Embeddings

° The idea: Directly generate a dense vector to store “most” of the important information
in a low-dimensional embedding space for each word in a fixed vocabulary

word vector for a word “apple”

Fruit

0.47

Sport

0.05

Company

0.25

Al

0.12

Health

0.09

*Source: Zellig S. Harris. “Distributional Structure”

Overview: Word2Vec Word Embedding |

Word2Vec ‘

> Goal: Find word representations that are useful for predicting its surrounding context words
> Context types
> Skip-Gram (SG)

center word (given)

v
blue is my favorite color SG;“‘;‘,‘I?:,S pairwlee
robabpilities indiviaually
L, S P
predict predict predict
> Continuous Bag-of-Words (CBOW)
surrounded words (given)

|}
.......
..............
........
.....

blue is my favorite COIOr CBOW uses the average of

X A : - surrounded words
predict predict predict

4
. O e .

11 I Overview:Word2Vec Word Embedding

Skip-Gram based Word2Vec

° Predicts surrounding “outside” words given the “center” word
center word (given)

v
blue is my favorite color

predict predict predict

° Cost/Objective function:

N
J6) = =Y Y logp(wordy,lwordy)

n=1-C<j=<C,j#0
° For a “center” wordy, and an “outside” word, 4;:

exp(< WIS, Wi >)

lo word,.;lword,,) = lo — —
gp(wordulworda) = 108 G o< wert, wp >)

Overview: Word2Vec Word Embedding

Word2Vec
°> Objective type
° Negative Sampling (NS)

Repulsion Repulsion

Computer system is the combination of hardware, software, user and data. Blue is my favorite color. Wicked is a Broadway musical with music and lyrics.

-/

Attraction

intractable as the vocabulary

SOoUt =in — .
exp(< Wy j, Wer>) size V > 500,000 increases |
Yy—1 €Xp(< WU, W >)

log p(word,|word,,) = log

replaced by _ tractable! usually 5 < T < 20

T
log o(< WOUt, Wit >) + z log 0(—< WU, Win >) ‘

13 1 Overview: SG-NS based Word2Vec

Blue is my favorite color.

14 | Overview: SG-NS based Word2Vec

Attraction update: the computations that seek to align a word closer to its neighbors in the windows

Repulsion update: the negative-sampling computations

Repulsion updates center word Repulsion updates

7 7 —< Y

v

..word1...word 2 ... word 3 ... word 4 ...<B|ue iS my favorite Color_>...word5 ...word6 ...word 7 ... word 8 ...
e |

Attraction updates

where window size = 2 and the number of negative samples = 2

:22:‘; blue blue blue is is is favorite favorite favorite color color color I
Target d2 word6 d1 word7 d4 word5 d3 word8

word iy eeE —— iy er el my wor wor my wor wor
Update A 2 2 A = R 5 5 o A 5 B,

type (

5 1 Overview: SG-NS based Word2Vec

Repulsion updates Repulsion updates

/,___l’l%‘ _ ‘g' ‘;q_;a \
: TN SRS S 7R \
’l/l.:\?;-‘ Qﬁ?’«“‘//“k‘\

)

n12 n8 n23 n4 n15 n25 n0 n18 n10 n2 n9 né n13 n20<B|ue iS my favorite Co|or_>n14 n21 n26 n17 n5 n1 n24 n11 n27 n19 n3 n16 n22 n7

SARAA

Attraction updates

blue blue blue
myunnnuinlo ||||||||| inll ||||||||| i
blue blue blue is is is is is is
-is ||||||||| =ﬂ4 ||||||||| =H< ||||||||| i Emyuunnninlz ||||||||| inl |||||||||| i Eéfavoritﬁcllllllllinlglllllllllinlgllllllllli
is is is : my my my favorite favorite faV(_)riteE my my my my my my :
Eblue[llllllll.no ||||||||| H n | COrrTm =] -is ||||||||| in6 ||||||||| il’l/ ||||||||| = Emy”nnnu Bn |4 oo Bn | SO =l favorite | ill20 Bn21 =l ECOIOI‘ |||||||| B n24 omrrrm B2 5o]
my my myé favorite favorite favorite color color color color color color favorite favorite favoriteé
blue T Ep) CCOE H) 3CTm =] E:is """"" ingl_u_l_l_l_l_l_l ingl_u_u_u_u i myu.l..l.l..l.l..l.] inlél_u_u_u_u inl/ i ngavoritelllllll] in_ZZIllllllll En23 5] colo]‘ IIIIIIII 26O Bp) 7 OTs 8

