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2 | Machine Learning Everywhere

Machine Learning is becoming an integral part of everyday life ‘




3 I Top-Trending Machine Learning Architecture

Problem:

> How to achieve good performance?
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Machine Learning Frameworks

Machine Learning frameworks like TensorFlow (Google), PyTorch (Facebook) and
CNTK (Microsoft) are facilitating high productivity

B® Microsoft

¥ ) OGPyTorch  ENTK & Caffe2

Tensor

Problem with Machine Learning framework:

° There is a significant gap in the performance achievable by machine learning frameworks and the peak
compute capability of the current architectures

TensorFlow vs. Our approach
> Running on the same machine with text8 dataset

Word2Vec TensorFlow Our approach

Training time per epoch 59.02 (s) 1.02 (s)




5 | FLOPs vs. Data Movement

Aspects of Performance
° Processor (number of operations)

> Memory (data movement)
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Source: John L. Hennessy (Stanford) and David A. Patterson (UC Berkeley)



s I Data Movement Cost: Energy Trends
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Solution:

o Minimization of data movement overheads

o Architecture-aware Machine Learning algorithm design




7 I Word Vector Representations in NLP

Four kinds of vector semantic models

> Hard clustering (e.g., Brown clustering) |
° Soft clustering (e.g., SVD, NME, LSA, LDA)

° Neural-network-inspired models
° (e.g.,|Skip-Gram and CBOW in Word2Vec} ELLMo, |
BERT

° Mutual-information weighted word co-occurrence metrics

Source: Dan Jurafsky (Stanford). “Vector Semantics” |



s | Outline

Word2Vec Word Embedding

Skip-gram based Word2Vec with Negative Sampling
Performance Challenges in Parallelizing Word2Vec
Parallel Attraction-Repulsion based Word2Vec

Data Movement Compatrison
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Performance Evaluation



9 I Overview: Neural Word Embeddings

The intuition:
° Similar words appear in similar contexts*

> More precisely: Similar words have similar distributions of words to their left and right

Neural Word Embeddings

° The idea: Directly generate a dense vector to store “most” of the important information
in a low-dimensional embedding space for each word in a fixed vocabulary

word vector for a word “apple”

Fruit

0.47

Sport

0.05

Company

0.25

Al

0.12

Health

0.09

*Source: Zellig S. Harris. “Distributional Structure”



Overview: Word2Vec Word Embedding |

Word2Vec ‘

> Goal: Find word representations that are useful for predicting its surrounding context words
> Context types
> Skip-Gram (SG)

center word (given)

v
blue is my favorite color SG;“‘;‘,‘I?:,S pairwlee
robabpilities indiviaually
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predict predict predict
> Continuous Bag-of-Words (CBOW)
surrounded words (given)
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11 I Overview:Word2Vec Word Embedding

Skip-Gram based Word2Vec

° Predicts surrounding “outside” words given the “center” word
center word (given)

v
blue is my favorite color

predict predict predict

° Cost/Objective function:

N
J6) = =Y Y logp(wordy,lwordy)

n=1-C<j=<C,j#0
° For a “center” wordy, and an “outside” word, 4;:

exp(< WIS, Wi >)

lo word,.;lword,,) = lo — —
gp(wordulworda) = 108 G o< wert, wp >)



Overview: Word2Vec Word Embedding

Word2Vec
°> Objective type
° Negative Sampling (NS)

Repulsion Repulsion

Computer system is the combination of hardware, software, user and data. Blue is my favorite color. Wicked is a Broadway musical with music and lyrics.

-/

Attraction

intractable as the vocabulary

SOoUt =in — .
exp(< Wy j, Wer>) size V > 500,000 increases |
Yy—1 €Xp(< WU, W >)

log p(word,|word,,) = log

replaced by _ tractable! usually 5 < T < 20

T
log o(< WOUt, Wit >) + z log 0(—< WU, Win >) ‘




13 1 Overview: SG-NS based Word2Vec

Blue is my favorite color.



