This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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SANDIA ADDRESSES NATIONAL SECURITY CHALLENGES

= Sandia develops advanced technologies to ensure global peace
= Computing is critical
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3 I Exploring the path to neural computing impact
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4 I Neural Algorithm Impacting Broad Areas of Computation
Scientific Computing
Linear Algebra Particle Method Density Method

Circuit per walker Circuit per position

Pattern Matching
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Complexity Analysis

Spiking Sort

Threshold
t=1

Spike

input

Algorithm 1 spiking-sort

Input: set of integers, {z, zs....,zp}; k

> largest possible integer is & — 1

Output: sparse bit matrix of spikes, S

w=0
for j « 1to P, in parallel do

wp; =1

for j + 1to P, in parallel do
for 7 < 1to k do
wj = Uj + Wo;To
if u; >= 0, then
S(r,j) =1

uj =0

> initialize weight matrix to all zeros

© initialize bias weights

&> set neuron threshold

> directly inject initial value as neuron potential
©> initialize bias input

©> initialize bit matrix to all zeros

> neuron potential update (discretized LIF)

&> threshold check for spiking neuron

©> reset neuron potential after spike
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6 I Complexity Analysis

SpikeMin
Finding the min where P = N Finding the min where P < N
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7 I Complexity Analysis

Time Multiplexed Cross Correlation

Inputs Output signal
Integrators * One neuron per routed to Argmax
- Latency function per
Feature Detectors ’T dimension
* Rate Coding ¢ = —
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Temporal Coding: O(n) neurons; O(n) runtime
Parallelize inputs & timesteps: O(n?) neurons; O(1) runtime




8 I Complexity Analysis

Strassen’s Recursive Algorithm for Matrix Multiplication
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9 I Complexity Analysis

Spiking Random Walk Algorithms

Particle method
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Circuit per walker

Path dependent behavior is readily available

Communication is entirely local within particles (embarrassingly parallel)
With unlimited neurons, can run in constant time

Ideal for sparse particles in large spaces

Density method
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Circuit per position
Densities are readily available at all times
Non-local or other complex graphs can easily be implemented

With Iimited neurons, can tradeoff statistical approximation (i.e., number
of walkers) with longer or shorter simulations

Ideal for dense particles in small spaces




10 I Conclusion

Sandia National Laboratories is pursuing neural-inspired computing as a
transtormative approach to computation
> Many opportunities at intersection of neuroscience, math, and computing
> Even loosely brain-inspired concepts have potential to be very impactful on
computing applications

> Excited to see how neuromorphic at large-scale can enable breakthroughs

Thank you!