6 | Performance Challenges in Parallelizing Word2Vec

The total data movement cost:

SL(1 + W(1 + 4K + 8K(T + 1)))

where

S: the total number of sentences over the corpus
L: the number of word tokens in each sentence
W: 2Xwindow_size) — (2Xwindow_startldx)

T: the number of negative samples

Data movement is the key bottleneck

° A large number of dot-product computations between the
embedding vectors is inherently memory-bandwidth limited

Minimum time required for data moved:

repeat

for sentence =0 to S — 1 do

L = number of word tokens in sentence

forword =0tolL — 1do

center_word = corpus[sentence][word]

window_startldx = random_uniform() % window_size

for context = window_startldx to 2 X window_size — window_startldx do
if context !=window_size then

input_word = corpus[sentence][word - window_size + context]
Initialize temp[0 : K-1] to O
for t = 0 to num_negative_samples do

if t == 0 then

target_word = center_word, label = 1
else

target_word = random_uniform() % V, label =0
sum =0

fork=0toK-1do
sum += W;,[input_word][k] x W,,.[target_word][k]
end

gradient = (label — sigmoid(sum)) X learning_rate

fork=0toK-1do
temp[k] += gradient x W,,[target_word][k]
W, [target_word][k] += gradient x W;,[input_word][k]
end

end

fork=0to K- 1do
Wi linput_word][k] += templk]
d

en

end
end

end

end
until convergence

SL(1+W(1+ 4K+ 8K(T + 1))) X bandwidth of the system
How can we reduce data movement cost?

Performance Challenges in Parallelizing Word2Vec

[} MY §n] 2 oo @n

o MY 8n 1 6 o 8n | 7o

blue blue blue

MY 8n | (oo en | | o 8

13mmmm 8

favorite favorite

a My 8n 14 oo 8n | Soomm 8

color color

avoritemIIIn

is

n1 8 oo an 19 omrm

o —
2 m“ lma'
(=) =<
]
<
]
<

[ssuasan:] B[O &

avoritermrm @n2(mormm an? | momm e

(<]
e =
g

avoriteom @n2?2 mmm Bn2 3 mom B

my

favorite

my

favorite favorite

my

coloromm & n24 mrmm an2 S o 8

coloromm B n2 6 mrrm an2 7 o 8

Given two matrices A, (MXK) and B, (IKXN),

° data movement of the ordinary matrix-matrix multiplication with iterative vector-vector

multiplications:

2MNK + MN

> data movement for efficient tiled matrix multiplication:

2MNK

VT

—>

where T: cache size

(4]

KRS
L%

Q A
S AN
FeStgS

Source: Julien Langou. “Communication Lower Bounds for Matrix-Matrix Multiplication”. (2015)

8 | Performance Challenges in Parallelizing Word2Vec

The efficiency of matrix-matrix multiplication depends on the size of matrix

° The size of matrix depends on the number of negative samples

nl
. n2
3
negative 3
samples nf
d

n

How can we reformulate multiple vector-vector multiplications to
matrix-matrix multiplication?

19 | Parallel Attraction-Repulsion based Word2Vec

Blue is my favorite color.