14 | Overview: SG-NS based Word2Vec

Attraction update: the computations that seek to align a word closer to its neighbors in the windows

Repulsion update: the negative-sampling computations

Repulsion updates center word Repulsion updates

7 7 —< Y

v

..word1...word 2 ... word 3 ... word 4 ...<B|ue iS my favorite Color_>...word5 ...word6 ...word 7 ... word 8 ...
e |

Attraction updates

where window size = 2 and the number of negative samples = 2

:22:‘; blue blue blue is is is favorite favorite favorite color color color I
Target d2 word6 d1 word7 d4  word5 d3 word8

word iy eeE —— iy er el my  wor wor my wor wor
Update A 2 2 A = R 5 5 o A 5 B,

type (




5 1 Overview: SG-NS based Word2Vec

Repulsion updates Repulsion updates
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6 | Performance Challenges in Parallelizing Word2Vec

The total data movement cost:

SL(1 + W(1 + 4K + 8K(T + 1)))

where

S: the total number of sentences over the corpus
L: the number of word tokens in each sentence
W: 2Xwindow_size) — (2Xwindow_startldx)

T: the number of negative samples

Data movement is the key bottleneck

° A large number of dot-product computations between the
embedding vectors is inherently memory-bandwidth limited

Minimum time required for data moved:

repeat

for sentence =0 to S — 1 do

L = number of word tokens in sentence

forword =0tolL — 1do

center_word = corpus[sentence][word]

window_startldx = random_uniform() % window_size

for context = window_startldx to 2 X window_size — window_startldx do
if context !=window_size then

input_word = corpus[sentence][word - window_size + context]
Initialize temp[0 : K-1] to O
for t = 0 to num_negative_samples do

if t == 0 then

target_word = center_word, label = 1
else

target_word = random_uniform() % V, label =0
sum =0

fork=0toK-1do
sum += W;,[input_word][k] x W,,.[target_word][k]
end

gradient = (label — sigmoid(sum)) X learning_rate

fork=0toK-1do
temp[k] += gradient x W,,[target_word][k]
W, [target_word][k] += gradient x W;,[input_word][k]
end

end

fork=0to K- 1do
Wi linput_word][k] += templk]
d

en

end
end

end

end
until convergence

SL(1+W(1+ 4K+ 8K(T + 1))) X bandwidth of the system
How can we reduce data movement cost?




Performance Challenges in Parallelizing Word2Vec

[} MY §n ] 2 oo @n

o MY 8n 1 6 o 8n | 7o

blue blue blue

MY 8n | (oo en | | o 8

13mmmm 8

favorite favorite

a My 8n 14 oo 8n | Soomm 8

color color

avoritemIIIn

is

n1 8 oo an 19 omrm

o —
2 m“ lma'
(=) =<
]
<
]
<

[ssuasan:] B[O &

avoritermrm @n2( mormm an? | momm e

(<]
e =
g

avoriteom @n2?2 mmm Bn2 3 mom B

my

favorite

my

favorite favorite

my

coloromm & n24 mrmm an2 S o 8

coloromm B n2 6 mrrm an2 7 o 8

Given two matrices A, (MXK) and B, (IKXN),

° data movement of the ordinary matrix-matrix multiplication with iterative vector-vector

multiplications:

2MNK + MN

> data movement for efficient tiled matrix multiplication:

2MNK

VT

—>

where T: cache size

(4]

KRS
L%

Q A
S AN
FeStgS

Source: Julien Langou. “Communication Lower Bounds for Matrix-Matrix Multiplication”. (2015)



8 | Performance Challenges in Parallelizing Word2Vec

The efficiency of matrix-matrix multiplication depends on the size of matrix

° The size of matrix depends on the number of negative samples

nl
. n2
3
negative 3
samples nf
d

n

How can we reformulate multiple vector-vector multiplications to
matrix-matrix multiplication?



19 | Parallel Attraction-Repulsion based Word2Vec

Blue is my favorite color.



20 | Parallel Attraction-Repulsion based Word2Vec -

Sharing negative samples
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Parallel Attraction-Repulsion based Word2Vec

The impact of time and convergence across different mini-batch sizes

2 One Billion Word Benchmark 1One Bllllon Word Benchmark
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2 | Parallel Attraction-Repulsion based Word2Vec

Three matrix-matrix multiplications required for Repulsion phase
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23 | Parallel Attraction-Repulsion based Word2Vec

Data movement analysis

° The total data movement cost:
L(Attraction phase) + %(Repulsion phase) ) =

L(1+W(1 + 8K)) + = (6HBK + H + 4BK + 4KH + 2HB)

where

S: the total number of sentences over the corpus
L: the number of word tokens in each sentence
W: 2Xwindow_size) — (2Xwindow_startldx)

K: embedding vector size

B: mini-batch size

H: the number of shared negative samples

T: cache size

#pragma o

mp parallel num_threads(number of threads)

