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SANDIA ADDRESSES NATIONAL SECURITY CHALLENGES

Sandia develops advanced technologies to ensure global peace
Computing is critical
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3 Exploring the path to neural computing impact
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4 Neural Algorithm Impacting Broad Areas of Computation
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5 I Complexity Analysis

Spiking Sort

Algorithm 1 spiking-sort

Input: set of integers, {x1, rs, , xp}; k > largest possible integer is k — 1

Output: sparse bit matrix of spikes, S

w = 0

for j 1 to P, in parallel ðo

wej = I

Elj = k

> initialize weight matrix to all zeros

> initialize bias weights

> set neuron threshold

uj = u directly inject initial value as neuron potential

xo = 1 p. initialize bias input

= 0 u initialize bit matrix to all zeros

for j F 1 to P, in parallel do

for r t— 1 to k do

uj = + woiro > neuron potential update (discretized LIF)

if uj >= fllj then t. threshold check for spiking neuron

S(r,j)=1

uj = 0 t> reset neuron potential after spike
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6 Complexity Analysis

SpikeMin
Finding the min where P > N

SpikeMax
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7 1 Complexity Analysis

Time Multiplexed Cross Correlation

Feature Detectors
• Rate CodMg

Integrators
- Latency Coding
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8 Complexity Analysis

Strassen's Recursive Algorithm for Matrix Multiplication
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9 Complexity Analysis

Spiking Random Walk Algorithms

Particle method
o Circuit per walker

o Path dependent behavior is readily available

o Communication is entirely local within particles (embarrassingly parallel)

o With unlimited neurons, can run in constant time

O Ideal for sparse particles in large spaces

Density method
o Circuit per position

o Densities are readily available at all times

o Non-local or other complex graphs can easily be implemented

o With limited neurons, can tradeoff statistical approximation (i.e., number
of walkers) with longer or shorter simulations

O Ideal for dense particles in small spaces
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10 I Conclusion

Sandia National Laboratories is pursuing neural-inspired computing as a
transformative approach to computation
Many opportunities at intersection of neuroscience, math, and computing

c Even loosely brain-inspired concepts have potential to be very impactful on
computing applications

- Excited to see how neuromorphic at large-scale can enable breakthroughs

Thank you!