20 | Parallel Attraction-Repulsion based Word2Vec -

Sharing negative samples

: |
5 n" . /) e \ % XY \ W W
R g ! - A ,',l A A | = ! o n W "
a " - 1 | |l | |l | | ' un n \ Y W
w ¥ ¥ w v w W W v oW w * w v w ¥

...word 1...word 2...word 3...word 4...word 5...word 6...word 7...word 8... < Blue iS my faVO rite COIOr_>...word 9...word 10...word 11...word 12...word 13...word 14...word 15...word 16

\Sit s

bl_ue
my CECErTD =
blue is is
: 1 : batch 0 batch 1 & batch 2
i i i 3.8
H H H &9@‘
is O @ my o @ favorite MM B 'S
% S
. . S S
is my favorite my my A Q
- - - E M;,
blue ™™ B islllllllllimylnnnnifavoritemicolorm. Min 43 Mout Mln
WOr
; : word 4
my faV(:mte cozlor cozlor favorite Mout ggid g Mout
H H H word 1 word 11 word 2
H H H word 6 word 13 word 5
H H H word 10 word 15 word 9
blue D™ ® is|||||||||lmy||||||||lIfavoriteEEEDIEEIIco]orEEEEEEEDI word 12 word 16 word 14
Attraction updates Repulsion updates

Parallel Attraction-Repulsion based Word2Vec

The impact of time and convergence across different mini-batch sizes

2 One Billion Word Benchmark 1One Bllllon Word Benchmark

% +W0rd81m 353 -G-SlmLeX 999

‘1000 | 208 '

: :

G N W I— I Y Y I I —K

@ 3‘0.6

O E=

g 500 S04 e e 6 0 66 0 oo

= £

%D 0.2

g

S Q- 0-

— I 8 1624 32 40 48 56 64 72 80 I 8 16 24 32 40 48 56 64 72 80

Batch Size Batch Size

Mini-batch size vs. Training time Mini-batch size vs. Convergence

2 | Parallel Attraction-Repulsion based Word2Vec

Three matrix-matrix multiplications required for Repulsion phase

. »
* s

K-1

Compute
gradients
B-1
sharedémemory _11‘1
N
1
M in
0 K-1
0 — 1 T
= 0-1
“o Mout Mgrad

. *
L} R

. '
* L

update values of M,

sharedrmemory

Compute

update values of M;,

0

. *
L} .®

sharedimemory
K-1 = 0 K-
312 0
6 He6 _ﬂ 3
B) 20 20 :J;
@ M, : : ,
0 B-1 . . @
I:|:> \ Mout
0 0-1
0 '—I_I—>
% B-1
M grad M out_update "«. M grad M in_update

. .
e «®
--

2D-tiled matrix-matrix multiplications using shared-memory

- L]
.

. oS

O-1a

23 | Parallel Attraction-Repulsion based Word2Vec

Data movement analysis

° The total data movement cost:
L(Attraction phase) + %(Repulsion phase)) =

L(1+W(1 + 8K)) + = (6HBK + H + 4BK + 4KH + 2HB)

where

S: the total number of sentences over the corpus
L: the number of word tokens in each sentence
W: 2Xwindow_size) — (2Xwindow_startldx)

K: embedding vector size

B: mini-batch size

H: the number of shared negative samples

T: cache size

#pragma o

mp parallel num_threads(number of threads)

Distribute S sentences in the corpus into multiple threads

tld = thread

rep

id

I{umber of threads
for sentence =tld x S, to (tld + 1) X S, — 1 do

end

L = number of word tokens in sentence
label =1 J
forword =0toL - 1do AttfﬁCtIOH phase
center_word = corpus[sentence][word]
window_startldx = random_uniform() % window_size
for coniext = window_starfldx to 2 x window_size — window_startldx do
if context !=window_size then
input_word = corpus[sentence][word - window_size + context]
target_word = center_word
sum =0
fork=0toK-1do
dsum += Wy, [input_word][k] x W,,[target_word][k]
en
gradient = (label — sigmoid(sum)) X learning_rate
fork=0to K- 1do
temp = gradient x W,,.[target_word][k]
W, [target_word][k] += gradient x W;,[input_word][k]
Wi, [input_word][k] += temp
end
end
end
end
label =0 '
B = batch_size, num_batch = L /B Repulsion phase