Distribute S sentences in the corpus into multiple threads

tld = thread

rep

id

I{umber of threads
for sentence =tld x S, to (tld + 1) X S, — 1 do

end

L = number of word tokens in sentence
label =1 J
forword =0toL - 1do AttfﬁCtIOH phase
center_word = corpus[sentence][word]
window_startldx = random_uniform() % window_size
for coniext = window_starfldx to 2 x window_size — window_startldx do
if context !=window_size then
input_word = corpus[sentence][word - window_size + context]
target_word = center_word
sum =0
fork=0toK-1do
dsum += Wy, [input_word][k] x W,,[target_word][k]
en
gradient = (label — sigmoid(sum)) X learning_rate
fork=0to K- 1do
temp = gradient x W,,.[target_word][k]
W, [target_word][k] += gradient x W;,[input_word][k]
Wi, [input_word][k] += temp
end
end
end
end
label =0 '
B = batch_size, num_batch = L /B Repulsion phase

for batch = 0 to num_batch — 1 do

min_pos = batch x B, max_pos = min_pos + B — 1
if (min_pos<=window_size-1) || (L—1-min_pos <= window_size—1) then
rep_window_size = random_uniform() % window_size
else
rep_window_size = random_uniform() % (2 x window_size)
end
O = num_negative_samples x rep_window_size
shared_ns[0:0-1] = random_uniform() % V
memcpy(M;,[0:B-1][0:K-1], W;,[corpus[sentence][min_pos:min_pos+B-1]][0:K-1])
memcpy(M,,,[0:0-1][0:K-1], Wout[shared ns[0:0-1]][0:K-1])
Mgyqq[0:0-1][0:B-1] = sgemm(M,,,;[0:0-1][0:K-1], M, [0:B-1][0:K-1])
Mgyqq[0:0-1][0:B-1] = (label-sigmoid(M,4[0:0- 1][0 'B- 1])) x learning_rate
Mout _update[0:0-110:K-1] = sgemm(M, raq[0:0-1][0:B-1], My [0:B-1]I0:K-1])
in update[0:B-1][0:K-1] = sgemm(M, md[O 0-1][0:B-1], Mout[o O-1][0:K-1])
add(lﬁ/m[corpus[sentence][mln pos: min _pos+B-1]][0:K- 1] in_update[0:B-1][0:K-1])
add(W,,[shared_ns[0:0-1]][0:K-1], Moy upaate[0:0-1][0:K-1])

end

until convergence




24 | Data Movement Comparison

Attraction phase

Repulsion phase

Total data movement

For the real One Billion Word Benchmark dataset

S(L(1 + W(1 + 8K)))

S(L(W(1 + 4K + 8KT)))

S(L(1 + W(1 + 4K + 8K(T + 1))))

d

S <L(1 +W(1 + 8K)) + %(

S(L(1 + W(1 + 8K))) ‘
= (6HBK + H + 4BK + 4KH + 2HB)
B" VT

6HBK
VT

where

+ H+ 4BK + 4KH + ZHB))

S: the total number of sentences over the corpus
N: the total number of word tokens over the corpus

S

N

L

K

T/ H | B

L: the number of word tokens in each sentence
T W: (2Xwindow_size) — (2Xwindow_startldx)

30,607,741

804,269,958

N/S

128

16

5180 |24

K: embedding vector size

35 M B B: mini-batch size

H: the number of shared negative samples
T: cache size

Original Word2Vec (byte) Our approach (byte)

Attraction phase
Repulsion phase

Total data movement

131908325¢10°

72487241 x 10°

85665204 x 10°
T —

97% reduced 1

19239278 x 10°
15109321 x 10°
/

13196832 X 10° I

5.67X reduced 1



s | Performance Evaluation: Graph Embedding

Node2Vec

Input: Graph G: (V nodes, E edges and W: weights), p: return, g: in-out, R: number
of random walks for each node, V: number of unique nodes, L: length of each walk,
K: number of hidden units, C: window size
Output: Wj,,: V X K input node embedding matrix, Wy,;: K X V output node
embedding matrix

1: 7 « Preprocess(G, p, q)

2: Generate new G’: (V, E, m)

3: Initialize random_walks

4: forr=0to R —-1do

5  forv=0toV —1do —

6: Initialize walk

7 for walk_iter=0to L — 1do

8 sample_node < Sampling(G’, )

9: walk < [walk; sample_node]
10: end for
11: random_walks «— [random_walks; walk]
12: end for
13: end for
14: // random_walks: pre-generated dataset to use it as an input for Word2Vec
15: repeat

16:  Win,Wour < SG-NS based Word2Vec(random_walks, K, C)
17: until convergence

training time for Word2Vec within Node2Vec

total training time for Node2Vec

72.635360(s) o
81505412(5) 89.12% (BlogCatalog)




26 | Performance Evaluation: Setup

Datasets

Text datasets —

Labeled _|
graph datasets

Dataset # of unig;e words # of sentencego?ver the corpus # of word tokergl |é)ver the corpus
# of unique nodes | # of random walks over the graph | the sum of the length of the walks in S
text8 71,291 9,385 16,718,843
1B-Word 555,514 30,607,741 804,269,958
BlogCatalog 10,313 103,120 8,352,720
PPI 3,891 38,900 3,150,900
Wikipedia-2006 4,778 47,770 3,869,370
Facebook 4,040 40,390 3,271,590
ASTRO-PH 18,773 187,720 15,205,320
Machine configuration
Machine Details
CPU Intel(R) Xeon(R) CPU E5-268Q v4 (14 cores and 28 threads),
128 GB RAM, 76.8 GB/s bandwidth, 35 MB L2 cache; ICC 18.0.3
GPU Tesla P100 PCIE, 56 SMs, 64 cores/MP, 16 GB Global Memory,
732 GB/s bandwidth, 4 MB L2 cache; CUDA 9.2.88




7 | Performance Evaluation: Evaluation Metrics

For the word embeddings learned from Word2Vec

° Intrinsic evaluations
> WordSim-353: 353 pairs rated for similarity of meaning
> SimLex-999: 999 pairs rated specifically for similarity

o
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—#— Word2Vec-cpu

0.8

WordSim-353

0.5+

Performance Comparison: Quality

Intrinsic evaluations for word embeddings

pWord2Vec-cpu

1 23 45 6 7 8 910
Training Epoch

0.35

SimLex-999

03

1 23 45 6 7 8 910
Training Epoch

—— wombatSGNS-cpu == pSGNScc-cpu

0.7
0.68
©0.66
0
£0.64
90]
o
50.62
=
0.6
0.58

1B-Word

1 23 45 6 7 8 910
Training Epoch

SimLex-999
o
W
(V)

Number of iterations vs. Word similarity scores

higher the better

=8—PAR-Word2Vec-cpu I =%+ accSGNS-gpu |o PAR-Word2Vec-gp

1 23 45 6 7 8 910
Training Epoch
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29 | Performance Comparison: Quality

Intrinsic evaluations for word embeddings

Model

text8

1B-Word

WordSim-353

SimLex-999

WordSim-353

SimLex-999

Word2Vec-cpu

0.701 (+£0.010)

0.308 (+0.014

0.653 (+0.004)

0.344 (+0.007

pWord2Vec-cpu

0.701 (+0.008)

0.656 (+0.003)

0.348 (+0.002

wombatSGNS-cpu

0.694 (+0.013)

)
0.296 (+0.008)
0.278 (+0.009)

0.653 (+0.001)

0.350 (+0.002

pSGNScc-cpu

0.716 (+0.008)

0.301 (£0.009)

0.657 (+£0.003)

)
)
)
)

0.350 (+0.001

PAR-Word2Vec-cpu

0.705 (+0.008)

0.302 (+0.003)

0.663 (+0.002)

0.341 (+0.003)

accSGNS-gpu

0.704 (+0.004)

0.303 (+0.002)

0.659 (+£0.003)

0.337 (+0.002)

PAR-Word2Vec-gpu

0.698 (+0.008)

0.323 (+0.005)

0.680 (+0.004)

0.368 (+0.004)

higher the better



30 | Performance Evaluation: Evaluation Metrics

For the word embeddings learned from Word2Vec

o}

o

o

o Extrinsic evaluations
> Relation extraction: SemEval-2010 shared task, using a CNN
° Sentiment analysis: positive/negative binary classification of IMDB, using a LSTM



31 | Performance Comparison: Quality

Extrinsic evaluations for word embeddings

text8 1B-Word
Model Relation Sentiment Relation Sentiment
Extraction Analysis Extraction Analysis
Word2Vec-cpu 0.671 (+0.010) 0.795 (+0.006) 0.689 (+0.009) 0.782 (+0.008)
pWord2Vec-cpu 0.669 (+0.006) 0.791 (£0.004) 0.686 (+0.008) 0.779 (£0.007)
wombatSGNS-cpu 0.666 (+0.007) 0.776 (+0.005) 0.691 (+£0.010) 0.783 (+0.005)

pSGNScc-cpu

0.666 (+0.009)