for batch = 0 to num_batch — 1 do

min_pos = batch x B, max_pos = min_pos + B — 1
if (min_pos<=window_size-1) || (L—1-min_pos <= window_size—1) then
rep_window_size = random_uniform() % window_size
else
rep_window_size = random_uniform() % (2 x window_size)
end
O = num_negative_samples x rep_window_size
shared_ns[0:0-1] = random_uniform() % V
memcpy(M;,[0:B-1][0:K-1], W;,[corpus[sentence][min_pos:min_pos+B-1]][0:K-1])
memcpy(M,,,[0:0-1][0:K-1], Wout[shared ns[0:0-1]][0:K-1])
Mgyqq[0:0-1][0:B-1] = sgemm(M,,,;[0:0-1][0:K-1], M, [0:B-1][0:K-1])
Mgyqq[0:0-1][0:B-1] = (label-sigmoid(M,4[0:0- 1][0 'B- 1])) x learning_rate
Mout _update[0:0-110:K-1] = sgemm(M, raq[0:0-1][0:B-1], My [0:B-1]I0:K-1])
in update[0:B-1][0:K-1] = sgemm(M, md[O 0-1][0:B-1], Mout[o O-1][0:K-1])
add(lﬁ/m[corpus[sentence][mln pos: min _pos+B-1]][0:K- 1] in_update[0:B-1][0:K-1])
add(W,,[shared_ns[0:0-1]][0:K-1], Moy upaate[0:0-1][0:K-1])

end

until convergence

24 | Data Movement Comparison

Attraction phase

Repulsion phase

Total data movement

For the real One Billion Word Benchmark dataset

S(L(1 + W(1 + 8K)))

S(L(W(1 + 4K + 8KT)))

S(L(1 + W(1 + 4K + 8K(T + 1))))

d

S <L(1 +W(1 + 8K)) + %(

S(L(1 + W(1 + 8K))) ‘
= (6HBK + H + 4BK + 4KH + 2HB)
B" VT

6HBK
VT

where

+ H+ 4BK + 4KH + ZHB))

S: the total number of sentences over the corpus
N: the total number of word tokens over the corpus

S

N

L

K

T/ H | B

L: the number of word tokens in each sentence
T W: (2Xwindow_size) — (2Xwindow_startldx)

30,607,741

804,269,958

N/S

128

16

5180 |24

K: embedding vector size

35 M B B: mini-batch size

H: the number of shared negative samples
T: cache size

Original Word2Vec (byte) Our approach (byte)

Attraction phase
Repulsion phase

Total data movement

131908325¢10°

72487241 x 10°

85665204 x 10°
T —

97% reduced 1

19239278 x 10°
15109321 x 10°
/

13196832 X 10° I

5.67X reduced 1

s | Performance Evaluation: Graph Embedding

Node2Vec

Input: Graph G: (V nodes, E edges and W: weights), p: return, g: in-out, R: number
of random walks for each node, V: number of unique nodes, L: length of each walk,
K: number of hidden units, C: window size
Output: Wj,,: V X K input node embedding matrix, Wy,;: K X V output node
embedding matrix

1: 7 « Preprocess(G, p, q)

2: Generate new G’: (V, E, m)

3: Initialize random_walks

4: forr=0to R —-1do

5 forv=0toV —1do —

6: Initialize walk

7 for walk_iter=0to L — 1do

8 sample_node < Sampling(G’,)

9: walk < [walk; sample_node]
10: end for
11: random_walks «— [random_walks; walk]
12: end for
13: end for
14: // random_walks: pre-generated dataset to use it as an input for Word2Vec
15: repeat

16: Win,Wour < SG-NS based Word2Vec(random_walks, K, C)
17: until convergence

training time for Word2Vec within Node2Vec

total training time for Node2Vec

72.635360(s) o
81505412(5) 89.12% (BlogCatalog)