0.790 (+0.005)

0.685 (+0.010)

0.784 (+0.006)

PAR-Word2Vec-cpu

0.665 (+0.010)

0.783 (+0.008)

0.691 (+0.008)

0.780 (+0.004)

accSGNS-gpu

0.680 (+0.010)

0.796 (+0.007)

0.689 (+0.006)

0.787 (+0.006)

PAR-Word2Vec-gpu

0.663 (+£0.010)

0.807 (+0.004)

0.623 (+0.009)

0.780 (+0.004)

higher the better



12 | Performance Evaluation: Evaluation Metrics

For the node embeddings learned from Word2Vec

o Extrinsic evaluations
° Multi-label classification, using a logistic regression

° Link prediction, using a SVM



3 | Performance Comparison: Quality

Extrinsic evaluations for node embeddings

BlogCatalog PPI Wikipedia-2006 Facebook | ASTRO-PH
Model Multi-label Classification Link Prediction

Micro F; | Macro F; | Micro F; | Macro F; | Micro F; | Macro F; | Micro F; Micro F;
Word2Vec-cpu 0.429 0.306 0.213 0.188 0.461 0.081 0.699 0.723
pWord2Vec-cpu 0.422 0.304 0.211 0.187 0.478 0.088 0.691 0.721
wombatSGNS-cpu 0.429 0.310 0.211 0.184 0.464 0.079 0.692 0.718
pPSGNScc-cpu 0.422 0.301 0.211 0.184 0.442 0.070 0.686 0.692
PAR-Word2Vec-cpu 0.425 0.304 0.223 0.194 0.480 0.101 0.687 0.723
accSGNS-gpu 0.423 0.297 0.215 0.190 0.460 0.082 0.698 0.721
PAR-Word2Vec-gpu 0.420 0.291 0.217 0.184 0.456 0.071 0.672 0.720
Average std dev. +0.006 +0.011 +0.006 +0.006 +0.006 +0.008 +0.001 +0.002

higher the better
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—#— Word2Vec-cpu

WordSim-353

Performance Comparison: Speedup

PAR-Word2Vec-cpu achieved up to 9X speedup over Word2Vec-cpu

Training Time (s)

pWord2Vec-cpu

SimLex-999

<
it

—— wombatSGNS-cpu =#=pSGNScc-cpu | == PAR-Word2Vec-cpu I =%+ accSGNS-gpu |o PAR-Word2Vec-gp

0.3
0.25

<
S}

0.15

Training time vs. Word similarity scores

1B-Word

1B-Word

SimLex-999

2 < 6 8 0 100 200 300 0 100 200 300
Training Time (s) Training Time (s) Training Time (s)

higher the better
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33 | Performance Comparison: Speedup

PAR-Word2Vec-cpu achieved up to 9X speedup over Word2Vec-cpu

Model

Text Dataset

Labeled Graph Dataset

Unlabeled Graph Dataset

text8 | 1B-Word | BlogCatalog PPI Wikipedia-2006 Facebook ASTRO-PH
Word2Vec-cpu 7.32 315.46 6.43 3.13 2.95 2.55 12.54
pWord2Vec-cpu 2.20 86.63 1.56 0.45 0.55 0.53 2.66
wombatSGNS-cpu 2.09 90.04 1.43 0.47 0.58 0.71 2.88
pSGNScc-cpu 1.72 58.20 1.46 0.70 0.75 0.84 2.77
PAR-Word2Vec-cpu | 1.02 37.43 0.83 0.33 0.28 0.31 1.43
accSGNS-gpu 4.79 185.31 2.23 0.66 0.62 1.37 6.44
PAR-Word2Vec-gpu | 0.98 32.60 0.72 0.20 0.21 0.27 1.08

Comparison of the training time in seconds per epoch

lower the better




3 | Conclusions

FLOPs are free, but data movement 1s expensive
° Architecture-aware machine learning algorithm design/implementation is critical

Parallelization of Word2Vec

° Devised an efficient Word2Vec algorithm for multi-core CPUs and GPUs by improving
the performance of negative sampling method through increasing data reuse and
decreasing data movements

Achiteved significant speedup compared to the other existing state-of-the-art
implementations
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