26 | Performance Evaluation: Setup

Datasets

Text datasets —

Labeled _|
graph datasets

Dataset # of unig;e words # of sentencego?ver the corpus # of word tokergl |é)ver the corpus
of unique nodes | # of random walks over the graph | the sum of the length of the walks in S
text8 71,291 9,385 16,718,843
1B-Word 555,514 30,607,741 804,269,958
BlogCatalog 10,313 103,120 8,352,720
PPI 3,891 38,900 3,150,900
Wikipedia-2006 4,778 47,770 3,869,370
Facebook 4,040 40,390 3,271,590
ASTRO-PH 18,773 187,720 15,205,320
Machine configuration
Machine Details
CPU Intel(R) Xeon(R) CPU E5-268Q v4 (14 cores and 28 threads),
128 GB RAM, 76.8 GB/s bandwidth, 35 MB L2 cache; ICC 18.0.3
GPU Tesla P100 PCIE, 56 SMs, 64 cores/MP, 16 GB Global Memory,
732 GB/s bandwidth, 4 MB L2 cache; CUDA 9.2.88

7 | Performance Evaluation: Evaluation Metrics

For the word embeddings learned from Word2Vec

° Intrinsic evaluations
> WordSim-353: 353 pairs rated for similarity of meaning
> SimLex-999: 999 pairs rated specifically for similarity

o

28

—#— Word2Vec-cpu

0.8

WordSim-353

0.5+

Performance Comparison: Quality

Intrinsic evaluations for word embeddings

pWord2Vec-cpu

1 23 45 6 7 8 910
Training Epoch

0.35

SimLex-999

03

1 23 45 6 7 8 910
Training Epoch

—— wombatSGNS-cpu == pSGNScc-cpu

0.7
0.68
©0.66
0
£0.64
90]
o
50.62
=
0.6
0.58

1B-Word

1 23 45 6 7 8 910
Training Epoch

SimLex-999
o
W
(V)

Number of iterations vs. Word similarity scores

higher the better

=8—PAR-Word2Vec-cpu I =%+ accSGNS-gpu |o PAR-Word2Vec-gp

1 23 45 6 7 8 910
Training Epoch

5

29 | Performance Comparison: Quality

Intrinsic evaluations for word embeddings

Model

text8

1B-Word

WordSim-353

SimLex-999

WordSim-353

SimLex-999

Word2Vec-cpu

0.701 (+£0.010)

0.308 (+0.014

0.653 (+0.004)

0.344 (+0.007

pWord2Vec-cpu

0.701 (+0.008)

0.656 (+0.003)

0.348 (+0.002

wombatSGNS-cpu

0.694 (+0.013)

)
0.296 (+0.008)
0.278 (+0.009)

0.653 (+0.001)

0.350 (+0.002

pSGNScc-cpu

0.716 (+0.008)

0.301 (£0.009)

0.657 (+£0.003)

)
)
)
)

0.350 (+0.001

PAR-Word2Vec-cpu

0.705 (+0.008)

0.302 (+0.003)

0.663 (+0.002)

0.341 (+0.003)

accSGNS-gpu

0.704 (+0.004)

0.303 (+0.002)

0.659 (+£0.003)

0.337 (+0.002)

PAR-Word2Vec-gpu

0.698 (+0.008)

0.323 (+0.005)

0.680 (+0.004)

0.368 (+0.004)

higher the better

30 | Performance Evaluation: Evaluation Metrics

For the word embeddings learned from Word2Vec

o}

o

o

o Extrinsic evaluations
> Relation extraction: SemEval-2010 shared task, using a CNN
° Sentiment analysis: positive/negative binary classification of IMDB, using a LSTM

31 | Performance Comparison: Quality

Extrinsic evaluations for word embeddings

text8 1B-Word
Model Relation Sentiment Relation Sentiment
Extraction Analysis Extraction Analysis
Word2Vec-cpu 0.671 (+0.010) 0.795 (+0.006) 0.689 (+0.009) 0.782 (+0.008)
pWord2Vec-cpu 0.669 (+0.006) 0.791 (£0.004) 0.686 (+0.008) 0.779 (£0.007)
wombatSGNS-cpu 0.666 (+0.007) 0.776 (+0.005) 0.691 (+£0.010) 0.783 (+0.005)

pSGNScc-cpu

0.666 (+0.009)

0.790 (+0.005)

0.685 (+0.010)

0.784 (+0.006)

PAR-Word2Vec-cpu

0.665 (+0.010)

0.783 (+0.008)

0.691 (+0.008)

0.780 (+0.004)

accSGNS-gpu

0.680 (+0.010)

0.796 (+0.007)

0.689 (+0.006)

0.787 (+0.006)

PAR-Word2Vec-gpu

0.663 (+£0.010)

0.807 (+0.004)

0.623 (+0.009)

0.780 (+0.004)

higher the better

12 | Performance Evaluation: Evaluation Metrics

For the node embeddings learned from Word2Vec

o Extrinsic evaluations
° Multi-label classification, using a logistic regression

° Link prediction, using a SVM

3 | Performance Comparison: Quality

Extrinsic evaluations for node embeddings

BlogCatalog PPI Wikipedia-2006 Facebook | ASTRO-PH
Model Multi-label Classification Link Prediction

Micro F; | Macro F; | Micro F; | Macro F; | Micro F; | Macro F; | Micro F; Micro F;
Word2Vec-cpu 0.429 0.306 0.213 0.188 0.461 0.081 0.699 0.723
pWord2Vec-cpu 0.422 0.304 0.211 0.187 0.478 0.088 0.691 0.721
wombatSGNS-cpu 0.429 0.310 0.211 0.184 0.464 0.079 0.692 0.718
pPSGNScc-cpu 0.422 0.301 0.211 0.184 0.442 0.070 0.686 0.692
PAR-Word2Vec-cpu 0.425 0.304 0.223 0.194 0.480 0.101 0.687 0.723
accSGNS-gpu 0.423 0.297 0.215 0.190 0.460 0.082 0.698 0.721
PAR-Word2Vec-gpu 0.420 0.291 0.217 0.184 0.456 0.071 0.672 0.720
Average std dev. +0.006 +0.011 +0.006 +0.006 +0.006 +0.008 +0.001 +0.002

higher the better

34

—#— Word2Vec-cpu

WordSim-353

Performance Comparison: Speedup

PAR-Word2Vec-cpu achieved up to 9X speedup over Word2Vec-cpu

Training Time (s)

pWord2Vec-cpu

SimLex-999

<
it

—— wombatSGNS-cpu =#=pSGNScc-cpu | == PAR-Word2Vec-cpu I =%+ accSGNS-gpu |o PAR-Word2Vec-gp

0.3
0.25

<
S}

0.15

Training time vs. Word similarity scores

1B-Word

1B-Word

SimLex-999

2 < 6 8 0 100 200 300 0 100 200 300
Training Time (s) Training Time (s) Training Time (s)

higher the better

I D e

33 | Performance Comparison: Speedup

PAR-Word2Vec-cpu achieved up to 9X speedup over Word2Vec-cpu

Model

Text Dataset

Labeled Graph Dataset

Unlabeled Graph Dataset

text8 | 1B-Word | BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH
Word2Vec-cpu 7.32 315.46 6.43 3.13 2.95 2.55 12.54
pWord2Vec-cpu 2.20 86.63 1.56 0.45 0.55 0.53 2.66
wombatSGNS-cpu 2.09 90.04 1.43 0.47 0.58 0.71 2.88
pSGNScc-cpu 1.72 58.20 1.46 0.70 0.75 0.84 2.77
PAR-Word2Vec-cpu | 1.02 37.43 0.83 0.33 0.28 0.31 1.43
accSGNS-gpu 4.79 185.31 2.23 0.66 0.62 1.37 6.44
PAR-Word2Vec-gpu | 0.98 32.60 0.72 0.20 0.21 0.27 1.08

Comparison of the training time in seconds per epoch

lower the better

3 | Conclusions

FLOPs are free, but data movement 1s expensive
° Architecture-aware machine learning algorithm design/implementation is critical

Parallelization of Word2Vec

° Devised an efficient Word2Vec algorithm for multi-core CPUs and GPUs by improving
the performance of negative sampling method through increasing data reuse and
decreasing data movements

Achiteved significant speedup compared to the other existing state-of-the-art
implementations

Thank you

